Petri nets with small path property

M. Praveen and Kamal Lodaya

The Institute of Mathematical Sciences, Chennai
January 2009

Petri nets - introduction

- Mathematical model.
- Widely used to model systems with concurrent processes.

Example

Figure: Hopcroft and Pansiot's example Petri net

Petri nets - introduction

- Mathematical model.
- Widely used to model systems with concurrent processes.

Example

Figure: Hopcroft and Pansiot's example Petri net

Petri nets - introduction

- Mathematical model.
- Widely used to model systems with concurrent processes.

Example

Figure: Hopcroft and Pansiot's example Petri net

Petri nets - introduction

- Mathematical model.
- Widely used to model systems with concurrent processes.

Example

Figure: Hopcroft and Pansiot's example Petri net

Petri nets - introduction

- Mathematical model.
- Widely used to model systems with concurrent processes.

Example

Figure: Hopcroft and Pansiot's example Petri net

Petri nets - introduction

- Mathematical model.
- Widely used to model systems with concurrent processes.

Example

Figure: Hopcroft and Pansiot's example Petri net

Petri nets - introduction

- Mathematical model.
- Widely used to model systems with concurrent processes.

Example

Figure: Hopcroft and Pansiot's example Petri net

Petri nets - introduction

- Mathematical model.
- Widely used to model systems with concurrent processes.

Example

Figure: Hopcroft and Pansiot's example Petri net

Petri nets - introduction

- Mathematical model.
- Widely used to model systems with concurrent processes.

Example

Figure: Hopcroft and Pansiot's example Petri net

Petri nets - introduction

- Mathematical model.
- Widely used to model systems with concurrent processes.

Example

Figure: Hopcroft and Pansiot's example Petri net

Petri nets - introduction

- Mathematical model.
- Widely used to model systems with concurrent processes.

Example

Figure: Hopcroft and Pansiot's example Petri net

Petri nets - introduction

- Mathematical model.
- Widely used to model systems with concurrent processes.

Example

Figure: Hopcroft and Pansiot's example Petri net

Petri nets - introduction

- Mathematical model.
- Widely used to model systems with concurrent processes.

Example

Figure: Hopcroft and Pansiot's example Petri net

Petri nets - introduction

- Mathematical model.
- Widely used to model systems with concurrent processes.

Example

Figure: Hopcroft and Pansiot's example Petri net

Petri nets - introduction

- Mathematical model.
- Widely used to model systems with concurrent processes.

Example

Figure: Hopcroft and Pansiot's example Petri net

Petri nets - introduction

- Mathematical model.
- Widely used to model systems with concurrent processes.

Example

Figure: Hopcroft and Pansiot's example Petri net

Petri nets - introduction

- Mathematical model.
- Widely used to model systems with concurrent processes.

Example

Figure: Hopcroft and Pansiot's example Petri net

Reachability problem

Starting from

, can we reach

$$
M_{f}=\left[\begin{array}{c}
n-2 \\
2^{n-3} \\
0 \\
1 \\
n
\end{array}\right]
$$

Previous work

- E.W.Mayr gave an algorithm for the general Petri net reachability problem in 1981/1984.
- S.R.Kosaraju and J.L.Lambert simplified the proofs in 1982 and 1992.
- Employing notions defined by Lambert, J.Leroux recently gave another approach for proving decidability.
- No upper bound known for above algorithms. They need non-primitive recursive space in the worst case.
- R.J.Lipton gave an exponential space lower bound for the general Petri net reachability problem.
- Exact complexity of the general reachability problem is not known.
- Better algorithms are known for Petri nets with special properties (1-safe nets, sinkless nets etc.).

Formal definitions

- $N=\left(P, T\right.$, Pre, Post,$\left.M_{i}\right)$ is a Petri net system where
- P is the set of places,
- T is the set of transitions,
- Pre : $(P \times T) \rightarrow \mathbb{N}$ and Post : $(P \times T) \rightarrow \mathbb{N}$ are the flow relations and
- $M_{i}: P \rightarrow \mathbb{N}$ is the initial marking.
- A transition can be fired at marking M provided there are enough tokens in all its input places. This firing results in the new marking $M^{\prime}: M \xrightarrow{t} M^{\prime}$.
$M^{\prime}(p)=M(p)-\operatorname{Pre}(p, t)+\operatorname{Post}(p, t)$ for all $p \in P$.
- A firing sequence $\sigma=t_{1} \cdots t_{r}$ is enabled at marking M_{0} if $M_{0} \xrightarrow{t_{1}} M_{1} \cdots M_{r-1} \xrightarrow{t_{r}} M_{r}$ and each t_{i} is enabled at M_{i-1}.
- Given a Petri net system and a final marking M_{f}, the reachability problem is to determine if there exists a firing sequence σ enabled at M_{i} such that $M_{i} \xrightarrow{\sigma} M_{f}$.

Definitions (Contd...)

- $\mathbf{N}=\left[c_{i j}\right]$ is the $|P| \times|T|$ incidence matrix where $c_{i j}=-\operatorname{Pre}\left(p_{i}, t_{j}\right)+\operatorname{Post}\left(p_{i}, t_{j}\right)$.
- For the firing sequence σ, its Parikh vector $\bar{\sigma}$ has as the $i^{\text {th }}$ component the number of times t_{i} occurs in σ.
- A T-invariant \mathbf{J} is an integral solution to $\mathbf{N j}=\mathbf{0}$.

k-safe nets

- Every place will have at most k tokens in any reachable marking.
- If there are m places, there are only $(k+1)^{m}$ distinct possible markings.
- Any reachable marking can be reached by a firing sequence of length at most $(k+1)^{m}$.
- A non-deterministic algorithm will take polynomial space to guess a firing sequence and verify that it reaches the final marking.
- Lower bound given by Cheng, Esparza and Palsberg (1993): reduction from QBF-SAT to reachability in 1-safe nets.

Measuring progress

Figure: Hopcroft and Pansiot's example net

$$
3 x_{1}+2 x_{2}+x_{4}+2 x_{5}
$$

Measuring progress

Figure: Hopcroft and Pansiot's example net

$$
\begin{array}{cccccc}
3 x_{1} & + & 2 x_{2} & + & x_{4} & + \\
3\left(x_{1}+1\right) & + & 2\left(x_{2}-1\right) & + & x_{4} & + \\
2 x_{5}
\end{array}
$$

Measuring progress

Figure: Hopcroft and Pansiot's example net

$$
\begin{array}{cccccc}
3 x_{1} & + & 2 x_{2} & + & x_{4} & + \\
3\left(x_{1}+1\right) & + & 2\left(x_{2}-1\right) & + & x_{4} & + \\
2 & 2 x_{5} \\
\hline+3 & -2
\end{array}
$$

Measuring progress

Figure: Hopcroft and Pansiot's example net

$$
\begin{array}{cccccc}
3 x_{1} & + & 2 x_{2} & + & x_{4} & + \\
3\left(x_{1}-1\right) & + & 2\left(x_{2}+2\right) & + & x_{4} & + \\
\hline & +4 & x_{5} \\
\hline-3
\end{array}
$$

Measuring progress

Figure: Hopcroft and Pansiot's example net

| $3 x_{1}+2 x_{2}$ | + | x_{4} | + | $2 x_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $3 x_{1}+$ | $+2 x_{2}$ | $+x_{4}+1$ | + | $2 x_{5}$ |
| +1 | | | | |

Measuring progress

Figure: Hopcroft and Pansiot's example net

$3 x_{1}+2 x_{2}$	+	x_{4}	+	$2 x_{5}$	
$3 x_{1}$	+	$2 x_{2}$	+	$x_{4}-1$	+
$2\left(x_{5}+1\right)$					

Measuring progress

Figure: Hopcroft and Pansiot's example net

- $3 x_{1}+2 x_{2}+x_{4}+2 x_{5}$ is an S-variant for this net.
- If starting at marking ($i_{1}, i_{2}, i_{3}, i_{4}, i_{5}$), a firing sequence σ reaches the marking $\left(f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right)$, length of σ is at most $3 f_{1}+2 f_{2}+f_{4}+2 f_{5}-3 i_{1}-2 i_{2}-i_{4}-2 i_{5}$.

Measuring progress using S-variants

- An S-variant \mathbf{V} is an integral solution to the inequality $\mathbf{N}^{T} \mathbf{v} \geq 1$.
- The value of S -variant \mathbf{V} at a marking M is $\mathbf{V}(M)=\sum_{p \in P} \mathbf{V}(p) M(p)$.
- $M \xrightarrow{t} M^{\prime} \Rightarrow \mathbf{V}\left(M^{\prime}\right) \geq \mathbf{V}(M)+1$.
- The existence of an S -variant is equivalent to finding rational solutions to $\mathbf{N}^{T} \mathbf{v} \geq 1$ and can be checked in polynomial time.
- An application of the Farkas lemma shows that S-variants exist for a net iff it doesn't have semi-positive T-invariants. Such T-invariant-less nets were studied by Kostin (2000).

Using progress measure in reachability algorithm

- If S-variants exist for a net and \mathbf{V} is an S-variant, $\mathbf{V}\left(M_{f}\right)-\mathbf{V}\left(M_{0}\right)$ is an upper bound on length of σ where $M_{0} \xrightarrow{\sigma} M_{f}$.
- Values in \mathbf{V} can be bounded by \mathbf{N} using bounds on solutions of linear Diophantine equations.
- Length of firing sequences bounded by input size. A non-deterministic algorithm takes polynomial space to guess a firing sequence and verify it.
- The 1-safe net to which QBF-SAT is reduced to also happens to have S-variants. So, the reachability problem for this subclass of Petri nets is PSPACE -complete.

Partial S-variants

- Partial S-variants are those whose value increases strictly for certain transitions and doesn't change for others.
- Another application of Farkas lemma shows that the "certain" transitions are exactly those that are not part of any semi-positive T-invariant.

Figure: Example of partial S-variants

Structurally partially bounded nets

- Structurally partially bounded nets are those satisfying the following (polytime-checkable) property:
If all progressive transitions are removed, what remains is a structurally bounded net.

Figure: Example of a structurally partially bounded net

Structurally partially bounded nets

- Suppose $M_{i} \xrightarrow{\sigma} M_{f}$ in a structurally partially bounded net.
- The number of progressive transitions occurring in σ can be bounded using partial S-variant.
- The number of other transitions is also bounded since they form a structurally bounded net.
- Total number of transition occurrences in σ is again bounded by input size, resulting in a PSPACE reachability algorithm.

Summary

- We looked at k-safe Petri nets where all reachable markings are reachable via "short" firing sequences.
- With S-variants, we saw that we can analyze Petri nets where length of firing sequences are bounded by size of the net, initial and final markings.
- Above two properties ensure that if a marking is reachable, it is reachable by a firing sequence whose length is at most some exponential function of the input size.
- Is it possible to combine the above two classes to form a subclass that is bigger than the union of these two subclasses and has the small paths property?

Thank you.

Questions?

