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Notations and Symbols

Henceforth we assume the following :-

• σ is the vocabulary σ=(R1,...,Rm,c1,...,cs ) where,
∀i ∈ {1, ..,m},Ri is a relation symbol of arity ki , for some
ki ∈ N and ∀i ∈ {1, .., s}, ci is a unique constant symbol.
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• GA and GB are the gaiffman graphs (explained in the next
slide) for A and B respectively.
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Notations and Symbols

Henceforth we assume the following :-

• σ is the vocabulary σ=(R1,...,Rm,c1,...,cs ) where,
∀i ∈ {1, ..,m},Ri is a relation symbol of arity ki , for some
ki ∈ N and ∀i ∈ {1, .., s}, ci is a unique constant symbol.

• A=(A,RA
1 ,...,RA

m,cA
1 ,...,cA

s ) and B=(B,RB
1 ,...,RB

m,cB
1 ,...,cB

s ) are
two structures interpreting σ over the domains A and B

respectively.

• GA and GB are the gaiffman graphs (explained in the next
slide) for A and B respectively.

• Given an element a ∈ A, N(A,a)↾d is the neighbourhood or
sphere or subgraph of the Gaiffman graph of A, GA, with a as
center and a radius of d.
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Gaiffman Graph

Given a structure A=(A,RA
1 ,...,RA

m,cA
1 ,...,cA

s ), the Gaiffman graph is
the undirected graph GA = (A,E) where

Abdullah Abdul Khadir Topics in Logic and Automata Theory



Gaiffman Graph

Given a structure A=(A,RA
1 ,...,RA

m,cA
1 ,...,cA

s ), the Gaiffman graph is
the undirected graph GA = (A,E) where

• A is the domain of the structure A.
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Gaiffman Graph

Given a structure A=(A,RA
1 ,...,RA

m,cA
1 ,...,cA

s ), the Gaiffman graph is
the undirected graph GA = (A,E) where

• A is the domain of the structure A.

• E is a binary relation on A such that for any two elements
a,b ∈ A, E(a,b) holds iff ∃ a relation RA

i of arity ki and ki

variables {x1, ..., xki
} ∈ A such that R(x1, ..., xki

) holds.
Moreover a and b are two of the ki variables.
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the undirected graph GA = (A,E) where

• A is the domain of the structure A.

• E is a binary relation on A such that for any two elements
a,b ∈ A, E(a,b) holds iff ∃ a relation RA

i of arity ki and ki

variables {x1, ..., xki
} ∈ A such that R(x1, ..., xki

) holds.
Moreover a and b are two of the ki variables.

Example : A = ({1,2,3,4},≤)
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Gaiffman Graph

Given a structure A=(A,RA
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s ), the Gaiffman graph is
the undirected graph GA = (A,E) where

• A is the domain of the structure A.

• E is a binary relation on A such that for any two elements
a,b ∈ A, E(a,b) holds iff ∃ a relation RA

i of arity ki and ki

variables {x1, ..., xki
} ∈ A such that R(x1, ..., xki

) holds.
Moreover a and b are two of the ki variables.

Example : A = ({1,2,3,4},≤)
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Local Equivalence

Some points and terms to note related to graphs :

• For any d ∈ N, the number of spheres of radius d is finite.

• Let n ∈ N, be the number of spheres for a fixed radius d.

• Then we can talk of a type signature of a graph given by
(#Type1,...,#Typen) which is the number of spheres of radius
d that are of Type1,Type2 ... Typen.
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Local Equivalence

Some points and terms to note related to graphs :

• For any d ∈ N, the number of spheres of radius d is finite.

• Let n ∈ N, be the number of spheres for a fixed radius d.

• Then we can talk of a type signature of a graph given by
(#Type1,...,#Typen) which is the number of spheres of radius
d that are of Type1,Type2 ... Typen.

Definition (Local d-Equivalence)

Two structures A and B are said to be locally d-equivalent for
some d ∈ N, iff both A and B have the same type signature of
radius d. Let it be denoted by A ∼d B.
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Logical Equivalence

Definition (Logical r-Equivalence)

Two structures A and B are said to be logically r-equivalent for
some r ∈ N, iff they satisfy the same first order formulae of
quantifier depth r. Let it be denoted by A ≡r B.
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Logical Equivalence

Definition (Logical r-Equivalence)

Two structures A and B are said to be logically r-equivalent for
some r ∈ N, iff they satisfy the same first order formulae of
quantifier depth r. Let it be denoted by A ≡r B.

We recall that :

• If A ≡r B then the Duplicator has a winning strategy for the
r-round EF-game.
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Logical Equivalence

Definition (Logical r-Equivalence)

Two structures A and B are said to be logically r-equivalent for
some r ∈ N, iff they satisfy the same first order formulae of
quantifier depth r. Let it be denoted by A ≡r B.

We recall that :

• If A ≡r B then the Duplicator has a winning strategy for the
r-round EF-game.

• The above statement holds in both directions namely,
A ≡r B ⇐⇒ Duplicator has a winning strategy for the
r-round EF game.
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Hanf’s theorem

Theorem (Hanf’s)

Let d,r ∈ N such that d ≥ 3r−1.

Then, A ∼d B =⇒ A ≡r B .
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Hanf’s theorem

Theorem (Hanf’s)

Let d,r ∈ N such that d ≥ 3r−1.

Then, A ∼d B =⇒ A ≡r B .

Essentially, what Hanf’s theorem states is that for sufficiently large
radius d, local equivalence is the same as logical equivalence.
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Hanf’s theorem

Theorem (Hanf’s)

Let d,r ∈ N such that d ≥ 3r−1.

Then, A ∼d B =⇒ A ≡r B .

Essentially, what Hanf’s theorem states is that for sufficiently large
radius d, local equivalence is the same as logical equivalence.

Proof sketch :-
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Theorem (Hanf’s)

Let d,r ∈ N such that d ≥ 3r−1.

Then, A ∼d B =⇒ A ≡r B .

Essentially, what Hanf’s theorem states is that for sufficiently large
radius d, local equivalence is the same as logical equivalence.

Proof sketch :-

• The duplicator’s strategy in Round 1
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Theorem (Hanf’s)

Let d,r ∈ N such that d ≥ 3r−1.

Then, A ∼d B =⇒ A ≡r B .

Essentially, what Hanf’s theorem states is that for sufficiently large
radius d, local equivalence is the same as logical equivalence.

Proof sketch :-

• The duplicator’s strategy in Round 1

• The duplicator’s strategy in Round i
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Hanf’s theorem

Theorem (Hanf’s)

Let d,r ∈ N such that d ≥ 3r−1.

Then, A ∼d B =⇒ A ≡r B .

Essentially, what Hanf’s theorem states is that for sufficiently large
radius d, local equivalence is the same as logical equivalence.

Proof sketch :-

• The duplicator’s strategy in Round 1

• The duplicator’s strategy in Round i

• Variations of hanf’s theorem
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The EF-Game Graphs
GA GB
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Round 1
GA GB
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• The Spoiler chooses a vertex from any graph (here, A)
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Round 1
GA GB
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• The Spoiler chooses a vertex from any graph (here, A)

• The d-neighbourhood of a in A, denoted N(A,a)↾d is of one of the types
{Type1, ... Typen}
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Round 1
GA GB
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• The Spoiler chooses a vertex from any graph (here, A)

• The d-neighbourhood of a in A, denoted N(A,a)↾d is of one of the types
{Type1, ... Typen}

• The Duplicator picks an element from the other structure (here, b ∈ B) such
that N(A,a)↾d ∼= N(B,b)↾d
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Round i, Case 1
GA GB

a
1

2

3

4

5

6

7

8 9

10

11

12

b
1

2

3

4

5

6

7

89

10

11
12

• In Round i, the first case is when the Spoiler picks a vertex that is within 2*3i−2

of any previously selected point (maybe more than one).
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Round i, Case 1
GA GB
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• In Round i, the first case is when the Spoiler picks a vertex that is within 2*3i−2

of any previously selected point (maybe more than one).

• Then the Duplicator will use the isomorphism of the d-radius sphere around any
one of the centres to obtain a similar vertex on the other graph.
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Round i, Case 1
GA GB
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• The reason why it works is because, as shown in the figure, in subsequent i-1
rounds the Spoiler will not be able to get out of the isomorphism of the
d-sphere around the previously selected points.
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Round i, Case 1
GA GB
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• The reason why it works is because, as shown in the figure, in subsequent i-1
rounds the Spoiler will not be able to get out of the isomorphism of the
d-sphere around the respective previously selected points.

• This is due to the fact that ∀ i ∈ N, 3i−2 ≥ (i-1).
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Round i, Case 2
GA GB
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• Now, the other case is if the Spoiler picks a vertex that is outside 2*3i−2 of all
previously selected points.
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Round i, Case 2
GA GB
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• Now, the other case is if the Spoiler picks a vertex that is outside 2*3i−2 of all
previously selected points.

• Then, as in Round 1, the Duplicator will be able to pick a vertex b ∈ B such
that N(A,a)↾d ∼= N(B,b)↾d. Also, this particular point b is not in the range of
2*3i−2 distance of any other previously selected point in GB.
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Variations of Hanf’s theorem

Definition

Given d,t ∈ N, we can define the concept of type signatures of radius d with
threshold t such that the values (#Type1,...,#Typen) are counted only upto a
threshold t and anything ≥ t is considered ∞. Two structures A and B, are
said to be d-equivalent with threshold t if their type signatures with radius d
are equal. It is denoted A ∼d,t B.
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Variations of Hanf’s theorem

Definition

Given d,t ∈ N, we can define the concept of type signatures of radius d with
threshold t such that the values (#Type1,...,#Typen) are counted only upto a
threshold t and anything ≥ t is considered ∞. Two structures A and B, are
said to be d-equivalent with threshold t if their type signatures with radius d
are equal. It is denoted A ∼d,t B.

Theorem

Given d ∈ N and two structures A and B, if A ∼d B then there exists a fixed
t∈ N such that A ∼d,t B.
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Variations of Hanf’s theorem

Definition

Given d,t ∈ N, we can define the concept of type signatures of radius d with
threshold t such that the values (#Type1,...,#Typen) are counted only upto a
threshold t and anything ≥ t is considered ∞. Two structures A and B, are
said to be d-equivalent with threshold t if their type signatures with radius d
are equal. It is denoted A ∼d,t B.

Theorem

Given d ∈ N and two structures A and B, if A ∼d B then there exists a fixed
t∈ N such that A ∼d,t B.

Theorem (Hanf’s theorem for EMSO)

• Let φ be an EMSO formula with n second-order quantifiers given by,
φ = ∃X1 ... ∃Xnψ(X1, ...,Xn), where ψ is a pure first order sentence.
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Variations of Hanf’s theorem

Definition

Given d,t ∈ N, we can define the concept of type signatures of radius d with
threshold t such that the values (#Type1,...,#Typen) are counted only upto a
threshold t and anything ≥ t is considered ∞. Two structures A and B, are
said to be d-equivalent with threshold t if their type signatures with radius d
are equal. It is denoted A ∼d,t B.

Theorem

Given d ∈ N and two structures A and B, if A ∼d B then there exists a fixed
t∈ N such that A ∼d,t B.

Theorem (Hanf’s theorem for EMSO)

• Let φ be an EMSO formula with n second-order quantifiers given by,
φ = ∃X1 ... ∃Xnψ(X1, ...,Xn), where ψ is a pure first order sentence.

• If we consider the extended models of A,A′=(A × 2{0,1,...k},
RA

1 ,...,RA
m ,cA

1 ,...,cA
s ), then we can reuse Hanf’s theorem as only the ψ part

remains to be interpreted over these modified structures.
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MSO and automata over pictures
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MSO and automata over pictures

Definition (Pictures, Picture Languages)

• A picture, p, over an alphabet Σ is basically a function of the form
p : {1,2,..., n} × {1,2,...,m} → Σ, for any n,m ∈ N

• The set of all pictures (over Σ) is the set of all possible functions p for
every n,m ∈ N. It is denoted by Σ∗∗

• A picture language is a subset of Σ∗∗
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MSO and automata over pictures

Definition (Pictures, Picture Languages)

• A picture, p, over an alphabet Σ is basically a function of the form
p : {1,2,..., n} × {1,2,...,m} → Σ, for any n,m ∈ N

• The set of all pictures (over Σ) is the set of all possible functions p for
every n,m ∈ N. It is denoted by Σ∗∗

• A picture language is a subset of Σ∗∗

p :

q :

r :

a b

b a

a a b

a b a

a a a a a a a

b b b b b b b

a a a a a a a

b b b b b b b

a a a a a a a
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MSO and automata over pictures

Definition (Pictures, Picture Languages)

• A picture, p, over an alphabet Σ is basically a function of the form
p : {1,2,..., n} × {1,2,...,m} → Σ, for any n,m ∈ N

• The set of all pictures (over Σ) is the set of all possible functions p for
every n,m ∈ N. It is denoted by Σ∗∗

• A picture language is a subset of Σ∗∗

• If p is a picture of size (m,n), then bp is the picture p surrounded by a
special boundary symbol # /∈ Σ

p̂ : r̂ :

#

#

#

#

#

#

#

#

# #

# #

a b

b a

#

#

#

#

#

#

#

#

#

#

#

#

#

#

# # # # # # #

# # # # # # #

a a a a a a a

b b b b b b b

a a a a a a a

b b b b b b b

a a a a a a a
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Row Concatenation of 2 pictures

p : q :
r :

p ⊖ r :
p ⊖ q : Undefined
q ⊖ r : Undefined

(As the number of columns are incompatible)

a b a

b a a

a b

b a

a b b

b a b

b b a

a b a

b a a

a b b

b a b

b b a
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Column Concatenation of 2 pictures

p : q :
r :

p ⊘ r : Undefined
q ⊘ r : Undefined

(As the number of rows are incompatible)

p ⊘ q:

a b a

b a a

a b

b a

a b b

b a b

b b a

a b a a b

b a a b a
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Row and Column Concatenation of 2 pictures

p : q :
r :

p ⊖ r :
p ⊘ q:

a b a

b a a

a b

b a

a b b

b a b

b b a

a b a a b

b a a b a

a b a

b a a

a b b

b a b

b b a
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Operations on Picture Languages

Definition

• Let L,L1 and L2 be 3 picture languages (subsets of Σ∗∗)
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Operations on Picture Languages

Definition

• Let L,L1 and L2 be 3 picture languages (subsets of Σ∗∗)

• Then, L1 ⊘ L2 = {x⊘y ‖ x ∈ L1 and y ∈ L2}. Similarly for L1 ⊖ L2.
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Operations on Picture Languages

Definition

• Let L,L1 and L2 be 3 picture languages (subsets of Σ∗∗)

• Then, L1 ⊘ L2 = {x⊘y ‖ x ∈ L1 and y ∈ L2}. Similarly for L1 ⊖ L2.

• L⊘1 = L ; L⊘n = L⊘(n−1)⊘ L. Similarly for L⊖n.
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Operations on Picture Languages

Definition

• Let L,L1 and L2 be 3 picture languages (subsets of Σ∗∗)

• Then, L1 ⊘ L2 = {x⊘y ‖ x ∈ L1 and y ∈ L2}. Similarly for L1 ⊖ L2.

• L⊘1 = L ; L⊘n = L⊘(n−1)⊘ L. Similarly for L⊖n.

• Column Kleene Closure of L, L∗⊘ = ∪iL
⊘i

• Row Kleene Closure of L, L∗⊖ = ∪iL
⊖i
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Operations on Picture Languages

Definition

• Let L,L1 and L2 be 3 picture languages (subsets of Σ∗∗)

• Then, L1 ⊘ L2 = {x⊘y ‖ x ∈ L1 and y ∈ L2}. Similarly for L1 ⊖ L2.

• L⊘1 = L ; L⊘n = L⊘(n−1)⊘ L. Similarly for L⊖n.

• Column Kleene Closure of L, L∗⊘ = ∪iL
⊘i

• Row Kleene Closure of L, L∗⊖ = ∪iL
⊖i

Definition (Projections)

• Let Σ1 and Σ2 be two finite alphabets such that | Σ1 | ≥ | Σ2 | and
π : Σ1 → Σ2 is a mapping.
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Operations on Picture Languages

Definition

• Let L,L1 and L2 be 3 picture languages (subsets of Σ∗∗)

• Then, L1 ⊘ L2 = {x⊘y ‖ x ∈ L1 and y ∈ L2}. Similarly for L1 ⊖ L2.

• L⊘1 = L ; L⊘n = L⊘(n−1)⊘ L. Similarly for L⊖n.

• Column Kleene Closure of L, L∗⊘ = ∪iL
⊘i

• Row Kleene Closure of L, L∗⊖ = ∪iL
⊖i

Definition (Projections)

• Let Σ1 and Σ2 be two finite alphabets such that | Σ1 | ≥ | Σ2 | and
π : Σ1 → Σ2 is a mapping.

• Then given p ∈ Σ∗∗
1 , π(p) is the picture p’ ∈ Σ∗∗

2 such that
p’(i,j) = π(p(i , j)) ∀1 ≤ i ≤ l1(p), 1 ≤ j ≤ l2(p)
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Operations on Picture Languages

Definition

• Let L,L1 and L2 be 3 picture languages (subsets of Σ∗∗)

• Then, L1 ⊘ L2 = {x⊘y ‖ x ∈ L1 and y ∈ L2}. Similarly for L1 ⊖ L2.

• L⊘1 = L ; L⊘n = L⊘(n−1)⊘ L. Similarly for L⊖n.

• Column Kleene Closure of L, L∗⊘ = ∪iL
⊘i

• Row Kleene Closure of L, L∗⊖ = ∪iL
⊖i

Definition (Projections)

• Let Σ1 and Σ2 be two finite alphabets such that | Σ1 | ≥ | Σ2 | and
π : Σ1 → Σ2 is a mapping.

• Then given p ∈ Σ∗∗
1 , π(p) is the picture p’ ∈ Σ∗∗

2 such that
p’(i,j) = π(p(i , j)) ∀1 ≤ i ≤ l1(p), 1 ≤ j ≤ l2(p)

• Similarly, given a picture language L ⊆ Σ∗∗
1 , the projection of L by

π : Σ1 → Σ2 is defined as π(L) = {π(p) | p ∈ L} ⊆ Σ∗∗
2
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Operations on Picture Languages

Definition

• Let L,L1 and L2 be 3 picture languages (subsets of Σ∗∗)

• Then, L1 ⊘ L2 = {x⊘y ‖ x ∈ L1 and y ∈ L2}. Similarly for L1 ⊖ L2.

• L⊘1 = L ; L⊘n = L⊘(n−1)⊘ L. Similarly for L⊖n.

• Column Kleene Closure of L, L∗⊘ = ∪iL
⊘i

• Row Kleene Closure of L, L∗⊖ = ∪iL
⊖i

Definition (Projections)

• Let Σ1 and Σ2 be two finite alphabets such that | Σ1 | ≥ | Σ2 | and
π : Σ1 → Σ2 is a mapping.

• Then given p ∈ Σ∗∗
1 , π(p) is the picture p’ ∈ Σ∗∗

2 such that
p’(i,j) = π(p(i , j)) ∀1 ≤ i ≤ l1(p), 1 ≤ j ≤ l2(p)

• Similarly, given a picture language L ⊆ Σ∗∗
1 , the projection of L by

π : Σ1 → Σ2 is defined as π(L) = {π(p) | p ∈ L} ⊆ Σ∗∗
2

• Given a picture p of size (m,n), if h ≤ m, k ≤ n, we denote by Th,k(p) the
set of all subpictures (contiguous rectangular subblocks) of p of size (h,k).
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Local Picture Languages(LOC)

Definition

A picture language L ⊆ Γ∗∗ is local if there exists a set ∆ of
pictures (or “tiles”) of size (2,2) over Γ∪ {#}, such that
L={p∈ Γ∗∗ | T2,2(p̂) ⊆ ∆}
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A picture language L ⊆ Γ∗∗ is local if there exists a set ∆ of
pictures (or “tiles”) of size (2,2) over Γ∪ {#}, such that
L={p∈ Γ∗∗ | T2,2(p̂) ⊆ ∆}

• If L = {p∈ Γ∗∗ | T2,2(bp) ⊆ ∆}, then we call ∆ a
local representation by tiles for the language L.
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• We denote by LOC the family of local picture
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Local Picture Languages(LOC)

Definition

A picture language L ⊆ Γ∗∗ is local if there exists a set ∆ of
pictures (or “tiles”) of size (2,2) over Γ∪ {#}, such that
L={p∈ Γ∗∗ | T2,2(p̂) ⊆ ∆}

• If L = {p∈ Γ∗∗ | T2,2(bp) ⊆ ∆}, then we call ∆ a
local representation by tiles for the language L.

• We denote by LOC the family of local picture
languages.

• An example of a picture language in LOC, consider
L0 ⊆ {0, 1}∗∗ of square pictures (of size at least
(2,2)) in which all nondiagonal positions carry symbol
0 whereas the diagonal positions carry symbol 1.
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Local Picture Languages(LOC)

Definition

A picture language L ⊆ Γ∗∗ is local if there exists a set ∆ of
pictures (or “tiles”) of size (2,2) over Γ∪ {#}, such that
L={p∈ Γ∗∗ | T2,2(p̂) ⊆ ∆}

• If L = {p∈ Γ∗∗ | T2,2(bp) ⊆ ∆}, then we call ∆ a
local representation by tiles for the language L.

• We denote by LOC the family of local picture
languages.

• An example of a picture language in LOC, consider
L0 ⊆ {0, 1}∗∗ of square pictures (of size at least
(2,2)) in which all nondiagonal positions carry symbol
0 whereas the diagonal positions carry symbol 1.

• An appropriate set of tiles for L0 consists of the 16
different (2,2)-subblocks of the picture on the right.
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Local Picture Languages(LOC)

Definition

A picture language L ⊆ Γ∗∗ is local if there exists a set ∆ of
pictures (or “tiles”) of size (2,2) over Γ∪ {#}, such that
L={p∈ Γ∗∗ | T2,2(p̂) ⊆ ∆}

• If L = {p∈ Γ∗∗ | T2,2(bp) ⊆ ∆}, then we call ∆ a
local representation by tiles for the language L.

• We denote by LOC the family of local picture
languages.

• An example of a picture language in LOC, consider
L0 ⊆ {0, 1}∗∗ of square pictures (of size at least
(2,2)) in which all nondiagonal positions carry symbol
0 whereas the diagonal positions carry symbol 1.

• An appropriate set of tiles for L0 consists of the 16
different (2,2)-subblocks of the picture on the right.

#

#

#

#

#

#

#

#

#

#

#

#

# # # #

# # # #

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
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Recognizable Picture Languages(REC)

Definition

A picture language L ⊆ Σ∗∗ is recognizable if there exists a local
language L’ over an alphabet Γ and a mapping

π : Γ → Σ such that L=π(L′)

• As an example of such a language is the set of squares over Σ = {a} and
a suitable local language would be L0 considered previously and the
mapping, π : {0, 1} → {a}
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Recognizable Picture Languages(REC)

Definition

A picture language L ⊆ Σ∗∗ is recognizable if there exists a local
language L’ over an alphabet Γ and a mapping

π : Γ → Σ such that L=π(L′)

• As an example of such a language is the set of squares over Σ = {a} and
a suitable local language would be L0 considered previously and the
mapping, π : {0, 1} → {a}

• We consider only Γ = Σ× Q and π : Σ× Q → Σ as the alphabet and
mapping respectively for the local language L’ of L.
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Recognizable Picture Languages(REC)

Definition

A picture language L ⊆ Σ∗∗ is recognizable if there exists a local
language L’ over an alphabet Γ and a mapping

π : Γ → Σ such that L=π(L′)

• As an example of such a language is the set of squares over Σ = {a} and
a suitable local language would be L0 considered previously and the
mapping, π : {0, 1} → {a}

• We consider only Γ = Σ× Q and π : Σ× Q → Σ as the alphabet and
mapping respectively for the local language L’ of L.

• It is sufficient to consider Local languages of the type above as every
local language L’ given in the definition, with an arbitrary alphabet may
be modified into a local language with the alphabet, Γ = Σ× Q.
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Recognizable Picture Languages(REC)

Definition

A picture language L ⊆ Σ∗∗ is recognizable if there exists a local
language L’ over an alphabet Γ and a mapping

π : Γ → Σ such that L=π(L′)

• As an example of such a language is the set of squares over Σ = {a} and
a suitable local language would be L0 considered previously and the
mapping, π : {0, 1} → {a}

• We consider only Γ = Σ× Q and π : Σ× Q → Σ as the alphabet and
mapping respectively for the local language L’ of L.

• It is sufficient to consider Local languages of the type above as every
local language L’ given in the definition, with an arbitrary alphabet may
be modified into a local language with the alphabet, Γ = Σ× Q.

• Under the above considerations, the tiling System is denoted by the triple
(Σ,Q,∆).
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Automata Theoretic Approach to Picture Languages

• Row and column concatenation.
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• Local Picture languages (LOC).

• Recognizable picture languages (REC).
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• projection,
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• row and column closure,
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Abdullah Abdul Khadir Topics in Logic and Automata Theory



Automata Theoretic Approach to Picture Languages

• Row and column concatenation.
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• Boolean union,
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• Local Picture languages (LOC).

• Recognizable picture languages (REC).

• REC is closed with respect to
• projection,
• row and column concatenation,
• row and column closure,
• Boolean union,
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• REC is not closed with respect to Boolean complementation.
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Automata Theoretic Approach to Picture Languages

• Row and column concatenation.

• Row and column closure.

• Projections of picture languages.

• Local Picture languages (LOC).

• Recognizable picture languages (REC).

• REC is closed with respect to
• projection,
• row and column concatenation,
• row and column closure,
• Boolean union,
• Boolean intersection.

• REC is not closed with respect to Boolean complementation.
Proof idea :
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• Row and column concatenation.

• Row and column closure.

• Projections of picture languages.

• Local Picture languages (LOC).

• Recognizable picture languages (REC).

• REC is closed with respect to
• projection,
• row and column concatenation,
• row and column closure,
• Boolean union,
• Boolean intersection.

• REC is not closed with respect to Boolean complementation.
Proof idea :

• Let Σ be an alphabet and let L be a language over Σ given by
L={p∈ Σ∗∗ | p=s⊖s where s is a square }
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Automata Theoretic Approach to Picture Languages

• Row and column concatenation.

• Row and column closure.

• Projections of picture languages.

• Local Picture languages (LOC).

• Recognizable picture languages (REC).

• REC is closed with respect to
• projection,
• row and column concatenation,
• row and column closure,
• Boolean union,
• Boolean intersection.

• REC is not closed with respect to Boolean complementation.
Proof idea :

• Let Σ be an alphabet and let L be a language over Σ given by
L={p∈ Σ∗∗ | p=s⊖s where s is a square }

• The claim is that L /∈ REC while L ∈ REC.
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Logical definability of Picture Languages

A few notations and terminologies :

• Given a picture p ∈ Σ∗∗, we can identify the structure
p = (dom(p),S1,S2,(Pa)a∈Σ),
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p = (dom(p),S1,S2,(Pa)a∈Σ),

• x,y,z,x1 ,x2, ..., are first-order variables for points of dom(p) while
X,Y,Z,X1 ,X2, ..., are MSO variables denoting sets of positions.
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A few notations and terminologies :

• Given a picture p ∈ Σ∗∗, we can identify the structure
p = (dom(p),S1,S2,(Pa)a∈Σ),

• x,y,z,x1 ,x2, ..., are first-order variables for points of dom(p) while
X,Y,Z,X1 ,X2, ..., are MSO variables denoting sets of positions.

• Atomic formulas are of the form x=y, xSiy, X(x) and Pa(x) interpreted as
equality between x and y, (x,y) ∈ Si , x∈ X ,x∈ Pa respectively.

• Formulas are built up from atomic formulas by means of the Boolean
connectives and the quantifiers ∃ and ∀ applicable to first-order as well as
second-order variables.

• If φ(X1, ..., Xn) is a formula with at most X1, ..., Xn occurring free in φ,
p is a picture, and Q1, ...,Qn are subsets of dom(p), we write
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Logical definability of Picture Languages

A few notations and terminologies :

• Given a picture p ∈ Σ∗∗, we can identify the structure
p = (dom(p),S1,S2,(Pa)a∈Σ),

• x,y,z,x1 ,x2, ..., are first-order variables for points of dom(p) while
X,Y,Z,X1 ,X2, ..., are MSO variables denoting sets of positions.

• Atomic formulas are of the form x=y, xSiy, X(x) and Pa(x) interpreted as
equality between x and y, (x,y) ∈ Si , x∈ X ,x∈ Pa respectively.

• Formulas are built up from atomic formulas by means of the Boolean
connectives and the quantifiers ∃ and ∀ applicable to first-order as well as
second-order variables.

• If φ(X1, ..., Xn) is a formula with at most X1, ..., Xn occurring free in φ,
p is a picture, and Q1, ...,Qn are subsets of dom(p), we write

((p),Q1, ...,Qn) |= φ(X1, ...,Xn)
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Logical definability of Picture Languages

A few notations and terminologies :

• Given a picture p ∈ Σ∗∗, we can identify the structure
p = (dom(p),S1,S2,(Pa)a∈Σ),

• x,y,z,x1 ,x2, ..., are first-order variables for points of dom(p) while
X,Y,Z,X1 ,X2, ..., are MSO variables denoting sets of positions.

• Atomic formulas are of the form x=y, xSiy, X(x) and Pa(x) interpreted as
equality between x and y, (x,y) ∈ Si , x∈ X ,x∈ Pa respectively.

• Formulas are built up from atomic formulas by means of the Boolean
connectives and the quantifiers ∃ and ∀ applicable to first-order as well as
second-order variables.

• If φ(X1, ..., Xn) is a formula with at most X1, ..., Xn occurring free in φ,
p is a picture, and Q1, ...,Qn are subsets of dom(p), we write

((p),Q1, ...,Qn) |= φ(X1, ...,Xn)

if p satisfies φ under the above mentioned interpretation where Qi is
taken as interpretation of Xi .
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Logical definability of Picture Languages

A few notations and terminologies :

• Given a picture p ∈ Σ∗∗, we can identify the structure
p = (dom(p),S1,S2,(Pa)a∈Σ),

• x,y,z,x1 ,x2, ..., are first-order variables for points of dom(p) while
X,Y,Z,X1 ,X2, ..., are MSO variables denoting sets of positions.

• Atomic formulas are of the form x=y, xSiy, X(x) and Pa(x) interpreted as
equality between x and y, (x,y) ∈ Si , x∈ X ,x∈ Pa respectively.

• Formulas are built up from atomic formulas by means of the Boolean
connectives and the quantifiers ∃ and ∀ applicable to first-order as well as
second-order variables.

• If φ(X1, ..., Xn) is a formula with at most X1, ..., Xn occurring free in φ,
p is a picture, and Q1, ...,Qn are subsets of dom(p), we write

((p),Q1, ...,Qn) |= φ(X1, ...,Xn)

if p satisfies φ under the above mentioned interpretation where Qi is
taken as interpretation of Xi .

• If φ is a sentence we write p |= φ.
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Logical Definability of Picture Languages

Definition (MSO-definable)

A picture language L is monadic second-order definable (L ∈ MSO), if there is
a monadic second-order sentence φ with L = L(φ).
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Logical Definability of Picture Languages

Definition (MSO-definable)

A picture language L is monadic second-order definable (L ∈ MSO), if there is
a monadic second-order sentence φ with L = L(φ).

Definition (FO-definable)

A picture language L is first-order definable (L ∈ FO), if there is a sentence φ
conatining only first-order quantifiers such that L = L(φ).
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Logical Definability of Picture Languages

Definition (MSO-definable)

A picture language L is monadic second-order definable (L ∈ MSO), if there is
a monadic second-order sentence φ with L = L(φ).

Definition (FO-definable)

A picture language L is first-order definable (L ∈ FO), if there is a sentence φ
conatining only first-order quantifiers such that L = L(φ).

Definition (EMSO-definable)

Finally, A picture language L is existential monadic second-order definable
(L ∈ EMSO), if there is a sentence of the form

φ = ∃X1 ... ∃Xnψ(X1, ...,Xn) where ψ contains only first-order

quantifiers such that L = L(φ).
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REC ⇐⇒ EMSO

Now, the main theorem concerning picture languages

Theorem

For any picture language L:L∈ REC iff L ∈ EMSO.
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Proof Idea :

• The direction (REC =⇒ EMSO) is the easy one, and all we have to do is
prove the following lemma
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Now, the main theorem concerning picture languages

Theorem

For any picture language L:L∈ REC iff L ∈ EMSO.

Proof Idea :

• The direction (REC =⇒ EMSO) is the easy one, and all we have to do is
prove the following lemma

Definition

p∈ L iff ∃ picture c ∈ Q∗∗ of the same size as p such that p̂ × c is tilable by ∆
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Now, the main theorem concerning picture languages

Theorem

For any picture language L:L∈ REC iff L ∈ EMSO.

Proof Idea :

• The direction (REC =⇒ EMSO) is the easy one, and all we have to do is
prove the following lemma

Definition

p∈ L iff ∃ picture c ∈ Q∗∗ of the same size as p such that p̂ × c is tilable by ∆

• We capture the tiling of the picture p̂ × c by the EMSO formula
φ = ∃X1...∃Xk (φpartition ∧ ∀ x1...x4

(χm ∧ χt ∧ χb ∧ χl ∧ χr ∧ χtl ∧ χtr ∧ χbl ∧ χbr))
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REC ⇐⇒ EMSO

Now, the main theorem concerning picture languages

Theorem

For any picture language L:L∈ REC iff L ∈ EMSO.

Proof Idea :

• The direction (REC =⇒ EMSO) is the easy one, and all we have to do is
prove the following lemma

Definition

p∈ L iff ∃ picture c ∈ Q∗∗ of the same size as p such that p̂ × c is tilable by ∆

• We capture the tiling of the picture p̂ × c by the EMSO formula
φ = ∃X1...∃Xk (φpartition ∧ ∀ x1...x4

(χm ∧ χt ∧ χb ∧ χl ∧ χr ∧ χtl ∧ χtr ∧ χbl ∧ χbr))

• φpartition(X1,...,Xk ) :
∀z(X1(z) ∨...∨ Xk(z)) ∧

V

i 6=j
¬(Xi (z) ∧ Xj(z)).
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REC ⇐⇒ EMSO

Now, the main theorem concerning picture languages

Theorem

For any picture language L:L∈ REC iff L ∈ EMSO.

Proof Idea :

• The direction (REC =⇒ EMSO) is the easy one, and all we have to do is
prove the following lemma

Definition

p∈ L iff ∃ picture c ∈ Q∗∗ of the same size as p such that p̂ × c is tilable by ∆

• We capture the tiling of the picture p̂ × c by the EMSO formula
φ = ∃X1...∃Xk (φpartition ∧ ∀ x1...x4

(χm ∧ χt ∧ χb ∧ χl ∧ χr ∧ χtl ∧ χtr ∧ χbl ∧ χbr))

• φpartition(X1,...,Xk ) :
∀z(X1(z) ∨...∨ Xk(z)) ∧

V

i 6=j
¬(Xi (z) ∧ Xj(z)).

• While χm,χt ,χb,χl ,χr ,χtl ,χtr ,χbl ,χbr refer to the formulae describing (2,2)
local neighbourhoods.
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EMSO =⇒ REC

For this direction, we use the variation of hanf’s theorem for EMSO.

Abdullah Abdul Khadir Topics in Logic and Automata Theory



EMSO =⇒ REC

For this direction, we use the variation of hanf’s theorem for EMSO.

• Given two pictures, p1,p2, d,t ∈ N, if T(i,j)(p1)↾(d,t)=T(i,j)(p2)↾(d,t)
∀ i,j ≤ d , then we say that p1 is d,t-equivalent to p2 denoted p1 ∼d,t p2.

• For pictures, we consider only rectangles and not spheres.
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∀ i,j ≤ d , then we say that p1 is d,t-equivalent to p2 denoted p1 ∼d,t p2.

• For pictures, we consider only rectangles and not spheres.
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∀ i,j = d , then we say that p1 is exactly d,t-equivalent to p2 denoted
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For this direction, we use the variation of hanf’s theorem for EMSO.

• Given two pictures, p1,p2, d,t ∈ N, if T(i,j)(p1)↾(d,t)=T(i,j)(p2)↾(d,t)
∀ i,j ≤ d , then we say that p1 is d,t-equivalent to p2 denoted p1 ∼d,t p2.

• For pictures, we consider only rectangles and not spheres.

• For the same parameters above, if T(i,j)(p1)↾(d,t)=T(i,j)(p2)↾(d,t)
∀ i,j = d , then we say that p1 is exactly d,t-equivalent to p2 denoted
p1 ≃d,t p2.

• A picture language,L, is called locally d-testable with threshold t if L is
a union of ∼d,t -equivalence classes
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EMSO =⇒ REC

For this direction, we use the variation of hanf’s theorem for EMSO.

• Given two pictures, p1,p2, d,t ∈ N, if T(i,j)(p1)↾(d,t)=T(i,j)(p2)↾(d,t)
∀ i,j ≤ d , then we say that p1 is d,t-equivalent to p2 denoted p1 ∼d,t p2.

• For pictures, we consider only rectangles and not spheres.

• For the same parameters above, if T(i,j)(p1)↾(d,t)=T(i,j)(p2)↾(d,t)
∀ i,j = d , then we say that p1 is exactly d,t-equivalent to p2 denoted
p1 ≃d,t p2.

• A picture language,L, is called locally d-testable with threshold t if L is
a union of ∼d,t -equivalence classes

• If it holds for some t,we say that L is locally threshold d-testable.
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EMSO =⇒ REC

For this direction, we use the variation of hanf’s theorem for EMSO.

• Given two pictures, p1,p2, d,t ∈ N, if T(i,j)(p1)↾(d,t)=T(i,j)(p2)↾(d,t)
∀ i,j ≤ d , then we say that p1 is d,t-equivalent to p2 denoted p1 ∼d,t p2.

• For pictures, we consider only rectangles and not spheres.

• For the same parameters above, if T(i,j)(p1)↾(d,t)=T(i,j)(p2)↾(d,t)
∀ i,j = d , then we say that p1 is exactly d,t-equivalent to p2 denoted
p1 ≃d,t p2.

• A picture language,L, is called locally d-testable with threshold t if L is
a union of ∼d,t -equivalence classes

• If it holds for some t,we say that L is locally threshold d-testable.

• If it holds for some d and t then we say L is locally threshold testable.
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EMSO =⇒ REC

For this direction, we use the variation of hanf’s theorem for EMSO.

• Given two pictures, p1,p2, d,t ∈ N, if T(i,j)(p1)↾(d,t)=T(i,j)(p2)↾(d,t)
∀ i,j ≤ d , then we say that p1 is d,t-equivalent to p2 denoted p1 ∼d,t p2.

• For pictures, we consider only rectangles and not spheres.

• For the same parameters above, if T(i,j)(p1)↾(d,t)=T(i,j)(p2)↾(d,t)
∀ i,j = d , then we say that p1 is exactly d,t-equivalent to p2 denoted
p1 ≃d,t p2.

• A picture language,L, is called locally d-testable with threshold t if L is
a union of ∼d,t -equivalence classes

• If it holds for some t,we say that L is locally threshold d-testable.

• If it holds for some d and t then we say L is locally threshold testable.

• Finally, if L is a union of ≃d,t-classes for some t, L is called locally
strictly threshold d-testable.

Abdullah Abdul Khadir Topics in Logic and Automata Theory



EMSO =⇒ REC

Theorem (Theorem 1)

A picture language is first-order definable iff it is locally threshold testable.

Abdullah Abdul Khadir Topics in Logic and Automata Theory



EMSO =⇒ REC

Theorem (Theorem 1)

A picture language is first-order definable iff it is locally threshold testable.

Theorem (Theorem 2)

Using theorem 1, we claim that if L ∈ EMSO then L is a projection of a locally
threshold testable picture language.
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EMSO =⇒ REC

Theorem (Theorem 1)

A picture language is first-order definable iff it is locally threshold testable.

Theorem (Theorem 2)

Using theorem 1, we claim that if L ∈ EMSO then L is a projection of a locally
threshold testable picture language.

Thus, Theorem 1 =⇒ Theorem 2 =⇒ (EMSO =⇒ REC)

We only need to prove Theorem 1 now.
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EMSO =⇒ REC

Theorem (Theorem 1)

A picture language is first-order definable iff it is locally threshold testable.

Theorem (Theorem 2)

Using theorem 1, we claim that if L ∈ EMSO then L is a projection of a locally
threshold testable picture language.

Thus, Theorem 1 =⇒ Theorem 2 =⇒ (EMSO =⇒ REC)

We only need to prove Theorem 1 now.

Proof sketch of Theorem 1 :-

• The proof for the direction ⇐= is by an adaptation of Hanf’s theorem to
pictures. We can use the bound as d=2*3n+1 and t=n*32n for
n-equivalence.

Abdullah Abdul Khadir Topics in Logic and Automata Theory



EMSO =⇒ REC

Theorem (Theorem 1)

A picture language is first-order definable iff it is locally threshold testable.

Theorem (Theorem 2)

Using theorem 1, we claim that if L ∈ EMSO then L is a projection of a locally
threshold testable picture language.

Thus, Theorem 1 =⇒ Theorem 2 =⇒ (EMSO =⇒ REC)

We only need to prove Theorem 1 now.

Proof sketch of Theorem 1 :-

• The proof for the direction ⇐= is by an adaptation of Hanf’s theorem to
pictures. We can use the bound as d=2*3n+1 and t=n*32n for
n-equivalence.

• So that completes the proof for ⇐= of theorem 1 and we only need to
prove the reverse direction.
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First-order definable =⇒ Locally threshold testable

Proof Sketch :-

Theorem

Each locally threshold d-testable language L can be decomposed into L0∪ L1∪
... ∪ Ld−2 where Li ⊆ Σ∗∗

i (0≤i≤d-2) is locally strictly threshold (i+2)-testable.
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First-order definable =⇒ Locally threshold testable

Proof Sketch :-

Theorem

Each locally threshold d-testable language L can be decomposed into L0∪ L1∪
... ∪ Ld−2 where Li ⊆ Σ∗∗

i (0≤i≤d-2) is locally strictly threshold (i+2)-testable.

Definition

Let d≥2 be a positive integer. A picture language L⊆ Σ∗∗
d−2 is d-local if there

exists a set ∆(d) of pictures of size (d,d) (or “d-tiles”) over Σ∪ {#}, such that

L={p∈ Σ∗∗ | Td,d(bp) ⊆ ∆(d)}
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First-order definable =⇒ Locally threshold testable

Proof Sketch :-

Theorem

Each locally threshold d-testable language L can be decomposed into L0∪ L1∪
... ∪ Ld−2 where Li ⊆ Σ∗∗

i (0≤i≤d-2) is locally strictly threshold (i+2)-testable.

Definition

Let d≥2 be a positive integer. A picture language L⊆ Σ∗∗
d−2 is d-local if there

exists a set ∆(d) of pictures of size (d,d) (or “d-tiles”) over Σ∪ {#}, such that

L={p∈ Σ∗∗ | Td,d(bp) ⊆ ∆(d)}

Theorem

Let d ≥ 3 be a positive integer. A locally strictly threshold d-testable picture
language L ⊆ Σ∗∗

d−2 is the projection of a d-local language.
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First-order definable =⇒ Locally threshold testable

Proof Sketch :-

Theorem

Each locally threshold d-testable language L can be decomposed into L0∪ L1∪
... ∪ Ld−2 where Li ⊆ Σ∗∗

i (0≤i≤d-2) is locally strictly threshold (i+2)-testable.

Definition

Let d≥2 be a positive integer. A picture language L⊆ Σ∗∗
d−2 is d-local if there

exists a set ∆(d) of pictures of size (d,d) (or “d-tiles”) over Σ∪ {#}, such that

L={p∈ Σ∗∗ | Td,d(bp) ⊆ ∆(d)}

Theorem

Let d ≥ 3 be a positive integer. A locally strictly threshold d-testable picture
language L ⊆ Σ∗∗

d−2 is the projection of a d-local language.

Theorem

A d-local picture language is a projection of a local language.
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Alternation hierarchy of MSO over grids and graphs
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Alternation hierarchy of MSO over grids and graphs

• The signature of grids is given by τGrid = ([m,n],Sm,n
1 ,Sm,n

2 )
where [m,n] = [m] × [n]

• The signature of t-bit grids for some t∈ N is given by
τt−Grid = ([m,n],Sm,n

1 ,Sm,n
2 ,X1,...,Xt )
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Alternation hierarchy of MSO over grids and graphs

• The signature of grids is given by τGrid = ([m,n],Sm,n
1 ,Sm,n

2 )
where [m,n] = [m] × [n]

• The signature of t-bit grids for some t∈ N is given by
τt−Grid = ([m,n],Sm,n

1 ,Sm,n
2 ,X1,...,Xt )

Theorem

∀ k ≥ 1, B(Σk)(Grids) $ ∆k+1(Grids)

The inclusion results are as shown the
diagram in the right with undirected
edges indicating strict inclusion.

Σk (Grid) Πk(Grid)

B(Σk )(Grid)

∆k+1(Grid)

Σk (Grid) Πk(Grid)
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B(Σk)(Grids) $ ∆k+1(Grids)

The basis of the theorem is definability results for sets of grids.
• For a function f :N → N we denote by Lf the set of grids whose size is

(m,f(m)) for m ≥ 1.
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B(Σk)(Grids) $ ∆k+1(Grids)

The basis of the theorem is definability results for sets of grids.
• For a function f :N → N we denote by Lf the set of grids whose size is

(m,f(m)) for m ≥ 1.

• A formula φ over τGrid defines the function f:N → N iff ModGrid (φ) = Lf .
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B(Σk)(Grids) $ ∆k+1(Grids)

The basis of the theorem is definability results for sets of grids.
• For a function f :N → N we denote by Lf the set of grids whose size is

(m,f(m)) for m ≥ 1.

• A formula φ over τGrid defines the function f:N → N iff ModGrid (φ) = Lf .

• A function is at most k-fold exponential if f(m) is sk(O(m)),
where s0(m) = m and sk+1(m) = 2sk (m).

Abdullah Abdul Khadir Topics in Logic and Automata Theory



B(Σk)(Grids) $ ∆k+1(Grids)

The basis of the theorem is definability results for sets of grids.
• For a function f :N → N we denote by Lf the set of grids whose size is

(m,f(m)) for m ≥ 1.

• A formula φ over τGrid defines the function f:N → N iff ModGrid (φ) = Lf .

• A function is at most k-fold exponential if f(m) is sk(O(m)),
where s0(m) = m and sk+1(m) = 2sk (m).

Theorem

Every B(Σk )-definable function is at most k-fold exponential.
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B(Σk)(Grids) $ ∆k+1(Grids)

The basis of the theorem is definability results for sets of grids.
• For a function f :N → N we denote by Lf the set of grids whose size is

(m,f(m)) for m ≥ 1.

• A formula φ over τGrid defines the function f:N → N iff ModGrid (φ) = Lf .

• A function is at most k-fold exponential if f(m) is sk(O(m)),
where s0(m) = m and sk+1(m) = 2sk (m).

Theorem

Every B(Σk )-definable function is at most k-fold exponential.

Theorem

Let f1(m) = 2m, fk+1(m) = fk (m)2fk (m) for m,k ≥ 1.
∀k≥ 1,the function fk is definable in Σk and Πk over τGrid
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Complexity of a B(Σk)-definable function

Proof Sketch:

• For a picture language L over alphabet Γ and an integer m≥ 1, we denote
by L(m) the word language L restricted to Γm,1.
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Complexity of a B(Σk)-definable function

Proof Sketch:

• For a picture language L over alphabet Γ and an integer m≥ 1, we denote
by L(m) the word language L restricted to Γm,1.

• ∀ t ≥ 0 and for every φ ∈ Σ1 with free variables among X1, ... ,Xt

∃c≥1 such that for all m≥1, there is an NFA with 2cm states that
recognises the word language Modt(φ)(m) over ({0,1}t)m,1.
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Complexity of a B(Σk)-definable function

Proof Sketch:

• For a picture language L over alphabet Γ and an integer m≥ 1, we denote
by L(m) the word language L restricted to Γm,1.

• ∀ t ≥ 0 and for every φ ∈ Σ1 with free variables among X1, ... ,Xt

∃c≥1 such that for all m≥1, there is an NFA with 2cm states that
recognises the word language Modt(φ)(m) over ({0,1}t)m,1.

• ∀ k ≥ 1 and for every φ ∈ Σk with free variables among X1, ... ,Xt

∃c≥1 such that for all m≥1, there is an NFA with sk (cm) states that
recognises the word language Modt(φ)(m) over ({0,1}t)m,1.
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Complexity of a B(Σk)-definable function

Proof Sketch:

• For a picture language L over alphabet Γ and an integer m≥ 1, we denote
by L(m) the word language L restricted to Γm,1.

• ∀ t ≥ 0 and for every φ ∈ Σ1 with free variables among X1, ... ,Xt

∃c≥1 such that for all m≥1, there is an NFA with 2cm states that
recognises the word language Modt(φ)(m) over ({0,1}t)m,1.

• ∀ k ≥ 1 and for every φ ∈ Σk with free variables among X1, ... ,Xt

∃c≥1 such that for all m≥1, there is an NFA with sk (cm) states that
recognises the word language Modt(φ)(m) over ({0,1}t)m,1.

• Let N ⊆ N be recognizable by some n-state NFA. Then ∃ k ≤ (n+2)2

and an integer p such that N is recognized by a DFA A with states
0,...,k+(p-1) such that A reaches the state k+((l-k)mod p) after reading
an input of length l≥k.( =⇒ N is (n+2)2-periodic).
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Complexity of a B(Σk)-definable function

Proof Sketch:

• For a picture language L over alphabet Γ and an integer m≥ 1, we denote
by L(m) the word language L restricted to Γm,1.

• ∀ t ≥ 0 and for every φ ∈ Σ1 with free variables among X1, ... ,Xt

∃c≥1 such that for all m≥1, there is an NFA with 2cm states that
recognises the word language Modt(φ)(m) over ({0,1}t)m,1.

• ∀ k ≥ 1 and for every φ ∈ Σk with free variables among X1, ... ,Xt

∃c≥1 such that for all m≥1, there is an NFA with sk (cm) states that
recognises the word language Modt(φ)(m) over ({0,1}t)m,1.

• Let N ⊆ N be recognizable by some n-state NFA. Then ∃ k ≤ (n+2)2

and an integer p such that N is recognized by a DFA A with states
0,...,k+(p-1) such that A reaches the state k+((l-k)mod p) after reading
an input of length l≥k.( =⇒ N is (n+2)2-periodic).

• Let φ be a B(Σk)-sentence. There is a constant c≥1 such that for every
m≥1 the set Mod0(φ)(m) is sk(cm)-periodic. Thus from all the above
statements we get that every B(Σk )-definable function is at most k-fold
exponential.
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fk(m) ∈ ∆k(Grid)

m

f1(m)=2m
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The Complete column-numbering of a grid
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fk(m) ∈ ∆k(Grid)

m

f1(m)=2m
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The Complete column-numbering of a grid

fi (m)

fi+1(m) = fi .2
fi (m)

0 0 ... 0 0 1 1 ... 1 1 0 . . . . . 1 0 0 ... 0 0 1 1 ... 1 1

Complete fi -numbering along the top row of the grid
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MSCs, MPA and EMSOMSC
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MSCs, MPA and EMSOMSC

Message Sequence Charts :-

1!2

2?1

1?4 4!1

1!2 2!3 3?2

1!3 3?1

2?3
3!2

2?1

4?5 5!4

4!5 5?4

5!3

3?5
c

c

c

4

4 5

5
3

c

c

c

c

c

1

1

1

2

2

2

3

3

c
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MSCs, MPA and EMSOMSC

Message Sequence Charts :-

1!2

2?1

1?4 4!1

1!2 2!3 3?2

1!3 3?1

2?3
3!2

2?1

4?5 5!4

4!5 5?4

5!3

3?5
c

c

c

4

4 5

5
3

c

c

c

c

c

1

1

1

2

2

2

3

3

c

MSC (over P) is a graph M = (E,{∆p}p∈P ,∆c ,λ)
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MSCs, MPA and EMSOMSC

Message Passing Automata :-

A1 A2

1!2, o

1?2, o

1!2, x 1?2, o

2?1, o 2!1, o

2!1, x2?1, x
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MSCs, MPA and EMSOMSC

Message Passing Automata :-

A1 A2

1!2, o

1?2, o

1!2, x 1?2, o

2?1, o 2!1, o

2!1, x2?1, x

MPA (over P) is a structure (A) = (((A)p)p∈P ,D,s−in,F)
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Definitions

Definition

An MSC (over P) is a graph M = (E,{∆p}p∈P ,∆c ,λ) ∈ DG(Act,Pc) such that

• ∆p is a total order.

• ∆c ⊆ E × E is the set of edges connecting messages.

• Number of messages sent is equal to the number of messages received
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Definitions

Definition

An MSC (over P) is a graph M = (E,{∆p}p∈P ,∆c ,λ) ∈ DG(Act,Pc) such that

• ∆p is a total order.

• ∆c ⊆ E × E is the set of edges connecting messages.

• Number of messages sent is equal to the number of messages received

Definition

MPA (over P) is a structure (A) = (((A)p)p∈P ,D,s−in,F) such that

• D is a set of synchronization messages.

• for each p∈P ,A is a pair (Sp , δp) where

• Sp is a set of local states
• δp ⊆ Sp× Actp ×D × Sp

• s−in ∈ Πp∈PSp is the global initial state.

• F ⊆ Πp∈PSp is the set of global final states.
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Logical Definability

Definition (MSO(Σ,C))

MSO(Σ,C) over the class DG are built up from the atomic
formulas λ(x) = a (for a ∈ Σ), x∆cy (for c∈ C), x∈ X and x=y.
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Logical Definability

Definition (MSO(Σ,C))

MSO(Σ,C) over the class DG are built up from the atomic
formulas λ(x) = a (for a ∈ Σ), x∆cy (for c∈ C), x∈ X and x=y.

Definition

A graph acceptor over (Σ,C) is a structure B = (Q,R, Ŝ ,Occ)
where

• Q is its nonempty finite set of states

• B ∈ N is the radius

• Ŝ is a finite set of R-spheres over (Σ × Q,C) and

• Occ is a boolean combinations of conditions of the form
“sphere H ∈ Ŝ occurs at least n times” where n ∈ N.
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The Theorems

Theorem

MPA ≡ EMSOMSC
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The Theorems

Theorem

MPA ≡ EMSOMSC

Theorem

The monadic quantifier alternation hierarchy over MSC is infinite.
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Summary
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Summary

• Hanf’s theorem

• Picture languages
• Local picture Languages
• Recognizable picture languages
• REC ⇐⇒ EMSO

• Monadic quantifier Alternation hierarchy over Grids and
graphs

• MSC ⇐⇒ EMSOMSC

Abdullah Abdul Khadir Topics in Logic and Automata Theory


