
Logic, Courcelle’s theorem and Applications

M. Praveen

The Institute of Mathematical Sciences, India

IMPECS School on Parameterized and Exact Computation
December 2010

Outline

Introduction to logic

Courcelle’s theorem

Examples

Extensions

Proof Idea

Generalizations and specializations

Other approaches using the idea

Using logic to define problems

A graph is three colorable iff the set of vertices can be partitioned
into three parts such that, there is no edge between vertices in the
same partition.

∃X1,X2,X3 ∀x
{

[x ∈ X1 ∨ x ∈ X2 ∨ x ∈ X3]
∧ ¬[(x ∈ X1 ∧ x ∈ X2) ∨ (x ∈ X2 ∧ x ∈ X3)

∨ (x ∈ X1 ∧ x ∈ X3)]
}
∧∀y , z
{

E (y , z)⇒ ¬(y ∈ X1 ∧ z ∈ X1)
∧E (y , z)⇒ ¬(y ∈ X2 ∧ z ∈ X2)
∧E (y , z)⇒ ¬(y ∈ X3 ∧ z ∈ X3)

}

(1)

Using logic to define problems

A graph is three colorable iff the set of vertices can be partitioned
into three parts such that, there is no edge between vertices in the
same partition.

∃X1,X2,X3 ∀x
{

[x ∈ X1 ∨ x ∈ X2 ∨ x ∈ X3]
∧ ¬[(x ∈ X1 ∧ x ∈ X2) ∨ (x ∈ X2 ∧ x ∈ X3)

∨ (x ∈ X1 ∧ x ∈ X3)]
}
∧∀y , z
{

E (y , z)⇒ ¬(y ∈ X1 ∧ z ∈ X1)
∧E (y , z)⇒ ¬(y ∈ X2 ∧ z ∈ X2)
∧E (y , z)⇒ ¬(y ∈ X3 ∧ z ∈ X3)

}

(1)

Using logic to define problems

A graph is three colorable iff the set of vertices can be partitioned
into three parts such that, there is no edge between vertices in the
same partition.

∃X1,X2,X3 ∀x
{

[x ∈ X1 ∨ x ∈ X2 ∨ x ∈ X3]
∧ ¬[(x ∈ X1 ∧ x ∈ X2) ∨ (x ∈ X2 ∧ x ∈ X3)

∨ (x ∈ X1 ∧ x ∈ X3)]
}
∧∀y , z
{

E (y , z)⇒ ¬(y ∈ X1 ∧ z ∈ X1)
∧E (y , z)⇒ ¬(y ∈ X2 ∧ z ∈ X2)
∧E (y , z)⇒ ¬(y ∈ X3 ∧ z ∈ X3)

}

(1)

Using logic to define problems

A graph is three colorable iff the set of vertices can be partitioned
into three parts such that, there is no edge between vertices in the
same partition.

∃X1,X2,X3 ∀x
{

[x ∈ X1 ∨ x ∈ X2 ∨ x ∈ X3]
∧ ¬[(x ∈ X1 ∧ x ∈ X2) ∨ (x ∈ X2 ∧ x ∈ X3)

∨ (x ∈ X1 ∧ x ∈ X3)]
}
∧∀y , z
{

E (y , z)⇒ ¬(y ∈ X1 ∧ z ∈ X1)
∧E (y , z)⇒ ¬(y ∈ X2 ∧ z ∈ X2)
∧E (y , z)⇒ ¬(y ∈ X3 ∧ z ∈ X3)

}

(1)

Using logic to define problems

A graph is three colorable iff the set of vertices can be partitioned
into three parts such that, there is no edge between vertices in the
same partition.

∃X1,X2,X3 ∀x
{

[x ∈ X1 ∨ x ∈ X2 ∨ x ∈ X3]
∧ ¬[(x ∈ X1 ∧ x ∈ X2) ∨ (x ∈ X2 ∧ x ∈ X3)

∨ (x ∈ X1 ∧ x ∈ X3)]
}
∧∀y , z
{

E (y , z)⇒ ¬(y ∈ X1 ∧ z ∈ X1)
∧E (y , z)⇒ ¬(y ∈ X2 ∧ z ∈ X2)
∧E (y , z)⇒ ¬(y ∈ X3 ∧ z ∈ X3)

}

(1)

Monadic Second Order (MSO) logic of graphs

I Let x , y , x1, x2, x3, . . . be variables that denote vertices.

I Let X ,Y ,X1,X2,X3, . . . be variables that denote subsets of
vertices.

I Let E (x1, x2) denote the fact that there is an edge between x1

and x2.

I Monadic Second Order logic formulas (denoted as φ, φ1, φ2

etc.) are those that can be constructed using the following:
I x ∈ Y
I x1 = x2

I E (x1, x2)
I φ1 ∧ φ2, φ1 ∨ φ2, ¬φ1

I ∃xφ,∀xφ
I ∃Xφ,∀Xφ
I For Counting MSO, add |X | ≡ q mod p, p, q ∈ N.

Monadic Second Order (MSO) logic of graphs

I Let x , y , x1, x2, x3, . . . be variables that denote vertices.

I Let X ,Y ,X1,X2,X3, . . . be variables that denote subsets of
vertices.

I Let E (x1, x2) denote the fact that there is an edge between x1

and x2.
I Monadic Second Order logic formulas (denoted as φ, φ1, φ2

etc.) are those that can be constructed using the following:
I x ∈ Y
I x1 = x2

I E (x1, x2)
I φ1 ∧ φ2, φ1 ∨ φ2, ¬φ1

I ∃xφ, ∀xφ
I ∃Xφ, ∀Xφ

I For Counting MSO, add |X | ≡ q mod p, p, q ∈ N.

Monadic Second Order (MSO) logic of graphs

I Let x , y , x1, x2, x3, . . . be variables that denote vertices.

I Let X ,Y ,X1,X2,X3, . . . be variables that denote subsets of
vertices.

I Let E (x1, x2) denote the fact that there is an edge between x1

and x2.
I Monadic Second Order logic formulas (denoted as φ, φ1, φ2

etc.) are those that can be constructed using the following:
I x ∈ Y
I x1 = x2

I E (x1, x2)
I φ1 ∧ φ2, φ1 ∨ φ2, ¬φ1

I ∃xφ, ∀xφ
I ∃Xφ, ∀Xφ
I For Counting MSO, add |X | ≡ q mod p, p, q ∈ N.

MSO logic of graphs contd. . .

I In ∃xφ, all occurrences of x inside φ are said to be bound by
the quantifier ∃ occurring in front of φ. Similarly for ∀xφ,
∃Xφ and ∀Xφ.

I Variables not bounded by any quantifier are said be free. Ex:
∃x1E (x2, x1).

MSO logic of graphs contd. . .

I In ∃xφ, all occurrences of x inside φ are said to be bound by
the quantifier ∃ occurring in front of φ. Similarly for ∀xφ,
∃Xφ and ∀Xφ.

I Variables not bounded by any quantifier are said be free. Ex:
∃x1E (x2, x1).

Courcelle’s theorem

I Let G be a graph.

I Let φ be a MSO sentence (a MSO formula without free
variables).

I Let treewidth(G) + size(φ) be the parameter.

I [Courcelle’s theorem]: Checking whether G satisfies φ is Fixed
Parameter Tractable.There is an algorithm with running time
f (treewidth(G), size(φ))n.

Courcelle’s theorem

I Let G be a graph.

I Let φ be a MSO sentence (a MSO formula without free
variables).

I Let treewidth(G) + size(φ) be the parameter.

I [Courcelle’s theorem]: Checking whether G satisfies φ is Fixed
Parameter Tractable.

There is an algorithm with running time
f (treewidth(G), size(φ))n.

Courcelle’s theorem

I Let G be a graph.

I Let φ be a MSO sentence (a MSO formula without free
variables).

I Let treewidth(G) + size(φ) be the parameter.

I [Courcelle’s theorem]: Checking whether G satisfies φ is Fixed
Parameter Tractable.There is an algorithm with running time
f (treewidth(G), size(φ))n.

Example: CNF SAT

c`1 c`2 c`3 c`4

(x1 ∨ ¬x2) (x3 ∨ x4) x5 (¬x6 ∨ ¬x7)∧ ∧ ∧

C l

Lt

CNF Satisfiability: There is a subset of variables such that, for
every clause

Either there is a variable in the subset occurring positively

Or there is a variable not in the subset occurring negatively.

∃T r ⊆ Lt : ∀c` ∈ C ` :
[(∃l t ∈ T r : E (c`, l t))∨Ä
∃l t ∈ Lt \ T r : E (c`, l t)

ä
]

(2)

Example: CNF SAT

c`1 c`2 c`3 c`4

(x1 ∨ ¬x2) (x3 ∨ x4) x5 (¬x6 ∨ ¬x7)∧ ∧ ∧

C l

Lt

CNF Satisfiability: There is a subset of variables such that, for
every clause

Either there is a variable in the subset occurring positively

Or there is a variable not in the subset occurring negatively.

∃T r ⊆ Lt : ∀c` ∈ C ` :
[(∃l t ∈ T r : E (c`, l t))∨Ä
∃l t ∈ Lt \ T r : E (c`, l t)

ä
]

(2)

Example: CNF SAT

c`1 c`2 c`3 c`4

(x1 ∨ ¬x2) (x3 ∨ x4) x5 (¬x6 ∨ ¬x7)∧ ∧ ∧

C l

Lt

CNF Satisfiability: There is a subset of variables such that, for
every clause

Either there is a variable in the subset occurring positively

Or there is a variable not in the subset occurring negatively.

∃T r ⊆ Lt : ∀c` ∈ C ` :
[(∃l t ∈ T r : E (c`, l t))∨Ä
∃l t ∈ Lt \ T r : E (c`, l t)

ä
]

(2)

Example: CNF SAT

c`1 c`2 c`3 c`4

(x1 ∨ ¬x2) (x3 ∨ x4) x5 (¬x6 ∨ ¬x7)∧ ∧ ∧

C l

Lt

CNF Satisfiability: There is a subset of variables such that, for
every clause

Either there is a variable in the subset occurring positively

Or there is a variable not in the subset occurring negatively.

∃T r ⊆ Lt : ∀c` ∈ C ` :
[(∃l t ∈ T r : E (c`, l t))∨Ä
∃l t ∈ Lt \ T r : E (c`, l t)

ä
]

(2)

Example: CNF SAT

c`1 c`2 c`3 c`4

(x1 ∨ ¬x2) (x3 ∨ x4) x5 (¬x6 ∨ ¬x7)∧ ∧ ∧

C l

Lt

CNF Satisfiability: There is a subset of variables such that, for
every clause

Either there is a variable in the subset occurring positively

Or there is a variable not in the subset occurring negatively.

∃T r ⊆ Lt : ∀c` ∈ C ` :
[(∃l t ∈ T r : E (c`, l t))∨Ä
∃l t ∈ Lt \ T r : E (c`, l t)

ä
]

(2)

Example: CNF SAT

c`1 c`2 c`3 c`4

(x1 ∨ ¬x2) (x3 ∨ x4) x5 (¬x6 ∨ ¬x7)∧ ∧ ∧

C l

Lt

CNF Satisfiability: There is a subset of variables such that, for
every clause

Either there is a variable in the subset occurring positively

Or there is a variable not in the subset occurring negatively.

∃T r ⊆ Lt : ∀c` ∈ C ` :
[(∃l t ∈ T r : E (c`, l t))∨Ä
∃l t ∈ Lt \ T r : E (c`, l t)

ä
]

(2)

Example: CNF SAT

c`1 c`2 c`3 c`4

(x1 ∨ ¬x2) (x3 ∨ x4) x5 (¬x6 ∨ ¬x7)∧ ∧ ∧

C l

Lt

CNF Satisfiability: There is a subset of variables such that, for
every clause

Either there is a variable in the subset occurring positively

Or there is a variable not in the subset occurring negatively.

∃T r ⊆ Lt : ∀c` ∈ C ` :
[(∃l t ∈ T r : E (c`, l t))∨Ä
∃l t ∈ Lt \ T r : E (c`, l t)

ä
]

(2)

Dominating set of size three

A graph has a dominating set of size three iff there is a set of three
vertices such that all other vertices are adjacent to some vertex in
the set.

∃x1, x2, x3 ∀x
{

(x = x1 ∨ x = x2 ∨ x = x3)
∨∃y E (x , y) ∧ (y = x1 ∨ y = x2 ∨ y = x3)

}

(3)

For each dominating set of size k , a formula can be written.

Dominating set of size three

A graph has a dominating set of size three iff there is a set of three
vertices such that all other vertices are adjacent to some vertex in
the set.

∃x1, x2, x3 ∀x
{

(x = x1 ∨ x = x2 ∨ x = x3)
∨∃y E (x , y) ∧ (y = x1 ∨ y = x2 ∨ y = x3)

}

(3)

For each dominating set of size k , a formula can be written.

Dominating set of size three

A graph has a dominating set of size three iff there is a set of three
vertices such that all other vertices are adjacent to some vertex in
the set.

∃x1, x2, x3 ∀x
{

(x = x1 ∨ x = x2 ∨ x = x3)
∨∃y E (x , y) ∧ (y = x1 ∨ y = x2 ∨ y = x3)

}

(3)

For each dominating set of size k , a formula can be written.

Dominating set of size three

A graph has a dominating set of size three iff there is a set of three
vertices such that all other vertices are adjacent to some vertex in
the set.

∃x1, x2, x3 ∀x
{

(x = x1 ∨ x = x2 ∨ x = x3)
∨∃y E (x , y) ∧ (y = x1 ∨ y = x2 ∨ y = x3)

}

(3)

For each dominating set of size k , a formula can be written.

Dominating set of size three

A graph has a dominating set of size three iff there is a set of three
vertices such that all other vertices are adjacent to some vertex in
the set.

∃x1, x2, x3 ∀x
{

(x = x1 ∨ x = x2 ∨ x = x3)
∨∃y E (x , y) ∧ (y = x1 ∨ y = x2 ∨ y = x3)

}

(3)

For each dominating set of size k , a formula can be written.

Extensions - Motivation

In a graph G , a subset X of vertices is a dominating set iff all
other vertices are adjacent to some vertex in X .

ds(X) = ∀x
{

x ∈ X
∨∃y E (x , y) ∧ y ∈ X

}

(4)

Smallest dominating set: what is the size of a smallest subset X
of vertices such that G satisfies ds(X)?

Extensions - Motivation

In a graph G , a subset X of vertices is a dominating set iff all
other vertices are adjacent to some vertex in X .

ds(X) = ∀x
{

x ∈ X
∨∃y E (x , y) ∧ y ∈ X

}

(4)

Smallest dominating set: what is the size of a smallest subset X
of vertices such that G satisfies ds(X)?

Extensions - Motivation

In a graph G , a subset X of vertices is a dominating set iff all
other vertices are adjacent to some vertex in X .

ds(X) = ∀x
{

x ∈ X
∨∃y E (x , y) ∧ y ∈ X

}

(4)

Smallest dominating set: what is the size of a smallest subset X
of vertices such that G satisfies ds(X)?

Extensions - Motivation

In a graph G , a subset X of vertices is a dominating set iff all
other vertices are adjacent to some vertex in X .

ds(X) = ∀x
{

x ∈ X
∨∃y E (x , y) ∧ y ∈ X

}

(4)

Smallest dominating set: what is the size of a smallest subset X
of vertices such that G satisfies ds(X)?

Extended MSO

I Let φ(X1, · · · ,Xl) be a MSO formula with free variables
X1, · · · ,Xl .

I [Arnborg, Lagergren, Seese]: The following problem is Fixed
Parameter Tractable: Maximising/minimizing any linear
combination of |X1|, · · · , |Xl |.

I Many other extensions are also proved: adding conditions like
|X1| > |X2|, |X1|+ |X2| ≤ |X3| and so on. However, the
degree of the polynomial in the running time depends on the
number of free variables.

Extended MSO

I Let φ(X1, · · · ,Xl) be a MSO formula with free variables
X1, · · · ,Xl .

I [Arnborg, Lagergren, Seese]: The following problem is Fixed
Parameter Tractable: Maximising/minimizing any linear
combination of |X1|, · · · , |Xl |.

I Many other extensions are also proved: adding conditions like
|X1| > |X2|, |X1|+ |X2| ≤ |X3| and so on. However, the
degree of the polynomial in the running time depends on the
number of free variables.

Extended MSO

I Let φ(X1, · · · ,Xl) be a MSO formula with free variables
X1, · · · ,Xl .

I [Arnborg, Lagergren, Seese]: The following problem is Fixed
Parameter Tractable: Maximising/minimizing any linear
combination of |X1|, · · · , |Xl |.

I Many other extensions are also proved: adding conditions like
|X1| > |X2|, |X1|+ |X2| ≤ |X3| and so on. However, the
degree of the polynomial in the running time depends on the
number of free variables.

Proof Idea - Path graphs

I A path graph:

I Presenting the above graph as input to an algorithm:
a a a a a.

I The second vertex is x : (a
0) (a

1) (a
0) (a

0) (a
0).

I The first, third and fourth vertices form the set X :(a
0
1

) (a
1
0

) (a
0
1

) (a
0
1

) (a
0
0

)
.

Proof Idea - Path graphs

I A path graph:

I Presenting the above graph as input to an algorithm:
a a a a a.

I The second vertex is x : (a
0) (a

1) (a
0) (a

0) (a
0).

I The first, third and fourth vertices form the set X :(a
0
1

) (a
1
0

) (a
0
1

) (a
0
1

) (a
0
0

)
.

Proof Idea - Path graphs

I A path graph:

I Presenting the above graph as input to an algorithm:
a a a a a.

I The second vertex is x : (a
0) (a

1) (a
0) (a

0) (a
0).

I The first, third and fourth vertices form the set X :(a
0
1

) (a
1
0

) (a
0
1

) (a
0
1

) (a
0
0

)
.

Proof Idea - Path graphs

I A path graph:

I Presenting the above graph as input to an algorithm:
a a a a a.

I The second vertex is x : (a
0) (a

1) (a
0) (a

0) (a
0).

I The first, third and fourth vertices form the set X :(a
0
1

) (a
1
0

) (a
0
1

) (a
0
1

) (a
0
0

)
.

A question about path graphs

I Question: Is there an algorithm to check that the length of a
path graph is 0 mod 3?

I Answer: Read from left to right, keeping track of the current
length modulo 3.

I

0start

1

2

a

a

a

I Question: For what kind of questions can we construct finite
state automata?

A question about path graphs

I Question: Is there an algorithm to check that the length of a
path graph is 0 mod 3?

I Answer: Read from left to right, keeping track of the current
length modulo 3.

I

0start

1

2

a

a

a

I Question: For what kind of questions can we construct finite
state automata?

A question about path graphs

I Question: Is there an algorithm to check that the length of a
path graph is 0 mod 3?

I Answer: Read from left to right, keeping track of the current
length modulo 3.

I

0start

1

2

a

a

a

I Question: For what kind of questions can we construct finite
state automata?

A question about path graphs

I Question: Is there an algorithm to check that the length of a
path graph is 0 mod 3?

I Answer: Read from left to right, keeping track of the current
length modulo 3.

I

0start

1

2

a

a

a

I Question: For what kind of questions can we construct finite
state automata?

Answer

I Answer [Büchi, Elgot, Trakhtenbrot theorem]: For precisely
those questions that can be stated in the MSO logic of path
graphs.

I MSO logic of path graphs: In MSO logic of graphs, replace
E (x , y) by y = x + 1.

I Automaton for checking y = x + 1:
(a

x
y

)
not
seen
x yet

(a
0
0

)

start

last
one

was x

rejectÄ a
∗
∗

ä
accept

Ä a
∗
∗

ä(a
1
0

)

Ä a
∗
1

ä Ä a
∗
0

ä
,
(a

1
1

)

(a
0
1

)

Answer

I Answer [Büchi, Elgot, Trakhtenbrot theorem]: For precisely
those questions that can be stated in the MSO logic of path
graphs.

I MSO logic of path graphs: In MSO logic of graphs, replace
E (x , y) by y = x + 1.

I Automaton for checking y = x + 1:
(a

x
y

)
not
seen
x yet

(a
0
0

)

start

last
one

was x

rejectÄ a
∗
∗

ä
accept

Ä a
∗
∗

ä(a
1
0

)

Ä a
∗
1

ä Ä a
∗
0

ä
,
(a

1
1

)

(a
0
1

)

Answer

I Answer [Büchi, Elgot, Trakhtenbrot theorem]: For precisely
those questions that can be stated in the MSO logic of path
graphs.

I MSO logic of path graphs: In MSO logic of graphs, replace
E (x , y) by y = x + 1.

I Automaton for checking y = x + 1:
(a

x
y

)
not
seen
x yet

(a
0
0

)

start

last
one

was x

rejectÄ a
∗
∗

ä
accept

Ä a
∗
∗

ä(a
1
0

)

Ä a
∗
1

ä Ä a
∗
0

ä
,
(a

1
1

)

(a
0
1

)

Constructing automaton for MSO formulas

Automaton for checking y = x : Exercise.

Automaton for checking x ∈ X :
(a

X
x

)

not
seen
x yet

Ä a
∗
0

ä
start

accept
Ä a
∗
∗

ä
reject

Ä a
∗
∗

ä
(a

1
1

)

(a
0
1

)

Constructing automaton for MSO formulas

Automaton for checking y = x : Exercise.

Automaton for checking x ∈ X :
(a

X
x

)

not
seen
x yet

Ä a
∗
0

ä
start

accept
Ä a
∗
∗

ä
reject

Ä a
∗
∗

ä
(a

1
1

)

(a
0
1

)

Automaton for MSO formulas contd. . .

I Automaton for ¬φ:

Complement the automaton Aφ of φ.
I φ1 ∧ φ2: Path graphs accepted by both Aφ1 and Aφ2 . Take

Aφ1 ∩ Aφ2 .
I φ1 ∨ φ2: Aφ1 ∪ Aφ2 .
I ∃xφ(x , y): Suppose Aφ(x ,y) is already constructed.

Ä a
0
∗

ä Ä a
∗
∗

ä
start

Ä a
0
∗

ä
Ä a

1
∗

ä Ä a
0
∗

ä Ä a
1
∗

ä
Ä a

1
∗

ä

I That’s all! A deterministic automaton may become
non-deterministic.

Automaton for MSO formulas contd. . .

I Automaton for ¬φ: Complement the automaton Aφ of φ.

I φ1 ∧ φ2: Path graphs accepted by both Aφ1 and Aφ2 . Take
Aφ1 ∩ Aφ2 .

I φ1 ∨ φ2: Aφ1 ∪ Aφ2 .
I ∃xφ(x , y): Suppose Aφ(x ,y) is already constructed.

Ä a
0
∗

ä Ä a
∗
∗

ä
start

Ä a
0
∗

ä
Ä a

1
∗

ä Ä a
0
∗

ä Ä a
1
∗

ä
Ä a

1
∗

ä

I That’s all! A deterministic automaton may become
non-deterministic.

Automaton for MSO formulas contd. . .

I Automaton for ¬φ: Complement the automaton Aφ of φ.
I φ1 ∧ φ2:

Path graphs accepted by both Aφ1 and Aφ2 . Take
Aφ1 ∩ Aφ2 .

I φ1 ∨ φ2: Aφ1 ∪ Aφ2 .
I ∃xφ(x , y): Suppose Aφ(x ,y) is already constructed.

Ä a
0
∗

ä Ä a
∗
∗

ä
start

Ä a
0
∗

ä
Ä a

1
∗

ä Ä a
0
∗

ä Ä a
1
∗

ä
Ä a

1
∗

ä

I That’s all! A deterministic automaton may become
non-deterministic.

Automaton for MSO formulas contd. . .

I Automaton for ¬φ: Complement the automaton Aφ of φ.
I φ1 ∧ φ2: Path graphs accepted by both Aφ1 and Aφ2 .

Take
Aφ1 ∩ Aφ2 .

I φ1 ∨ φ2: Aφ1 ∪ Aφ2 .
I ∃xφ(x , y): Suppose Aφ(x ,y) is already constructed.

Ä a
0
∗

ä Ä a
∗
∗

ä
start

Ä a
0
∗

ä
Ä a

1
∗

ä Ä a
0
∗

ä Ä a
1
∗

ä
Ä a

1
∗

ä

I That’s all! A deterministic automaton may become
non-deterministic.

Automaton for MSO formulas contd. . .

I Automaton for ¬φ: Complement the automaton Aφ of φ.
I φ1 ∧ φ2: Path graphs accepted by both Aφ1 and Aφ2 . Take

Aφ1 ∩ Aφ2 .

I φ1 ∨ φ2: Aφ1 ∪ Aφ2 .
I ∃xφ(x , y): Suppose Aφ(x ,y) is already constructed.

Ä a
0
∗

ä Ä a
∗
∗

ä
start

Ä a
0
∗

ä
Ä a

1
∗

ä Ä a
0
∗

ä Ä a
1
∗

ä
Ä a

1
∗

ä

I That’s all! A deterministic automaton may become
non-deterministic.

Automaton for MSO formulas contd. . .

I Automaton for ¬φ: Complement the automaton Aφ of φ.
I φ1 ∧ φ2: Path graphs accepted by both Aφ1 and Aφ2 . Take

Aφ1 ∩ Aφ2 .
I φ1 ∨ φ2:

Aφ1 ∪ Aφ2 .
I ∃xφ(x , y): Suppose Aφ(x ,y) is already constructed.

Ä a
0
∗

ä Ä a
∗
∗

ä
start

Ä a
0
∗

ä
Ä a

1
∗

ä Ä a
0
∗

ä Ä a
1
∗

ä
Ä a

1
∗

ä

I That’s all! A deterministic automaton may become
non-deterministic.

Automaton for MSO formulas contd. . .

I Automaton for ¬φ: Complement the automaton Aφ of φ.
I φ1 ∧ φ2: Path graphs accepted by both Aφ1 and Aφ2 . Take

Aφ1 ∩ Aφ2 .
I φ1 ∨ φ2: Aφ1 ∪ Aφ2 .

I ∃xφ(x , y): Suppose Aφ(x ,y) is already constructed.

Ä a
0
∗

ä Ä a
∗
∗

ä
start

Ä a
0
∗

ä
Ä a

1
∗

ä Ä a
0
∗

ä Ä a
1
∗

ä
Ä a

1
∗

ä

I That’s all! A deterministic automaton may become
non-deterministic.

Automaton for MSO formulas contd. . .

I Automaton for ¬φ: Complement the automaton Aφ of φ.
I φ1 ∧ φ2: Path graphs accepted by both Aφ1 and Aφ2 . Take

Aφ1 ∩ Aφ2 .
I φ1 ∨ φ2: Aφ1 ∪ Aφ2 .
I ∃xφ(x , y):

Suppose Aφ(x ,y) is already constructed.

Ä a
0
∗

ä Ä a
∗
∗

ä
start

Ä a
0
∗

ä
Ä a

1
∗

ä Ä a
0
∗

ä Ä a
1
∗

ä
Ä a

1
∗

ä

I That’s all! A deterministic automaton may become
non-deterministic.

Automaton for MSO formulas contd. . .

I Automaton for ¬φ: Complement the automaton Aφ of φ.
I φ1 ∧ φ2: Path graphs accepted by both Aφ1 and Aφ2 . Take

Aφ1 ∩ Aφ2 .
I φ1 ∨ φ2: Aφ1 ∪ Aφ2 .
I ∃xφ(x , y): Suppose Aφ(x ,y) is already constructed.

Ä a
0
∗

ä Ä a
∗
∗

ä
start

Ä a
0
∗

ä
Ä a

1
∗

ä Ä a
0
∗

ä Ä a
1
∗

ä
Ä a

1
∗

ä

I That’s all! A deterministic automaton may become
non-deterministic.

Automaton for MSO formulas contd. . .

I Automaton for ¬φ: Complement the automaton Aφ of φ.
I φ1 ∧ φ2: Path graphs accepted by both Aφ1 and Aφ2 . Take

Aφ1 ∩ Aφ2 .
I φ1 ∨ φ2: Aφ1 ∪ Aφ2 .
I ∃xφ(x , y): Suppose Aφ(x ,y) is already constructed.

Ä a

∗

ä Ä a

∗

ä
start

Ä a

∗

ä
Ä a

∗

ä Ä a

∗

ä Ä a

∗

ä
Ä a

∗

ä

I That’s all! A deterministic automaton may become
non-deterministic.

Automaton for MSO formulas contd. . .

I Automaton for ¬φ: Complement the automaton Aφ of φ.
I φ1 ∧ φ2: Path graphs accepted by both Aφ1 and Aφ2 . Take

Aφ1 ∩ Aφ2 .
I φ1 ∨ φ2: Aφ1 ∪ Aφ2 .
I ∃xφ(x , y): Suppose Aφ(x ,y) is already constructed.

Ä a

∗

ä Ä a

∗

ä
start

Ä a

∗

ä
Ä a

∗

ä Ä a

∗

ä Ä a

∗

ä
Ä a

∗

ä
I That’s all! A deterministic automaton may become

non-deterministic.

Automaton for MSO formulas contd. . .

I ∀xφ(x) is same as ¬∃x¬φ(x).

I Construct a non-deterministic automaton for ∃x¬φ(x) and
complement it. This needs determinization and involves an
exponential blow-up.

I Similarly handle ∃Xφ(X) and ∀Xφ(X).

I Size of the automaton depends on the size of the formula. Let
this size be f (|φ|).

I To check if a path graph of n vertices satisfies φ, just check if
Aφ accepts the (sequence representing the) path graph.

I This can be done in time f (|φ|)n.

I Fixed Parameter Tractable when |φ| is a parameter.

Automaton for MSO formulas contd. . .

I ∀xφ(x) is same as ¬∃x¬φ(x).

I Construct a non-deterministic automaton for ∃x¬φ(x) and
complement it. This needs determinization and involves an
exponential blow-up.

I Similarly handle ∃Xφ(X) and ∀Xφ(X).

I Size of the automaton depends on the size of the formula. Let
this size be f (|φ|).

I To check if a path graph of n vertices satisfies φ, just check if
Aφ accepts the (sequence representing the) path graph.

I This can be done in time f (|φ|)n.

I Fixed Parameter Tractable when |φ| is a parameter.

Automaton for MSO formulas contd. . .

I ∀xφ(x) is same as ¬∃x¬φ(x).

I Construct a non-deterministic automaton for ∃x¬φ(x) and
complement it. This needs determinization and involves an
exponential blow-up.

I Similarly handle ∃Xφ(X) and ∀Xφ(X).

I Size of the automaton depends on the size of the formula. Let
this size be f (|φ|).

I To check if a path graph of n vertices satisfies φ, just check if
Aφ accepts the (sequence representing the) path graph.

I This can be done in time f (|φ|)n.

I Fixed Parameter Tractable when |φ| is a parameter.

Automaton for MSO formulas contd. . .

I ∀xφ(x) is same as ¬∃x¬φ(x).

I Construct a non-deterministic automaton for ∃x¬φ(x) and
complement it. This needs determinization and involves an
exponential blow-up.

I Similarly handle ∃Xφ(X) and ∀Xφ(X).

I Size of the automaton depends on the size of the formula. Let
this size be f (|φ|).

I To check if a path graph of n vertices satisfies φ, just check if
Aφ accepts the (sequence representing the) path graph.

I This can be done in time f (|φ|)n.

I Fixed Parameter Tractable when |φ| is a parameter.

Automaton for MSO formulas contd. . .

I ∀xφ(x) is same as ¬∃x¬φ(x).

I Construct a non-deterministic automaton for ∃x¬φ(x) and
complement it. This needs determinization and involves an
exponential blow-up.

I Similarly handle ∃Xφ(X) and ∀Xφ(X).

I Size of the automaton depends on the size of the formula. Let
this size be f (|φ|).

I To check if a path graph of n vertices satisfies φ, just check if
Aφ accepts the (sequence representing the) path graph.

I This can be done in time f (|φ|)n.

I Fixed Parameter Tractable when |φ| is a parameter.

Automaton for MSO formulas contd. . .

I ∀xφ(x) is same as ¬∃x¬φ(x).

I Construct a non-deterministic automaton for ∃x¬φ(x) and
complement it. This needs determinization and involves an
exponential blow-up.

I Similarly handle ∃Xφ(X) and ∀Xφ(X).

I Size of the automaton depends on the size of the formula. Let
this size be f (|φ|).

I To check if a path graph of n vertices satisfies φ, just check if
Aφ accepts the (sequence representing the) path graph.

I This can be done in time f (|φ|)n.

I Fixed Parameter Tractable when |φ| is a parameter.

Automaton for MSO formulas contd. . .

I ∀xφ(x) is same as ¬∃x¬φ(x).

I Construct a non-deterministic automaton for ∃x¬φ(x) and
complement it. This needs determinization and involves an
exponential blow-up.

I Similarly handle ∃Xφ(X) and ∀Xφ(X).

I Size of the automaton depends on the size of the formula. Let
this size be f (|φ|).

I To check if a path graph of n vertices satisfies φ, just check if
Aφ accepts the (sequence representing the) path graph.

I This can be done in time f (|φ|)n.

I Fixed Parameter Tractable when |φ| is a parameter.

Extension to graphs that are very near to being paths

G

φ

P(G)

φ∗

f ′(|φ|)

G satisfies φ iff P(G) satisfies φ∗.
Check if Aφ∗ accepts P(G).

Extension to graphs that are very near to being paths

G

φ

P(G)

φ∗

f ′(|φ|)

G satisfies φ iff P(G) satisfies φ∗.
Check if Aφ∗ accepts P(G).

Extension to graphs that are very near to being paths

G

φ

P(G)

φ∗

f ′(|φ|)

G satisfies φ iff P(G) satisfies φ∗.
Check if Aφ∗ accepts P(G).

Extension to graphs that are very near to being paths

G

φ

P(G)

φ∗

f ′(|φ|)

G satisfies φ iff P(G) satisfies φ∗.
Check if Aφ∗ accepts P(G).

Extension to graphs that are very near to being paths

G

φ

P(G)

f (k)n

φ∗

f ′(|φ|)

G satisfies φ iff P(G) satisfies φ∗.
Check if Aφ∗ accepts P(G).

Extension to graphs that are very near to being paths

G

φ

P(G)

f (k)n

φ∗

f ′(|φ|)

G satisfies φ iff P(G) satisfies φ∗.
Check if Aφ∗ accepts P(G).

Extension to graphs that are very near to being paths

G

φ

P(G)

f (k)n

φ∗

f ′(|φ|)

G satisfies φ iff P(G) satisfies φ∗.

Check if Aφ∗ accepts P(G).

Extension to graphs that are very near to being paths

G

φ

P(G)

f (k)n

φ∗

f ′(|φ|)

G satisfies φ iff P(G) satisfies φ∗.
Check if Aφ∗ accepts P(G).

Extension to treewidth

I [Doner, Thatcher, Wright]: Analogue of BET theorem for
trees.

I For checking MSO properties of graphs with bounded
treewidth, use tree decomposition instead of path
decomposition. Use tree automata instead of the usual string
automata.

Extension to treewidth

I [Doner, Thatcher, Wright]: Analogue of BET theorem for
trees.

I For checking MSO properties of graphs with bounded
treewidth, use tree decomposition instead of path
decomposition. Use tree automata instead of the usual string
automata.

Lower bounds

I Consider the sentence
ψ = ∀x1∃x2∀x3∃x4 · · · ∀x9∃x10φ(x1, . . . , x10).

I If Aφ(x1,...,x10) has m states, how many will Aψ have?

I For every alternation in the quantifier sequence, a
determinization and complementation is performed, incurring
an exponential blowup.

I The number of states will be 22..
.m

.

I Question: can we do better?

I [Frick, Grohe]: No, unless P=Np.

Lower bounds

I Consider the sentence
ψ = ∀x1∃x2∀x3∃x4 · · · ∀x9∃x10φ(x1, . . . , x10).

I If Aφ(x1,...,x10) has m states, how many will Aψ have?

I For every alternation in the quantifier sequence, a
determinization and complementation is performed, incurring
an exponential blowup.

I The number of states will be 22..
.m

.

I Question: can we do better?

I [Frick, Grohe]: No, unless P=Np.

Lower bounds

I Consider the sentence
ψ = ∀x1∃x2∀x3∃x4 · · · ∀x9∃x10φ(x1, . . . , x10).

I If Aφ(x1,...,x10) has m states, how many will Aψ have?

I For every alternation in the quantifier sequence, a
determinization and complementation is performed, incurring
an exponential blowup.

I The number of states will be 22..
.m

.

I Question: can we do better?

I [Frick, Grohe]: No, unless P=Np.

Lower bounds

I Consider the sentence
ψ = ∀x1∃x2∀x3∃x4 · · · ∀x9∃x10φ(x1, . . . , x10).

I If Aφ(x1,...,x10) has m states, how many will Aψ have?

I For every alternation in the quantifier sequence, a
determinization and complementation is performed, incurring
an exponential blowup.

I The number of states will be 22..
.m

.

I Question: can we do better?

I [Frick, Grohe]: No, unless P=Np.

Lower bounds

I Consider the sentence
ψ = ∀x1∃x2∀x3∃x4 · · · ∀x9∃x10φ(x1, . . . , x10).

I If Aφ(x1,...,x10) has m states, how many will Aψ have?

I For every alternation in the quantifier sequence, a
determinization and complementation is performed, incurring
an exponential blowup.

I The number of states will be 22..
.m

.

I Question: can we do better?

I [Frick, Grohe]: No, unless P=Np.

Generalizations and specializations

I Courcelle’s theorem: MSO formulas and class of graphs with
bounded treewidth.

I Take a weaker logic and a bigger class of graphs.

I Weaker logic: Remove ∃X and ∀X from MSO (First Order
logic, FO).

I Bigger class of graphs: graphs with bounded local treewidth.

I Bounded local treewidth: there is a function f : N→ N such
that any sphere of radius r has treewidth at most f (r).

I Example: For planar graphs, f (r) = 3r .

Generalizations and specializations

I Courcelle’s theorem: MSO formulas and class of graphs with
bounded treewidth.

I Take a weaker logic and a bigger class of graphs.

I Weaker logic: Remove ∃X and ∀X from MSO (First Order
logic, FO).

I Bigger class of graphs: graphs with bounded local treewidth.

I Bounded local treewidth: there is a function f : N→ N such
that any sphere of radius r has treewidth at most f (r).

I Example: For planar graphs, f (r) = 3r .

Generalizations and specializations

I Courcelle’s theorem: MSO formulas and class of graphs with
bounded treewidth.

I Take a weaker logic and a bigger class of graphs.

I Weaker logic: Remove ∃X and ∀X from MSO (First Order
logic, FO).

I Bigger class of graphs: graphs with bounded local treewidth.

I Bounded local treewidth: there is a function f : N→ N such
that any sphere of radius r has treewidth at most f (r).

I Example: For planar graphs, f (r) = 3r .

Generalizations and specializations

I Courcelle’s theorem: MSO formulas and class of graphs with
bounded treewidth.

I Take a weaker logic and a bigger class of graphs.

I Weaker logic: Remove ∃X and ∀X from MSO (First Order
logic, FO).

I Bigger class of graphs: graphs with bounded local treewidth.

I Bounded local treewidth: there is a function f : N→ N such
that any sphere of radius r has treewidth at most f (r).

I Example: For planar graphs, f (r) = 3r .

Generalizations and specializations

I Courcelle’s theorem: MSO formulas and class of graphs with
bounded treewidth.

I Take a weaker logic and a bigger class of graphs.

I Weaker logic: Remove ∃X and ∀X from MSO (First Order
logic, FO).

I Bigger class of graphs: graphs with bounded local treewidth.

I Bounded local treewidth: there is a function f : N→ N such
that any sphere of radius r has treewidth at most f (r).

I Example: For planar graphs, f (r) = 3r .

Generalizations and specializations

I Courcelle’s theorem: MSO formulas and class of graphs with
bounded treewidth.

I Take a weaker logic and a bigger class of graphs.

I Weaker logic: Remove ∃X and ∀X from MSO (First Order
logic, FO).

I Bigger class of graphs: graphs with bounded local treewidth.

I Bounded local treewidth: there is a function f : N→ N such
that any sphere of radius r has treewidth at most f (r).

I Example: For planar graphs, f (r) = 3r .

Bounded local treewidth

Bounded local treewidth

r

Bounded local treewidth

r

tw ≤ 3r

Bounded local treewidth contd. . .

I The treewidth of the whole graph may be very large, so
Courcelle’s theorem cannot be applied directly.

I [Frick, Grohe]: If a class of graphs has effectively bounded
local treewidth, then checking FO sentences on graphs from
that class is Fixed Parameter Tractable, where the length of
the FO sentence is the parameter.

I Proof relies on Gaifman’s locality theorem: A given FO
sentence can only reason about a fixed number of pairwise
disjoint spheres that satisfy some FO property.

Bounded local treewidth contd. . .

I The treewidth of the whole graph may be very large, so
Courcelle’s theorem cannot be applied directly.

I [Frick, Grohe]: If a class of graphs has effectively bounded
local treewidth, then checking FO sentences on graphs from
that class is Fixed Parameter Tractable, where the length of
the FO sentence is the parameter.

I Proof relies on Gaifman’s locality theorem: A given FO
sentence can only reason about a fixed number of pairwise
disjoint spheres that satisfy some FO property.

Bounded local treewidth contd. . .

I The treewidth of the whole graph may be very large, so
Courcelle’s theorem cannot be applied directly.

I [Frick, Grohe]: If a class of graphs has effectively bounded
local treewidth, then checking FO sentences on graphs from
that class is Fixed Parameter Tractable, where the length of
the FO sentence is the parameter.

I Proof relies on Gaifman’s locality theorem: A given FO
sentence can only reason about a fixed number of pairwise
disjoint spheres that satisfy some FO property.

Bounded local treewidth contd. . .

Bounded local treewidth contd. . .

Satisfies

φ

Satisfies

φ

Satisfies

φ

Satisfies

φ

Satisfies

φ

Satisfies

φ

Satisfies

φ

Satisfies

φ

Satisfies

φ

Extending the generalization

I [Flum, Grohe]: For any class of graphs that excludes a minor,
checking FO sentences is Fixed Parameter Tractable, where
the length of the FO sentence is the parameter.

I [Dawar, Grohe, Kreutzer]: For any class of graphs that locally
excludes a minor, checking FO sentences is Fixed Parameter
Tractable, where the length of the FO sentence is the
parameter.

Extending the generalization

I [Flum, Grohe]: For any class of graphs that excludes a minor,
checking FO sentences is Fixed Parameter Tractable, where
the length of the FO sentence is the parameter.

I [Dawar, Grohe, Kreutzer]: For any class of graphs that locally
excludes a minor, checking FO sentences is Fixed Parameter
Tractable, where the length of the FO sentence is the
parameter.

Myhill-Nerode classes

I Consider the example of modulo 3 counting on path graphs
again.

I G1: length 5, G2: length 8, G3: arbitrary.

I Suppose G1 · G3 has length 0 modulo 3. What about G2 · G3?

I |G2 · G3| ≡ |G1 · G3| mod 3. G1 and G2 are “equivalent”.

I There are 3 equivalence classes for this particular problem.
They are called Myhill-Nerode classes.

Myhill-Nerode classes

I Consider the example of modulo 3 counting on path graphs
again.

I G1: length 5, G2: length 8, G3: arbitrary.

I Suppose G1 · G3 has length 0 modulo 3. What about G2 · G3?

I |G2 · G3| ≡ |G1 · G3| mod 3. G1 and G2 are “equivalent”.

I There are 3 equivalence classes for this particular problem.
They are called Myhill-Nerode classes.

Myhill-Nerode classes

I Consider the example of modulo 3 counting on path graphs
again.

I G1: length 5, G2: length 8, G3: arbitrary.

I Suppose G1 · G3 has length 0 modulo 3. What about G2 · G3?

I |G2 · G3| ≡ |G1 · G3| mod 3. G1 and G2 are “equivalent”.

I There are 3 equivalence classes for this particular problem.
They are called Myhill-Nerode classes.

Myhill-Nerode classes

I Consider the example of modulo 3 counting on path graphs
again.

I G1: length 5, G2: length 8, G3: arbitrary.

I Suppose G1 · G3 has length 0 modulo 3. What about G2 · G3?

I |G2 · G3| ≡ |G1 · G3| mod 3. G1 and G2 are “equivalent”.

I There are 3 equivalence classes for this particular problem.
They are called Myhill-Nerode classes.

Application to Kernelization

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos]:
Certain class of problems expressible in Counting MSO have
polynomial kernels on graphs of bounded genus.

In a big enough graph, there will always be a Protrusion.
Replace by a smallest one in the same Myhill-Nerode class.

Application to Kernelization

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos]:
Certain class of problems expressible in Counting MSO have
polynomial kernels on graphs of bounded genus.

In a big enough graph, there will always be a Protrusion.

Replace by a smallest one in the same Myhill-Nerode class.

Application to Kernelization

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos]:
Certain class of problems expressible in Counting MSO have
polynomial kernels on graphs of bounded genus.

In a big enough graph, there will always be a Protrusion.
Replace by a smallest one in the same Myhill-Nerode class.

Designing dynamic programming algorithms

I Myhill-Nerode classes have close relationship with states of a
finite automaton. Example:

0start

1

2

a

a

a

I Studying the equivalence classes for individual problems can
lead to good dynamic programming algorithms [Abrahamson,
Fellows], [Ganian, Hliněný].

I [Courcelle, Durand]: Work around huge intermediate
automata and compute transitions when required.

I [Gottlob, Pichler, Wei]: Fragment of datalog that do not need
further translations.

Designing dynamic programming algorithms

I Myhill-Nerode classes have close relationship with states of a
finite automaton. Example:

0start

1

2

a

a

a

I Studying the equivalence classes for individual problems can
lead to good dynamic programming algorithms [Abrahamson,
Fellows], [Ganian, Hliněný].

I [Courcelle, Durand]: Work around huge intermediate
automata and compute transitions when required.

I [Gottlob, Pichler, Wei]: Fragment of datalog that do not need
further translations.

Designing dynamic programming algorithms

I Myhill-Nerode classes have close relationship with states of a
finite automaton. Example:

0start

1

2

a

a

a

I Studying the equivalence classes for individual problems can
lead to good dynamic programming algorithms [Abrahamson,
Fellows], [Ganian, Hliněný].

I [Courcelle, Durand]: Work around huge intermediate
automata and compute transitions when required.

I [Gottlob, Pichler, Wei]: Fragment of datalog that do not need
further translations.

Designing dynamic programming algorithms

I Myhill-Nerode classes have close relationship with states of a
finite automaton. Example:

0start

1

2

a

a

a

I Studying the equivalence classes for individual problems can
lead to good dynamic programming algorithms [Abrahamson,
Fellows], [Ganian, Hliněný].

I [Courcelle, Durand]: Work around huge intermediate
automata and compute transitions when required.

I [Gottlob, Pichler, Wei]: Fragment of datalog that do not need
further translations.

Conclusion

I Courcelle’s theorem is a powerful tool for proving Fixed
Parameter Tractability results.

I Leads to many interesting questions.

I Overcoming problems in practical implementation: ongoing
area of research.

Thank you. Questions?

Conclusion

I Courcelle’s theorem is a powerful tool for proving Fixed
Parameter Tractability results.

I Leads to many interesting questions.

I Overcoming problems in practical implementation: ongoing
area of research.

Thank you. Questions?

References I

Karl R. Abrahamson and Michael R. Fellows.
Finite automata, bounded treewidth, and well-quasiordering.
In Neil Robertson and Paul D. Seymour, editors, Graph
Structure Theory, pages 539–564. American Mathematical
Society, 1991.

Stefan Arnborg, Jens Lagergren, and Detlef Seese.
Easy problems for tree-decomposable graphs.
J. Algorithms, 12:308–340, April 1991.

Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov,
Eelko Penninkx, Saket Saurabh, and Dimitrios M. Thilikos.
(Meta) kernelization.
In FOCS, pages 629–638, 2009.

References II

Bruno Courcelle.
The monadic second-order logic of graphs I: Recognizable sets
of finite graphs.
Information and Computation, 85:12–75, 1990.

Bruno Courcelle and Iréne Anne Durand.
Verifying monadic second-order graph properties with tree
automata.
In European Lisp Symposium, 2010.

Anuj Dawar, Martin Grohe, and Stephan Kreutzer.
Locally excluding a minor.
In LICS, pages 270–279, 2007.

Jörg Flum and Martin Grohe.
Fixed-parameter tractability, definability, and model-checking.
SIAM J. Comput., 31(1):113–145, 2001.

References III

Jörg Flum and Martin Grohe.
Parameterized Complexity Theory.
Springer, 2006.
Chapters 10, 11 and 12.

Markus Frick and Martin Grohe.
Deciding first-order properties of locally tree-decomposable
graphs.
In ICALP, pages 331–340, 1999.

Markus Frick and Martin Grohe.
The complexity of first-order and monadic second-order logic
revisited.
In LICS, pages 215–224, 2002.

References IV

Robert Ganian and Petr Hliněný.
On parse trees and myhill-nerode-type tools for handling
graphs of bounded rank-width.
Discrete Applied Mathematics, 158(7):851–867, 2010.

Georg Gottlob, Reinhard Pichler, and Fang Wei.
Monadic datalog over finite structures of bounded treewidth.
ACM Trans. Comput. Logic, 12:3:1–3:48, November 2010.

Martin Grohe.
Logic, graphs and algorithms.
In Jörg Flum, Erich Gr̈adel, and Thomas Wilke, editors, Logic
and Automata — History and Perspectives. Amsterdam
University Press, 2007.

References V

Stephan Kreutzer.
Algorithmic meta-theorems.
http://web.comlab.ox.ac.uk/people/stephan.kreutzer/Publications/amt-
survey.pdf.

Kamal Lodaya.
Monadic second-order logic of graphs defined by operations.
http://www.imsc.res.in/%7Ekamal/tut/msot.ps.gz.

	Introduction to logic
	Courcelle's theorem
	Examples
	Extensions
	Proof Idea
	Generalizations and specializations
	Other approaches using the idea

