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1 Overview

Another problem very essential for factoring univariate polynomials over QQ
is the shortest vector problem. Of course, finding the optimum solution is
N P-hard and we only want an approximation algorithm to this.

We shall discuss the LLL algorithm for the shortest vector and then give
the algorithm for factorizing univariate polynomials over Q.

2 The Shortest Vector Problem

We are given a basis {b;},<;<,, in R" and we want to find a vector v = ) a;b;,
where a; € Z, whose norm (the usual euclidian norm) is minimum.

Solving this problem in full generality is NP-hard and we do not expect
to find the optimal solution. LLL however allows us to find an approximate
solution, the approximation factor depending only on the dimension.

The basic idea is in mimicking the Gram-Schmidt orthogonalization
method on a lattice.

2.1 The Gram-Schmidt Orthogonalization

We are given a basis {b1,ba, - ,b,} and we want to convert it into a new
orthogonal basis {b7,b5,--- , b5} .
The GS algorithm is as follows:
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The GS basis satisfies the following properties, which are easy to check:

e Different ordering of the basis vectors could give different GS orthog-
onal bases.



The basis vectors are mutually orthogonal.

For each ¢, ||bF|| < ||bi]| -

Fore each ¢, the span of {b1, - - - , b;} is the same as the span {b7,--- , b} }.

If B is the matrix whose columns are the vectors {b;} and if B* is
the matrix with columns {b}}, then the tranformation is given by the
following unimodular triangular matrix:
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and therefore det B = det B*, the volume of the fundamental paral-
lelopiped of the lattice is preserved.

e If L(B) is the lattice generated by B,
| det L(B)| := [det B = [|y[| [|b3]| - - - 165 [] < [[oal[ 2] - - - b

And if B is the largest value in the matrix B, then we have the famous
hadamard inequality
| det B| < n™/?B"
2.2 Reduced Basis

The following observation is the key to LLL.
Observation 1. Let b = \;b; be the shortest vector in the lattice. Then
[l > mian |6

Proof. Let k be the largest index such that Ax # 0. Since the GS tran-
formation matrix has 1s on the diagonal, even after we write b = Y A/b7,
A = NEk.

Hence,

ol = NP I0FI = el 1850 = 6711 = min [[bF |



With this as the motivation, we have the following concept of a reduced
basis.

Definition 2. A basis {b;} is said to be a reduced basis if it satisfies the
condition that for all i, ||b;||* < 2||bis1|?.

From the earlier observation, it is clear that once we have a reduced
basis,
n—1
[ba]] <272 [Jopt]]

And hence, if we can find a reduced basis for the lattice, then we have
achieved our goal of finding a constant factor (only a function of degree)
approximation of the shortest vector problem.

3 LLL Algorithm

The LLL algorithm finds a reduced basis for the lattice. The idea is to
mimic GS but tranform vectors to those within the lattice. At the same
time, we need to keep in mind that vectors don’t become too short (to form
a reduced basis). The algorithm is very mysterious, we shall first present
he algorithm then argue that it halts quickly and also that it works correctly.

Input: A basis {b;}.
1: Find the GS basis {b}} .
(Reduction Step)

2: for i =2 ton do
33 forj=i—1to1ldo
bwb*
4: b, =0b; — Oéijbj where Q5 = \‘<||b* |J|2>—‘
5. end for ’
6: end for
7. (Swap Step) If there exists an ¢ such that
3 2 2
1 107117 > Hbfﬂ + Hi+1,ibe
then swap b; and b; 11 and go to step 1.
8: output by1,bs, - ,by,.



3.1 The Reduction Step

The reduction step is basically an approximation to the GS orthogonaliza-
tion, but staying on the lattice. We shall show that we actually get pretty
close to the orthogonal basis.

For the basis {b;}, let the GS basis is {b}}. If we were to consider the
matrix with columns as {b;} as vectors over the GS basis as the standard
basis, then B would look like an upper triangular matrix with 1s on the
diagonal.

The reduction step makes the other non-diagonal entries small (bounded
by 1/2). We shall see how this is achieved.

The two forloops are designed cleverly so that you never undo something
that you have already done. The key point to note is that in the reduction
step, the GS basis is maintained. Look at an intermediate step, say at i, j.
By induction, assume that all columns whose index is less than ¢ has already
been taken care of.

And since we have gone up to j, the i-th column is fixed from bottom to
top. Since the GS basis is fixed, if we had removed the roundoff in «;; when
we did b; = b; — a;;b; we would have actually got a vector orthogonal to bj*
and hence b;j would have become 0. But since we are just rounding off, we
will atleast reduce that value to 1/2. Note that this works only because the
GS basis stays the same throughout.

Now we have fixed the index b;; and we can go on to b; ;_i. Thus by
induction, we have proved that at the end of the reduction step, we have an
uppertriangular matrix with 1s on the diagonal and every non-zero entry is
bounded by 1/2.

3.2 The Swap Step

The swap step is like a ’check if reduced basis, else rectify’ step. The crucial
point is that this step will happen for atmost polynomially many steps.
To show this, we will develop a certain value (exponential sized) and show
that decreases by a constant factor (3/4) and hence can happen atmost
polynomially many times.



For a basis B, define

%
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It is easy to see that Dp is a value that is at most exponential. We will
show that it goes down by 3/4 each time we swap.
Recall that
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We could do the same by restricting the above equation to just the first ¢
rows and columns. As a notation, we will write this as

B, = MiBi
Since Mz is a unimodular matrix,

det(B; BI') = det(B}(B")T) = Dp,

Consider the case when you are to do the swap operation between ¢ and
i+ 1. Then the basis B = {b1,--- ,bi—1,bi,biy1, -+ , by} will now change to
B= {b1,- -+ ,bi—1,bit+1,bi,bi+2, -+ ,by}. The only place where the GS basis
will differ will be at the ¢-th index.

In the original basis B, we would have just b;. But in the other basis B,
it is easy to check that i)f = b} 1 + piy1,:b;. The other vectors would be the
same in both cases.

Thus, clearly,
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And hence the swap step is executed only polynomially many times.



3.3

Correctness

The next thing we need to show is that at the end of the algorithm, we do
have a reduced basis. This is an easy observation. Since for all indices
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And therefore, we indeed have a reduced basis, and hence solves the
approximation of the shortest vector problem.

3.4

Sizes of Numbers

Using the matrices that appeared in the reduction step section, we can show
using cramer’s rule that the numbers do not become very large.
We leave this as an exercise.

4 Factoring over Q

We will see a sketch of the factoring algorithm, and gaps are left as an
assignment. The working is very similar to the bivariate hensel lifting.
The algorithm is as follows:

1.
2.

6.

Assume f(z) € Z[x] is square free.

Pick a small (O(logn) bits long) prime such that f(z) is square free
modulo p.

Factor f = gh (mod p). where g is irreducible and monic.
Hensel lift the factorization k times to obtain f = gphy (mod p¥).

Solve the linear equation § = gply (mod p*) for polynomials § and Iy,
such that their degree is less than deg f.

Output ged(f, g), if trivial output irreducible.

First catch is the following, does a polynomial necessarily have only small
factors? Can there be factors with huge numbers in them? The following
bound tells us that we are safe in this area.



Lemma 3 (Mignotte’s Bound). If f(z) = ap + a1z + - - - + anz™, then any
root a of f is such that |a| < nmax|a;|.

Since all coefficients are symmetric polynomials over the roots, we are
in good shape.

For the proof of correctness, we need a suitable bound on k& to push the
proof of the bivariate case through the same this. But the issue is that, we
do not have any bounds on the coefficients of I, g to make it work. How do
we make sure that the solution to the system of equations is small? Enter
LLL.

Look at § = gily, + p*ri, for any polynomial . We can easily induce a
lattice structure on this by choosing a natural basis. Over this lattice, we
can now ask for a short vector. Note that LLL will not give us the shortest
vector but a 2”7 is good enough!

Using that, a bound on k can be fixed and the same proof of bivariate
factorization will go through. The gaps are left to the readers to fill in.
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