next up previous contents
Next: Church-Rosser property Up: The (untyped) lambda calculus Previous: Normal forms   Contents

$\rightarrow ^*$-equivalence

We define an equivalence on lambda terms, which we shall write $\leftrightarrow$, based on the many step reduction relation $\rightarrow ^*$. Basically, $\leftrightarrow$ is the symmetric transitive closure of $\rightarrow ^*$. It can be defined inductively using inference rules in the same way that we defined $\rightarrow $ based on $\rightarrow _x$:


\begin{displaymath}
\begin{array}{ccc}
\displaystyle\frac{M \rightarrow ^* N}{M...
...tarrow N, N \leftrightarrow P}{M \leftrightarrow P}
\end{array}\end{displaymath}

We can do the same with any reflexive, transitive relation $R$-- the symmetric, transitive closure of $R$ defines an equivalence relation $\stackrel{{R}}{\leftrightarrow}$.



Madhavan Mukund 2004-04-29