Jérôme Leroux's Proof of Decidability of Reachability in Vector Addition Systems

M. Praveen

CMI
April 2014

Preliminaries

- Vector Addition System (VAS): A finite set $A \subseteq \mathbb{Z}^{d}$.

Preliminaries

- Vector Addition System (VAS): A finite set $A \subseteq \mathbb{Z}^{d} . d$ is the dimension.

Preliminaries

- Vector Addition System (VAS): A finite set $A \subseteq \mathbb{Z}^{d} . d$ is the dimension.
- Let $\vec{m}, \overrightarrow{m^{\prime}} \in \mathbb{N}^{d}$ and $\vec{a} \in A . \vec{m} \xrightarrow{\vec{a}} \overrightarrow{m^{\prime}}$ if $\overrightarrow{m^{\prime}}=\vec{m}+\vec{a}$.

Preliminaries

- Vector Addition System (VAS): A finite set $A \subseteq \mathbb{Z}^{d} . d$ is the dimension.
- Let $\vec{m}, \overrightarrow{m^{\prime}} \in \mathbb{N}^{d}$ and $\vec{a} \in A . \vec{m} \xrightarrow{\vec{a}} \overrightarrow{m^{\prime}}$ if $\overrightarrow{m^{\prime}}=\vec{m}+\vec{a}$.
- Reachability problem: given $A \subseteq \mathbb{Z}^{d}$ and $\vec{m}, \overrightarrow{m^{\prime}} \in \mathbb{N}^{d}$, decide whether $\vec{m} \xrightarrow{*}$.

History

- [Sacerdote \& Tenney, 1977]: Decidable, some gaps remained in the proof.

History

- [Sacerdote \& Tenney, 1977]: Decidable, some gaps remained in the proof.
- [Mayr, 1981]: Decidable, complete proof.

History

- [Sacerdote \& Tenney, 1977]: Decidable, some gaps remained in the proof.
- [Mayr, 1981]: Decidable, complete proof.
-

History

- [Sacerdote \& Tenney, 1977]: Decidable, some gaps remained in the proof.
- [Mayr, 1981]: Decidable, complete proof.
-
- [Reutenauer, translated by Craig, 1990]: Book with all details of the above proof.

History

- [Sacerdote \& Tenney, 1977]: Decidable, some gaps remained in the proof.
- [Mayr, 1981]: Decidable, complete proof.
-
- [Reutenauer, translated by Craig, 1990]: Book with all details of the above proof.
-

History

- [Sacerdote \& Tenney, 1977]: Decidable, some gaps remained in the proof.
- [Mayr, 1981]: Decidable, complete proof.
-
- [Reutenauer, translated by Craig, 1990]: Book with all details of the above proof.
-
- [Leroux, 2009]: Alternate proof based on Presburger inductive invariants.

Two Semi-Algorithms in Parallel

First one trying to prove reachability:

- Start enumerating potential certificates for reachability.

Two Semi-Algorithms in Parallel

First one trying to prove reachability:

- Start enumerating potential certificates for reachability.
- Stop if a valid certificate found.

Two Semi-Algorithms in Parallel

First one trying to prove reachability:

- Start enumerating potential certificates for reachability.
- Stop if a valid certificate found.

Second one trying to prove unreachability:

- Start enumerating potential certificates for unreachability.
- Stop if a valid certificate found.

Certificates for unreachability

Certificates for unreachability

Certificates for unreachability

- For all $\vec{x} \in X, \vec{x} \xrightarrow{*} \overrightarrow{x^{\prime}}$ implies $\overrightarrow{x^{\prime}} \in X$.

Certificates for unreachability

- For all $\vec{x} \in X, \vec{x} \xrightarrow{*} \overrightarrow{x^{\prime}}$ implies $\overrightarrow{x^{\prime}} \in X$.
- If X is Presburger definable, then Presburger formulas are potential certificates for unreachability.

Separators

Y_{0}

Separators

$\operatorname{post}^{*}\left(X_{0}\right)$

Y_{0}

Separators

Separators

Separators

Separators

Separators

Separators

