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Petri nets - introduction

I Mathematical model.
I Widely used to model systems with concurrent processes.
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Reachability problem

Starting from
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?



Previous work

I E.W.Mayr gave an algorithm for the general Petri net
reachability problem in 1981/1984.

I S.R.Kosaraju and J.L.Lambert simplified the proofs in 1982
and 1992.

I Employing notions defined by Lambert, J.Leroux recently
gave another approach for proving decidability.

I No upper bound known for above algorithms. They need
non-primitive recursive space in the worst case.

I R.J.Lipton gave an exponential space lower bound for the
general Petri net reachability problem.

I Exact complexity of the general reachability problem is not
known.

I Better algorithms are known for Petri nets with special
properties (1-safe nets, sinkless nets etc.).



Formal definitions

I N = (P,T ,Pre,Post ,Mi) is a Petri net system where
I P is the set of places,
I T is the set of transitions,
I Pre : (P × T )→ N and Post : (P × T )→ N are the flow

relations and
I Mi : P → N is the initial marking.

I A transition can be fired at marking M provided there are
enough tokens in all its input places. This firing results in
the new marking M ′: M t→ M ′.
M ′(p) = M(p)− Pre(p, t) + Post(p, t) for all p ∈ P.

I A firing sequence σ = t1 · · · tr is enabled at marking M0 if
M0

t1→ M1 · · ·Mr−1
tr→ Mr and each ti is enabled at Mi−1.

I Given a Petri net system and a final marking Mf , the
reachability problem is to determine if there exists a firing
sequence σ enabled at Mi such that Mi

σ→ Mf .



Definitions (Contd. . . )

I N = [cij ] is the |P| × |T | incidence matrix where
cij = −Pre(pi , tj) + Post(pi , tj).

I For the firing sequence σ, its Parikh vector σ has as the i th

component the number of times ti occurs in σ.
I A T-invariant J is an integral solution to Nj = 0.



k -safe nets

I Every place will have at most k tokens in any reachable
marking.

I If there are m places, there are only (k + 1)m distinct
possible markings.

I Any reachable marking can be reached by a firing
sequence of length at most (k + 1)m.

I A non-deterministic algorithm will take polynomial space to
guess a firing sequence and verify that it reaches the final
marking.

I Lower bound given by Cheng, Esparza and Palsberg
(1993): reduction from QBF-SAT to reachability in 1-safe
nets.



Measuring progress
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Measuring progress
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I 3x1 + 2x2 + x4 + 2x5 is an S-variant for this net.
I If starting at marking (i1, i2, i3, i4, i5), a firing sequence σ

reaches the marking (f1, f2, f3, f4, f5), length of σ is at most
3f1 + 2f2 + f4 + 2f5 − 3i1 − 2i2 − i4 − 2i5.



Measuring progress using S-variants

I An S-variant V is an integral solution to the inequality
NT v ≥ 1.

I The value of S-variant V at a marking M is
V(M) =

∑
p∈P V(p)M(p).

I M t−→ M ′ ⇒ V(M ′) ≥ V(M) + 1.
I The existence of an S-variant is equivalent to finding

rational solutions to NT v ≥ 1 and can be checked in
polynomial time.

I An application of the Farkas lemma shows that S-variants
exist for a net iff it doesn’t have semi-positive T-invariants.
Such T-invariant-less nets were studied by Kostin (2000).



Using progress measure in reachability algorithm

I If S-variants exist for a net and V is an S-variant,
V(Mf )− V(M0) is an upper bound on length of σ where
M0

σ−→ Mf .
I Values in V can be bounded by N using bounds on

solutions of linear Diophantine equations.
I Length of firing sequences bounded by input size. A

non-deterministic algorithm takes polynomial space to
guess a firing sequence and verify it.

I The 1-safe net to which QBF-SAT is reduced to also
happens to have S-variants. So, the reachability problem
for this subclass of Petri nets is PSPACE -complete.



Partial S-variants

I Partial S-variants are those whose value increases strictly
for certain transitions and doesn’t change for others.

I Another application of Farkas lemma shows that the
“certain” transitions are exactly those that are not part of
any semi-positive T-invariant.
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Structurally partially bounded nets

I Structurally partially bounded nets are those satisfying the
following (polytime-checkable) property:
If all progressive transitions are removed, what remains is
a structurally bounded net.
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Structurally partially bounded nets

I Suppose Mi
σ→ Mf in a structurally partially bounded net.

I The number of progressive transitions occurring in σ can
be bounded using partial S-variant.

I The number of other transitions is also bounded since they
form a structurally bounded net.

I Total number of transition occurrences in σ is again
bounded by input size, resulting in a PSPACE reachability
algorithm.



Summary

I We looked at k -safe Petri nets where all reachable
markings are reachable via “short” firing sequences.

I With S-variants, we saw that we can analyze Petri nets
where length of firing sequences are bounded by size of
the net, initial and final markings.

I Above two properties ensure that if a marking is reachable,
it is reachable by a firing sequence whose length is at most
some exponential function of the input size.

I Is it possible to combine the above two classes to form a
subclass that is bigger than the union of these two
subclasses and has the small paths property?



Thank you.

Questions?
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