Topics in Logic and Automata Theory Logic and Automata over Graphs

Abdullah Abdul Khadir

Chennai Mathematical Institute abdullah@cmi.ac.in

May 14, 2010

Notations and Symbols

Henceforth we assume the following :-

• σ is the vocabulary $\sigma = (R_1, ..., R_m, c_1, ..., c_s)$ where, $\forall i \in \{1, ..., m\}, R_i$ is a relation symbol of arity k_i , for some $k_i \in \mathbb{N}$ and $\forall i \in \{1, ..., s\}, c_i$ is a unique constant symbol. Henceforth we assume the following :-

- σ is the vocabulary $\sigma = (R_1, ..., R_m, c_1, ..., c_s)$ where, $\forall i \in \{1, ..., m\}, R_i$ is a relation symbol of arity k_i , for some $k_i \in \mathbb{N}$ and $\forall i \in \{1, ..., s\}, c_i$ is a unique constant symbol.
- *A*=(A, R^A₁,...,R^A_m, c^A₁,...,c^A_s) and B=(B, R^B₁,...,R^B_m, c^B₁,...,c^B_s) are two structures interpreting σ over the domains A and B respectively.

Henceforth we assume the following :-

- σ is the vocabulary $\sigma = (R_1, ..., R_m, c_1, ..., c_s)$ where, $\forall i \in \{1, ..., m\}, R_i$ is a relation symbol of arity k_i , for some $k_i \in \mathbb{N}$ and $\forall i \in \{1, ..., s\}, c_i$ is a unique constant symbol.
- A=(A, R₁^A,..., R_m^A, c₁^A,..., c_s^A) and B=(B, R₁^B,..., R_m^B, c₁^B,..., c_s^B) are two structures interpreting σ over the domains A and B respectively.
- \mathcal{G}_A and \mathcal{G}_B are the gaiffman graphs (explained in the next slide) for \mathcal{A} and \mathcal{B} respectively.

Henceforth we assume the following :-

- σ is the vocabulary $\sigma = (R_1, ..., R_m, c_1, ..., c_s)$ where, $\forall i \in \{1, ..., m\}, R_i$ is a relation symbol of arity k_i , for some $k_i \in \mathbb{N}$ and $\forall i \in \{1, ..., s\}, c_i$ is a unique constant symbol.
- *A*=(A, R^A₁,...,R^A_m, c^A₁,...,c^A_s) and B=(B, R^B₁,...,R^B_m, c^B₁,...,c^B_s) are two structures interpreting σ over the domains A and B respectively.
- \mathcal{G}_A and \mathcal{G}_B are the gaiffman graphs (explained in the next slide) for \mathcal{A} and \mathcal{B} respectively.
- Given an element a ∈ A, N(A,a)[†]d is the neighbourhood or sphere or subgraph of the Gaiffman graph of A, G_A, with a as center and a radius of d.

Given a structure $\mathcal{A}=(A, R_1^A, ..., R_m^A, c_1^A, ..., c_s^A)$, the Gaiffman graph is the undirected graph $\mathcal{G}_A = (A, E)$ where

Given a structure $\mathcal{A}=(A, R_1^A, ..., R_m^A, c_1^A, ..., c_s^A)$, the Gaiffman graph is the undirected graph $\mathcal{G}_A = (A, E)$ where

• A is the domain of the structure A.

Given a structure $\mathcal{A}=(A, R_1^A, ..., R_m^A, c_1^A, ..., c_s^A)$, the Gaiffman graph is the undirected graph $\mathcal{G}_A = (A, E)$ where

- A is the domain of the structure A.
- E is a binary relation on A such that for any two elements a,b ∈ A, E(a,b) holds iff ∃ a relation R^A_i of arity k_i and k_i variables {x₁,..., x_{k_i}} ∈ A such that R(x₁,..., x_{k_i}) holds. Moreover a and b are two of the k_i variables.

Given a structure $\mathcal{A}=(A, R_1^A, ..., R_m^A, c_1^A, ..., c_s^A)$, the Gaiffman graph is the undirected graph $\mathcal{G}_A = (A, E)$ where

- A is the domain of the structure A.
- E is a binary relation on A such that for any two elements a,b ∈ A, E(a,b) holds iff ∃ a relation R^A_i of arity k_i and k_i variables {x₁,..., x_{k_i}} ∈ A such that R(x₁,..., x_{k_i}) holds. Moreover a and b are two of the k_i variables.

Example : $\mathcal{A} = (\{1,2,3,4\},\leq)$

Given a structure $\mathcal{A}=(A, R_1^A, ..., R_m^A, c_1^A, ..., c_s^A)$, the Gaiffman graph is the undirected graph $\mathcal{G}_A = (A, E)$ where

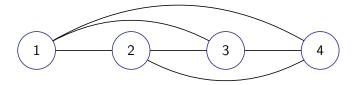
- A is the domain of the structure A.
- E is a binary relation on A such that for any two elements a,b ∈ A, E(a,b) holds iff ∃ a relation R^A_i of arity k_i and k_i variables {x₁,..., x_{k_i}} ∈ A such that R(x₁,..., x_{k_i}) holds. Moreover a and b are two of the k_i variables.

Example : $A = (\{1,2,3,4\},\leq)$

Given a structure $\mathcal{A}=(A, R_1^A, ..., R_m^A, c_1^A, ..., c_s^A)$, the Gaiffman graph is the undirected graph $\mathcal{G}_A = (A, E)$ where

- A is the domain of the structure A.
- E is a binary relation on A such that for any two elements a,b ∈ A, E(a,b) holds iff ∃ a relation R^A_i of arity k_i and k_i variables {x₁,..., x_{k_i}} ∈ A such that R(x₁,..., x_{k_i}) holds. Moreover a and b are two of the k_i variables.

Example : $A = (\{1,2,3,4\},\leq)$



Local Equivalence

Some points and terms to note related to graphs :

- For any $d\in\mathbb{N},$ the number of spheres of radius d is finite.
- Let $n\in\mathbb{N},$ be the number of spheres for a fixed radius d.
- Then we can talk of a type signature of a graph given by (#Type1,...,#Typen) which is the number of spheres of radius d that are of Type1,Type2 ... Typen.

Local Equivalence

Some points and terms to note related to graphs :

- For any $d\in\mathbb{N},$ the number of spheres of radius d is finite.
- Let $n\in\mathbb{N},$ be the number of spheres for a fixed radius d.
- Then we can talk of a type signature of a graph given by (#Type1,...,#Typen) which is the number of spheres of radius d that are of Type1,Type2 ... Typen.

Definition (Local d-Equivalence)

Two structures \mathcal{A} and \mathcal{B} are said to be locally d-equivalent for some $d \in \mathbb{N}$, iff both \mathcal{A} and \mathcal{B} have the same type signature of radius d. Let it be denoted by $\mathcal{A} \sim_d \mathcal{B}$.

Definition (Logical r-Equivalence)

Two structures \mathcal{A} and \mathcal{B} are said to be logically r-equivalent for some $r \in \mathbb{N}$, iff they satisfy the same first order formulae of quantifier depth r. Let it be denoted by $\mathcal{A} \equiv_r \mathcal{B}$.

Definition (Logical r-Equivalence)

Two structures \mathcal{A} and \mathcal{B} are said to be logically r-equivalent for some $r \in \mathbb{N}$, iff they satisfy the same first order formulae of quantifier depth r. Let it be denoted by $\mathcal{A} \equiv_r \mathcal{B}$.

We recall that :

• If $A \equiv_r B$ then the Duplicator has a winning strategy for the r-round EF-game.

Definition (Logical r-Equivalence)

Two structures \mathcal{A} and \mathcal{B} are said to be logically r-equivalent for some $r \in \mathbb{N}$, iff they satisfy the same first order formulae of quantifier depth r. Let it be denoted by $\mathcal{A} \equiv_r \mathcal{B}$.

We recall that :

- If $A \equiv_r B$ then the Duplicator has a winning strategy for the r-round EF-game.
- The above statement holds in both directions namely, $\mathcal{A} \equiv_r \mathcal{B} \iff$ Duplicator has a winning strategy for the r-round EF game.

Hanf's theorem

Theorem (Hanf's)

Let $d, r \in \mathbb{N}$ such that $d \ge 3^{r-1}$. Then, $\mathcal{A} \sim_d \mathcal{B} \Longrightarrow \mathcal{A} \equiv_r \mathcal{B}$.

Hanf's theorem

Theorem (Hanf's)

Let $d, r \in \mathbb{N}$ such that $d \ge 3^{r-1}$. Then, $\mathcal{A} \sim_d \mathcal{B} \Longrightarrow \mathcal{A} \equiv_r \mathcal{B}$.

Essentially, what Hanf's theorem states is that for sufficiently large radius d, local equivalence is the same as logical equivalence.

Hanf's theorem

Theorem (Hanf's)

Let $d, r \in \mathbb{N}$ such that $d \ge 3^{r-1}$. Then, $\mathcal{A} \sim_d \mathcal{B} \Longrightarrow \mathcal{A} \equiv_r \mathcal{B}$.

Essentially, what Hanf's theorem states is that for sufficiently large radius d, local equivalence is the same as logical equivalence.

Proof sketch :-

Theorem (Hanf's)

Let $d, r \in \mathbb{N}$ such that $d \ge 3^{r-1}$. Then, $\mathcal{A} \sim_d \mathcal{B} \Longrightarrow \mathcal{A} \equiv_r \mathcal{B}$.

Essentially, what Hanf's theorem states is that for sufficiently large radius d, local equivalence is the same as logical equivalence.

Proof sketch :-

• The duplicator's strategy in Round 1

Theorem (Hanf's)

Let $d, r \in \mathbb{N}$ such that $d \ge 3^{r-1}$. Then, $\mathcal{A} \sim_d \mathcal{B} \Longrightarrow \mathcal{A} \equiv_r \mathcal{B}$.

Essentially, what Hanf's theorem states is that for sufficiently large radius d, local equivalence is the same as logical equivalence.

Proof sketch :-

- The duplicator's strategy in Round 1
- The duplicator's strategy in Round i

Theorem (Hanf's)

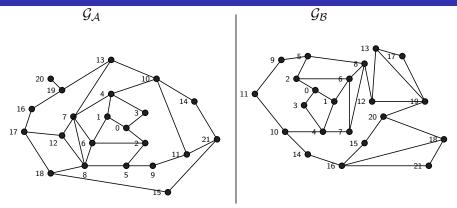
Let $d, r \in \mathbb{N}$ such that $d \ge 3^{r-1}$. Then, $\mathcal{A} \sim_d \mathcal{B} \Longrightarrow \mathcal{A} \equiv_r \mathcal{B}$.

Essentially, what Hanf's theorem states is that for sufficiently large radius d, local equivalence is the same as logical equivalence.

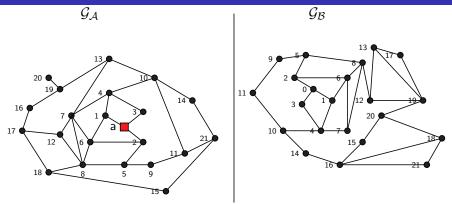
Proof sketch :-

- The duplicator's strategy in Round 1
- The duplicator's strategy in Round i
- Variations of hanf's theorem

The EF-Game Graphs

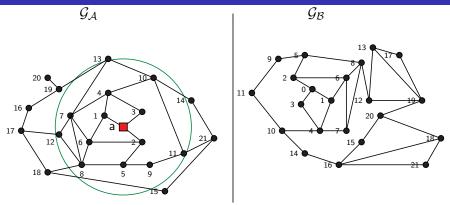


$\mathsf{Round}\ 1$



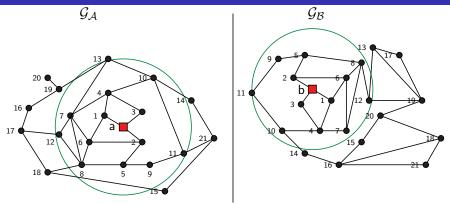
• The Spoiler chooses a vertex from any graph (here, A)

Round 1

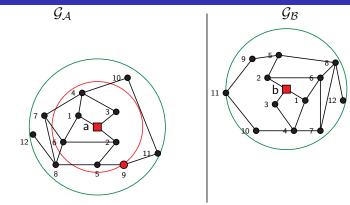


- The Spoiler chooses a vertex from any graph (here, *A*)
- The d-neighbourhood of a in \mathcal{A} , denoted $\mathsf{N}(\mathcal{A},a)\!\upharpoonright\!\!d$ is of one of the types $\{\mathsf{Type}_1,\,...\,\,\mathsf{Type}_n\}$

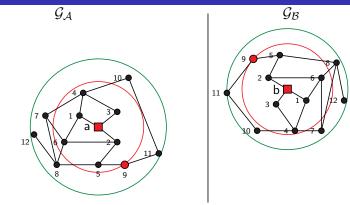
Round 1



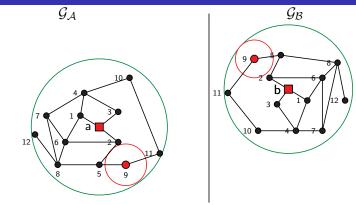
- The Spoiler chooses a vertex from any graph (here, A)
- The d-neighbourhood of a in \mathcal{A} , denoted $\mathsf{N}(\mathcal{A},a)\!\upharpoonright\!\!d$ is of one of the types $\{\mathsf{Type}_1,\,...\,\,\mathsf{Type}_n\}$
- The Duplicator picks an element from the other structure (here, $b\in \mathcal{B})$ such that $N(\mathcal{A},a)\!\upharpoonright\! d\cong N(\mathcal{B},b)\!\upharpoonright\! d$



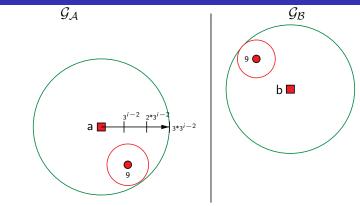
In Round i, the first case is when the Spoiler picks a vertex that is within 2*3ⁱ⁻² of any previously selected point (maybe more than one).



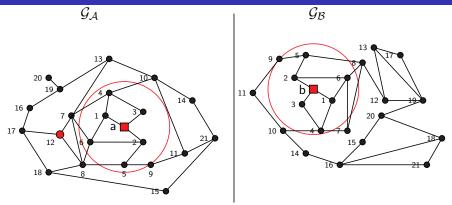
- In Round i, the first case is when the Spoiler picks a vertex that is within 2*3ⁱ⁻² of any previously selected point (maybe more than one).
- Then the Duplicator will use the isomorphism of the d-radius sphere around any one of the centres to obtain a similar vertex on the other graph.



• The reason why it works is because, as shown in the figure, in subsequent i-1 rounds the Spoiler will not be able to get out of the isomorphism of the d-sphere around the previously selected points.



- The reason why it works is because, as shown in the figure, in subsequent i-1 rounds the Spoiler will not be able to get out of the isomorphism of the d-sphere around the respective previously selected points.
- This is due to the fact that ∀ i ∈ N, 3ⁱ⁻² ≥ (i-1).



 Now, the other case is if the Spoiler picks a vertex that is outside 2*3ⁱ⁻² of all previously selected points.



- Now, the other case is if the Spoiler picks a vertex that is outside 2*3ⁱ⁻² of all previously selected points.
- Then, as in Round 1, the Duplicator will be able to pick a vertex b ∈ B such that N(A,a) |d ≃ N(B,b)|d. Also, this particular point b is not in the range of 2*3ⁱ⁻² distance of any other previously selected point in G_B.

Given d,t $\in \mathbb{N}$, we can define the concept of type signatures of radius d with threshold t such that the values (#Type₁,...,#Type_n) are counted only upto a threshold t and anything \geq t is considered ∞ . Two structures \mathcal{A} and \mathcal{B} , are said to be d-equivalent with threshold t if their type signatures with radius d are equal. It is denoted $\mathcal{A} \sim_{d,t} \mathcal{B}$.

Given d,t $\in \mathbb{N}$, we can define the concept of type signatures of radius d with threshold t such that the values (#Type₁,...,#Type_n) are counted only upto a threshold t and anything \geq t is considered ∞ . Two structures \mathcal{A} and \mathcal{B} , are said to be d-equivalent with threshold t if their type signatures with radius d are equal. It is denoted $\mathcal{A} \sim_{d,t} \mathcal{B}$.

Theorem

Given $d \in \mathbb{N}$ and two structures \mathcal{A} and \mathcal{B} , if $\mathcal{A} \sim_d \mathcal{B}$ then there exists a fixed $t \in \mathbb{N}$ such that $\mathcal{A} \sim_{d,t} \mathcal{B}$.

Given d,t $\in \mathbb{N}$, we can define the concept of type signatures of radius d with threshold t such that the values (#Type₁,...,#Type_n) are counted only upto a threshold t and anything \geq t is considered ∞ . Two structures \mathcal{A} and \mathcal{B} , are said to be d-equivalent with threshold t if their type signatures with radius d are equal. It is denoted $\mathcal{A} \sim_{d,t} \mathcal{B}$.

Theorem

Given $d \in \mathbb{N}$ and two structures \mathcal{A} and \mathcal{B} , if $\mathcal{A} \sim_d \mathcal{B}$ then there exists a fixed $t \in \mathbb{N}$ such that $\mathcal{A} \sim_{d,t} \mathcal{B}$.

Theorem (Hanf's theorem for EMSO)

• Let ϕ be an EMSO formula with n second-order quantifiers given by, $\phi = \exists X_1 \dots \exists X_n \psi(X_1, ..., X_n)$, where ψ is a pure first order sentence.

Given d,t $\in \mathbb{N}$, we can define the concept of type signatures of radius d with threshold t such that the values (#Type₁,...,#Type_n) are counted only upto a threshold t and anything \geq t is considered ∞ . Two structures \mathcal{A} and \mathcal{B} , are said to be d-equivalent with threshold t if their type signatures with radius d are equal. It is denoted $\mathcal{A} \sim_{d,t} \mathcal{B}$.

Theorem

Given $d \in \mathbb{N}$ and two structures \mathcal{A} and \mathcal{B} , if $\mathcal{A} \sim_d \mathcal{B}$ then there exists a fixed $t \in \mathbb{N}$ such that $\mathcal{A} \sim_{d,t} \mathcal{B}$.

Theorem (Hanf's theorem for EMSO)

- Let ϕ be an EMSO formula with n second-order quantifiers given by, $\phi = \exists X_1 \dots \exists X_n \psi(X_1, \dots, X_n)$, where ψ is a pure first order sentence.
- If we consider the extended models of A, A' = (A × 2^{0,1,...k}, R^A₁,...,R^A_m,c^A₁,...,c^A_s), then we can reuse Hanf's theorem as only the ψ part remains to be interpreted over these modified structures.

Definition (Pictures, Picture Languages)

- A picture, p, over an alphabet Σ is basically a function of the form $p:\ \{1,2,...,\ n\}\times\{1,2,...,m\}\to\Sigma,\ \text{for any }n,m\in\mathbb{N}$
- The set of all pictures (over Σ) is the set of all possible functions p for every n,m $\in \mathbb{N}$. It is denoted by Σ^{**}
- A picture language is a subset of Σ^{**}

Definition (Pictures, Picture Languages)

- A picture, p, over an alphabet Σ is basically a function of the form $p:\ \{1,2,...,\ n\}\times\{1,2,...,m\}\to\Sigma,\ \text{for any }n,m\in\mathbb{N}$
- The set of all pictures (over Σ) is the set of all possible functions p for every n,m $\in \mathbb{N}$. It is denoted by Σ^{**}
- A picture language is a subset of Σ^{**}

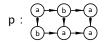
p :	а	b					а	а	а	а	а	а	а
	b	а					b	b	b	b	b	b	b
						r :	а	а	а	а	а	а	а
q :		а					b	b	b	b	b	b	b
	а	b	а				а	а	а	а	а	а	а

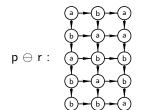
Definition (Pictures, Picture Languages)

- A picture, p, over an alphabet Σ is basically a function of the form $p:\;\{1,2,...,\,n\}\,\times\,\{1,2,...,m\}\,\to\,\Sigma,\;\text{for any }n,m\in\mathbb{N}$
- The set of all pictures (over Σ) is the set of all possible functions p for every n,m $\in \mathbb{N}$. It is denoted by Σ^{**}
- A picture language is a subset of Σ^{**}
- If p is a picture of size (m,n), then p̂ is the picture p surrounded by a special boundary symbol # ∉ Σ

								#	#	#	#	#	#	#	#	#	
								#	а	а	а	а	а	а	а	#	
		#	#	#	#			#	b	b	b	b	b	b	b	#	
	p :	#	а	b	#		î:	#	а	а	а	а	а	а	а	#	
		#	b	а	#												
		#	#	#	#			#	b	b	b	b	b	b	b	#	
								#	а	а	а	а	а	а	а	#	
								#	#	#	#	#	#	#	#	#	
Abdullah Abdul Khadir							Topics	in Lo	gic and	l Auto	mata 🛛	Theory					

Row Concatenation of 2 pictures

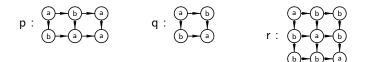




 $\begin{array}{l} \mathsf{p} \ominus \mathsf{q}: \ \mathsf{Undefined} \\ \mathsf{q} \ominus \mathsf{r}: \ \mathsf{Undefined} \end{array}$

(As the number of columns are incompatible)

Column Concatenation of 2 pictures

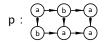


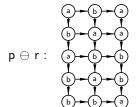
 $\begin{array}{l} p \oslash r: \mbox{ Undefined} \\ q \oslash r: \mbox{ Undefined} \end{array}$

 $\mathsf{p} \oslash \mathsf{q} \colon \begin{array}{c} \overset{(a)}{\overset{(a)}}}}{\overset{(a)}{\overset{(a)}}}}}}}}}}}}}}}}}}}}}}}}}}}}$

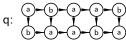
(As the number of rows are incompatible)

Row and Column Concatenation of 2 pictures





 $\mathsf{p}\oslash\mathsf{q}$:



Abdullah Abdul Khadir Topics in Logic and Automata Theory

Definition

Let L,L₁ and L₂ be 3 picture languages (subsets of Σ^{**})

Definition

- Let L,L₁ and L₂ be 3 picture languages (subsets of Σ^{**})
- Then, $L_1 \oslash L_2 = \{x \oslash y \mid\mid x \in L_1 \text{ and } y \in L_2\}$. Similarly for $L_1 \ominus L_2$.

Definition

- Let L,L₁ and L₂ be 3 picture languages (subsets of Σ^{**})
- Then, $L_1 \oslash L_2 = \{x \oslash y \mid\mid x \in L_1 \text{ and } y \in L_2\}$. Similarly for $L_1 \ominus L_2$.
- $L^{\otimes 1} = L$; $L^{\otimes n} = L^{\otimes (n-1)} \otimes L$. Similarly for $L^{\oplus n}$.

Definition

- Let L,L₁ and L₂ be 3 picture languages (subsets of Σ^{**})
- Then, $L_1 \oslash L_2 = \{x \oslash y \mid\mid x \in L_1 \text{ and } y \in L_2\}$. Similarly for $L_1 \ominus L_2$.
- $L^{\otimes 1} = L$; $L^{\otimes n} = L^{\otimes (n-1)} \otimes L$. Similarly for $L^{\oplus n}$.
- Column Kleene Closure of L, L^{*⊘} = ∪_iL^{⊘i}
- Row Kleene Closure of L, $L^{*\ominus} = \bigcup_i L^{\ominus i}$

Definition

- Let L,L₁ and L₂ be 3 picture languages (subsets of Σ^{**})
- Then, $L_1 \oslash L_2 = \{x \oslash y \mid\mid x \in L_1 \text{ and } y \in L_2\}$. Similarly for $L_1 \ominus L_2$.
- $L^{\otimes 1} = L$; $L^{\otimes n} = L^{\otimes (n-1)} \oslash L$. Similarly for $L^{\ominus n}$.
- Column Kleene Closure of L, L^{*⊘} = ∪_iL^{⊘i}
- Row Kleene Closure of L, $L^{*\ominus} = \bigcup_i L^{\ominus i}$

Definition (Projections)

• Let Σ_1 and Σ_2 be two finite alphabets such that $|\Sigma_1| \ge |\Sigma_2|$ and $\pi: \Sigma_1 \to \Sigma_2$ is a mapping.

Definition

- Let L,L₁ and L₂ be 3 picture languages (subsets of Σ^{**})
- Then, $L_1 \oslash L_2 = \{x \oslash y \mid\mid x \in L_1 \text{ and } y \in L_2\}$. Similarly for $L_1 \ominus L_2$.
- $L^{\otimes 1} = L$; $L^{\otimes n} = L^{\otimes (n-1)} \oslash L$. Similarly for $L^{\ominus n}$.
- Column Kleene Closure of L, L^{*⊘} = ∪_iL^{⊘i}
- Row Kleene Closure of L, $L^{*\ominus} = \bigcup_i L^{\ominus i}$

Definition (Projections)

- Let Σ_1 and Σ_2 be two finite alphabets such that $|\Sigma_1| \ge |\Sigma_2|$ and $\pi: \Sigma_1 \to \Sigma_2$ is a mapping.
- Then given $p \in \Sigma_1^{**}$, $\pi(p)$ is the picture $p' \in \Sigma_2^{**}$ such that $p'(i,j) = \pi(p(i,j)) \ \forall 1 \le i \le l_1(p), 1 \le j \le l_2(p)$

Definition

- Let L,L₁ and L₂ be 3 picture languages (subsets of Σ^{**})
- Then, $L_1 \oslash L_2 = \{x \oslash y \mid\mid x \in L_1 \text{ and } y \in L_2\}$. Similarly for $L_1 \ominus L_2$.
- $L^{\otimes 1} = L$; $L^{\otimes n} = L^{\otimes (n-1)} \oslash L$. Similarly for $L^{\ominus n}$.
- Column Kleene Closure of L, L^{*⊘} = ∪_iL^{⊘i}
- Row Kleene Closure of L, $L^{*\ominus} = \bigcup_i L^{\ominus i}$

Definition (Projections)

- Let Σ_1 and Σ_2 be two finite alphabets such that $|\Sigma_1| \ge |\Sigma_2|$ and $\pi: \Sigma_1 \to \Sigma_2$ is a mapping.
- Then given $p \in \Sigma_1^{**}$, $\pi(p)$ is the picture $p' \in \Sigma_2^{**}$ such that $p'(i,j) = \pi(p(i,j)) \ \forall 1 \le i \le l_1(p), 1 \le j \le l_2(p)$
- Similarly, given a picture language $L \subseteq \Sigma_1^{**}$, the projection of L by $\pi : \Sigma_1 \to \Sigma_2$ is defined as $\pi(L) = \{\pi(p) \mid p \in L\} \subseteq \Sigma_2^{**}$

Definition

- Let L,L₁ and L₂ be 3 picture languages (subsets of Σ^{**})
- Then, $L_1 \oslash L_2 = \{x \oslash y \mid\mid x \in L_1 \text{ and } y \in L_2\}$. Similarly for $L_1 \ominus L_2$.
- $L^{\otimes 1} = L$; $L^{\otimes n} = L^{\otimes (n-1)} \oslash L$. Similarly for $L^{\ominus n}$.
- Column Kleene Closure of L, L^{*⊘} = ∪_iL^{⊘i}
- Row Kleene Closure of L, $L^{*\ominus} = \bigcup_i L^{\ominus i}$

Definition (Projections)

- Let Σ_1 and Σ_2 be two finite alphabets such that $|\Sigma_1| \ge |\Sigma_2|$ and $\pi: \Sigma_1 \to \Sigma_2$ is a mapping.
- Then given $p \in \Sigma_1^{**}$, $\pi(p)$ is the picture $p' \in \Sigma_2^{**}$ such that $p'(i,j) = \pi(p(i,j)) \ \forall 1 \le i \le l_1(p), 1 \le j \le l_2(p)$
- Similarly, given a picture language $L \subseteq \Sigma_1^{**}$, the projection of L by $\pi : \Sigma_1 \to \Sigma_2$ is defined as $\pi(L) = \{\pi(p) \mid p \in L\} \subseteq \Sigma_2^{**}$
- Given a picture p of size (m,n), if h ≤ m, k ≤ n, we denote by T_{h,k}(p) the set of all subpictures (contiguous rectangular subblocks) of p of size (h,k).

Definition

Definition

A picture language $L \subseteq \Gamma^{**}$ is local if there exists a set Δ of pictures (or "tiles") of size **(2,2)** over $\Gamma \cup \{\#\}$, such that $L = \{p \in \Gamma^{**} \mid T_{2,2}(\widehat{p}) \subseteq \Delta\}$

If L = {p∈ Γ^{**} | T_{2,2}(p̂) ⊆ Δ}, then we call Δ a local representation by tiles for the language L.

Definition

- If L = {p∈ Γ^{**} | T_{2,2}(p̂) ⊆ Δ}, then we call Δ a local representation by tiles for the language L.
- We denote by LOC the family of local picture languages.

Definition

- If L = {p∈ Γ^{**} | T_{2,2}(p̂) ⊆ Δ}, then we call Δ a local representation by tiles for the language L.
- We denote by LOC the family of local picture languages.
- An example of a picture language in LOC, consider $L_0 \subseteq \{0,1\}^{**}$ of square pictures (of size at least (2,2)) in which all nondiagonal positions carry symbol 0 whereas the diagonal positions carry symbol 1.

Definition

- If L = {p∈ Γ^{**} | T_{2,2}(p̂) ⊆ Δ}, then we call Δ a local representation by tiles for the language L.
- We denote by LOC the family of local picture languages.
- An example of a picture language in LOC, consider $L_0 \subseteq \{0,1\}^{**}$ of square pictures (of size at least (2,2)) in which all nondiagonal positions carry symbol 0 whereas the diagonal positions carry symbol 1.
- An appropriate set of tiles for L₀ consists of the 16 different (2,2)-subblocks of the picture on the right.

Definition

- If L = {p∈ Γ^{**} | T_{2,2}(p̂) ⊆ Δ}, then we call Δ a local representation by tiles for the language L.
- We denote by LOC the family of local picture languages.
- An example of a picture language in LOC, consider $L_0 \subseteq \{0,1\}^{**}$ of square pictures (of size at least (2,2)) in which all nondiagonal positions carry symbol 0 whereas the diagonal positions carry symbol 1.
- An appropriate set of tiles for L₀ consists of the 16 different (2,2)-subblocks of the picture on the right.

#	#	#	#	#	#
#	1	0	0	0	#
#	0	1	0	0	#
#	0	0	1	0	#
#	0	0	0	1	#
#	#	#	#	#	#

A picture language $L \subseteq \Sigma^{**}$ is recognizable if there exists a local language L' over an alphabet Γ and a mapping $\pi : \Gamma \to \Sigma$ such that $L=\pi(L')$

• As an example of such a language is the set of squares over $\Sigma = \{a\}$ and a suitable local language would be L₀ considered previously and the mapping, $\pi : \{0, 1\} \rightarrow \{a\}$

A picture language $L \subseteq \Sigma^{**}$ is recognizable if there exists a local language L' over an alphabet Γ and a mapping $\pi : \Gamma \to \Sigma$ such that $L=\pi(L')$

- As an example of such a language is the set of squares over $\Sigma = \{a\}$ and a suitable local language would be L₀ considered previously and the mapping, $\pi : \{0, 1\} \rightarrow \{a\}$
- We consider only Γ = Σ× Q and π : Σ× Q → Σ as the alphabet and mapping respectively for the local language L' of L.

A picture language $L \subseteq \Sigma^{**}$ is recognizable if there exists a local language L' over an alphabet Γ and a mapping $\pi : \Gamma \to \Sigma$ such that $L=\pi(L')$

- As an example of such a language is the set of squares over $\Sigma = \{a\}$ and a suitable local language would be L₀ considered previously and the mapping, $\pi : \{0, 1\} \rightarrow \{a\}$
- We consider only Γ = Σ× Q and π : Σ× Q → Σ as the alphabet and mapping respectively for the local language L' of L.
- It is sufficient to consider Local languages of the type above as every local language L' given in the definition, with an arbitrary alphabet may be modified into a local language with the alphabet, $\Gamma = \Sigma \times Q$.

A picture language $L \subseteq \Sigma^{**}$ is recognizable if there exists a local language L' over an alphabet Γ and a mapping $\pi : \Gamma \to \Sigma$ such that $L=\pi(L')$

- As an example of such a language is the set of squares over $\Sigma = \{a\}$ and a suitable local language would be L₀ considered previously and the mapping, $\pi : \{0, 1\} \rightarrow \{a\}$
- We consider only Γ = Σ× Q and π : Σ× Q → Σ as the alphabet and mapping respectively for the local language L' of L.
- It is sufficient to consider Local languages of the type above as every local language L' given in the definition, with an arbitrary alphabet may be modified into a local language with the alphabet, $\Gamma = \Sigma \times Q$.
- Under the above considerations, the tiling System is denoted by the triple $(\Sigma, Q, \Delta).$

• Row and column concatenation.

- Row and column concatenation.
- Row and column closure.

- Row and column concatenation.
- Row and column closure.
- Projections of picture languages.

- Row and column concatenation.
- Row and column closure.
- Projections of picture languages.
- Local Picture languages (LOC).

- Row and column concatenation.
- Row and column closure.
- Projections of picture languages.
- Local Picture languages (LOC).
- Recognizable picture languages (REC).

- Row and column concatenation.
- Row and column closure.
- Projections of picture languages.
- Local Picture languages (LOC).
- Recognizable picture languages (REC).
- REC is closed with respect to
 - projection,

- Row and column concatenation.
- Row and column closure.
- Projections of picture languages.
- Local Picture languages (LOC).
- Recognizable picture languages (REC).
- REC is closed with respect to
 - projection,
 - row and column concatenation,

- Row and column concatenation.
- Row and column closure.
- Projections of picture languages.
- Local Picture languages (LOC).
- Recognizable picture languages (REC).
- REC is closed with respect to
 - projection,
 - row and column concatenation,
 - row and column closure,

- Row and column concatenation.
- Row and column closure.
- Projections of picture languages.
- Local Picture languages (LOC).
- Recognizable picture languages (REC).
- REC is closed with respect to
 - projection,
 - row and column concatenation,
 - row and column closure,
 - Boolean union,

- Row and column concatenation.
- Row and column closure.
- Projections of picture languages.
- Local Picture languages (LOC).
- Recognizable picture languages (REC).
- REC is closed with respect to
 - projection,
 - row and column concatenation,
 - row and column closure,
 - Boolean union,
 - Boolean intersection.

- Row and column concatenation.
- Row and column closure.
- Projections of picture languages.
- Local Picture languages (LOC).
- Recognizable picture languages (REC).
- REC is closed with respect to
 - projection,
 - row and column concatenation,
 - row and column closure,
 - Boolean union,
 - Boolean intersection.
- REC is not closed with respect to Boolean complementation.

Automata Theoretic Approach to Picture Languages

- Row and column concatenation.
- Row and column closure.
- Projections of picture languages.
- Local Picture languages (LOC).
- Recognizable picture languages (REC).
- REC is closed with respect to
 - projection,
 - row and column concatenation,
 - row and column closure,
 - Boolean union,
 - Boolean intersection.
- REC is not closed with respect to Boolean complementation. **Proof idea :**

Automata Theoretic Approach to Picture Languages

- Row and column concatenation.
- Row and column closure.
- Projections of picture languages.
- Local Picture languages (LOC).
- Recognizable picture languages (REC).
- REC is closed with respect to
 - projection,
 - row and column concatenation,
 - row and column closure,
 - Boolean union,
 - Boolean intersection.
- REC is not closed with respect to Boolean complementation. **Proof idea :**
 - Let Σ be an alphabet and let L be a language over Σ given by $L{=}\{p{\in} \Sigma^{**} \mid p{=}s{\ominus}s \text{ where s is a square }\}$

Automata Theoretic Approach to Picture Languages

- Row and column concatenation.
- Row and column closure.
- Projections of picture languages.
- Local Picture languages (LOC).
- Recognizable picture languages (REC).
- REC is closed with respect to
 - projection,
 - row and column concatenation,
 - row and column closure,
 - Boolean union,
 - Boolean intersection.
- REC is not closed with respect to Boolean complementation. **Proof idea :**
 - Let Σ be an alphabet and let L be a language over Σ given by $L{=}\{p{\in}\, \Sigma^{**} \mid p{=}s{\ominus}s \text{ where s is a square }\}$
 - The claim is that $L \notin \text{REC}$ while $\overline{L} \in \text{REC}$.

A few notations and terminologies :

• Given a picture $p \in \Sigma^{**}$, we can identify the structure $\underline{p} = (dom(p), S_1, S_2, (P_a)_{a \in \Sigma}),$

- Given a picture $p \in \Sigma^{**}$, we can identify the structure $\underline{p} = (dom(p), S_1, S_2, (P_a)_{a \in \Sigma}),$
- x,y,z,x₁,x₂, ..., are first-order variables for points of dom(p) while X,Y,Z,X₁,X₂, ..., are MSO variables denoting sets of positions.

- Given a picture $p \in \Sigma^{**}$, we can identify the structure $\underline{p} = (dom(p), S_1, S_2, (P_a)_{a \in \Sigma}),$
- x,y,z,x₁,x₂, ..., are first-order variables for points of dom(p) while X,Y,Z,X₁,X₂, ..., are MSO variables denoting sets of positions.
- Atomic formulas are of the form x=y, xS_iy , X(x) and $P_a(x)$

- Given a picture $p \in \Sigma^{**}$, we can identify the structure $\underline{p} = (dom(p), S_1, S_2, (P_a)_{a \in \Sigma}),$
- x,y,z,x₁,x₂, ..., are first-order variables for points of dom(p) while X,Y,Z,X₁,X₂, ..., are MSO variables denoting sets of positions.
- Atomic formulas are of the form x=y, xS_iy, X(x) and P_a(x) interpreted as equality between x and y, (x,y) ∈ S_i, x∈ X,x∈ P_a respectively.

- Given a picture $p \in \Sigma^{**}$, we can identify the structure $\underline{p} = (dom(p), S_1, S_2, (P_a)_{a \in \Sigma}),$
- x,y,z,x₁,x₂, ..., are first-order variables for points of dom(p) while X,Y,Z,X₁,X₂, ..., are MSO variables denoting sets of positions.
- Atomic formulas are of the form x=y, xS_iy, X(x) and P_a(x) interpreted as equality between x and y, (x,y) ∈ S_i, x∈ X,x∈ P_a respectively.
- Formulas are built up from atomic formulas by means of the Boolean connectives and the quantifiers ∃ and ∀ applicable to first-order as well as second-order variables.

- Given a picture $p \in \Sigma^{**}$, we can identify the structure $\underline{p} = (dom(p), S_1, S_2, (P_a)_{a \in \Sigma}),$
- x,y,z,x₁,x₂, ..., are first-order variables for points of dom(p) while X,Y,Z,X₁,X₂, ..., are MSO variables denoting sets of positions.
- Atomic formulas are of the form x=y, xS_iy, X(x) and P_a(x) interpreted as equality between x and y, (x,y) ∈ S_i, x∈ X,x∈ P_a respectively.
- Formulas are built up from atomic formulas by means of the Boolean connectives and the quantifiers ∃ and ∀ applicable to first-order as well as second-order variables.
- If φ(X₁, ..., X_n) is a formula with at most X₁, ..., X_n occurring free in φ, p is a picture, and Q₁, ...,Q_n are subsets of dom(p), we write

- Given a picture $p \in \Sigma^{**}$, we can identify the structure $\underline{p} = (dom(p), S_1, S_2, (P_a)_{a \in \Sigma}),$
- x,y,z,x₁,x₂, ..., are first-order variables for points of dom(p) while X,Y,Z,X₁,X₂, ..., are MSO variables denoting sets of positions.
- Atomic formulas are of the form x=y, xS_iy, X(x) and P_a(x) interpreted as equality between x and y, (x,y) ∈ S_i, x∈ X,x∈ P_a respectively.
- Formulas are built up from atomic formulas by means of the Boolean connectives and the quantifiers ∃ and ∀ applicable to first-order as well as second-order variables.
- If φ(X₁, ..., X_n) is a formula with at most X₁, ..., X_n occurring free in φ, p is a picture, and Q₁, ...,Q_n are subsets of dom(p), we write

$$(\underline{(p)}, Q_1, ..., Q_n) \models \phi(X_1, ..., X_n)$$

A few notations and terminologies :

- Given a picture $p \in \Sigma^{**}$, we can identify the structure $\underline{p} = (dom(p), S_1, S_2, (P_a)_{a \in \Sigma}),$
- x,y,z,x₁,x₂, ..., are first-order variables for points of dom(p) while X,Y,Z,X₁,X₂, ..., are MSO variables denoting sets of positions.
- Atomic formulas are of the form x=y, xS_iy, X(x) and P_a(x) interpreted as equality between x and y, (x,y) ∈ S_i, x∈ X,x∈ P_a respectively.
- Formulas are built up from atomic formulas by means of the Boolean connectives and the quantifiers ∃ and ∀ applicable to first-order as well as second-order variables.
- If φ(X₁, ..., X_n) is a formula with at most X₁, ..., X_n occurring free in φ, p is a picture, and Q₁, ...,Q_n are subsets of dom(p), we write

$$((p), Q_1, ..., Q_n) \models \phi(X_1, ..., X_n)$$

if p satisfies ϕ under the above mentioned interpretation where Q_i is taken as interpretation of X_i .

A few notations and terminologies :

- Given a picture $p \in \Sigma^{**}$, we can identify the structure $\underline{p} = (dom(p), S_1, S_2, (P_a)_{a \in \Sigma}),$
- x,y,z,x₁,x₂, ..., are first-order variables for points of dom(p) while X,Y,Z,X₁,X₂, ..., are MSO variables denoting sets of positions.
- Atomic formulas are of the form x=y, xS_iy, X(x) and P_a(x) interpreted as equality between x and y, (x,y) ∈ S_i, x∈ X,x∈ P_a respectively.
- Formulas are built up from atomic formulas by means of the Boolean connectives and the quantifiers ∃ and ∀ applicable to first-order as well as second-order variables.
- If φ(X₁, ..., X_n) is a formula with at most X₁, ..., X_n occurring free in φ, p is a picture, and Q₁, ...,Q_n are subsets of dom(p), we write

$$((p), Q_1, ..., Q_n) \models \phi(X_1, ..., X_n)$$

if p satisfies ϕ under the above mentioned interpretation where Q_i is taken as interpretation of X_i .

• If
$$\phi$$
 is a sentence we write $p \models \phi$.

Definition (MSO-definable)

A picture language L is monadic second-order definable (L \in MSO), if there is a monadic second-order sentence ϕ with L = L(ϕ).

Definition (MSO-definable)

A picture language L is monadic second-order definable (L \in MSO), if there is a monadic second-order sentence ϕ with L = L(ϕ).

Definition (FO-definable)

A picture language L is first-order definable (L \in FO), if there is a sentence ϕ conatining only first-order quantifiers such that L = L(ϕ).

Definition (MSO-definable)

A picture language L is monadic second-order definable (L \in MSO), if there is a monadic second-order sentence ϕ with L = L(ϕ).

Definition (FO-definable)

A picture language L is first-order definable (L \in FO), if there is a sentence ϕ conatining only first-order quantifiers such that L = L(ϕ).

Definition (EMSO-definable)

Finally, A picture language L is existential monadic second-order definable (L \in EMSO), if there is a sentence of the form

 $\phi = \exists X_1 \dots \exists X_n \psi(X_1, ..., X_n)$ where ψ contains only first-order

quantifiers such that $L = L(\phi)$.

Now, the main theorem concerning picture languages

Theorem

For any picture language L:L \in REC iff L \in EMSO.

Now, the main theorem concerning picture languages

Theorem

For any picture language L:L \in REC iff L \in EMSO.

Proof Idea :

 The direction (REC ⇒ EMSO) is the easy one, and all we have to do is prove the following lemma

Now, the main theorem concerning picture languages

Theorem

For any picture language L:L \in REC iff L \in EMSO.

Proof Idea :

 The direction (REC ⇒ EMSO) is the easy one, and all we have to do is prove the following lemma

Definition

 $p \in L$ iff \exists picture $c \in Q^{**}$ of the same size as p such that $\widehat{p \times c}$ is tilable by Δ

Now, the main theorem concerning picture languages

Theorem

For any picture language L:L \in REC iff L \in EMSO.

Proof Idea :

 The direction (REC ⇒ EMSO) is the easy one, and all we have to do is prove the following lemma

Definition

 $p \in L$ iff \exists picture $c \in Q^{**}$ of the same size as p such that $\widehat{p \times c}$ is tilable by Δ

• We capture the tiling of the picture $\widehat{p \times c}$ by the EMSO formula $\phi = \exists X_1 ... \exists X_k (\phi_{partition} \land \forall x_1 ... x_4 (\chi_m \land \chi_t \land \chi_b \land \chi_l \land \chi_r \land \chi_{tl} \land \chi_{tr} \land \chi_{bl} \land \chi_{br}))$

Now, the main theorem concerning picture languages

Theorem

For any picture language L:L \in REC iff L \in EMSO.

Proof Idea :

 The direction (REC ⇒ EMSO) is the easy one, and all we have to do is prove the following lemma

Definition

 $p \in L$ iff \exists picture $c \in Q^{**}$ of the same size as p such that $\widehat{p \times c}$ is tilable by Δ

- We capture the tiling of the picture $p \times c$ by the EMSO formula $\phi = \exists X_1 ... \exists X_k (\phi_{partition} \land \forall x_1 ... x_4)$ $(\chi_m \land \chi_t \land \chi_b \land \chi_l \land \chi_r \land \chi_{tl} \land \chi_{tr} \land \chi_{bl} \land \chi_{br}))$
- $\phi_{\text{partition}}(X_1,...,X_k)$: $\forall z(X_1(z) \lor ... \lor X_k(z)) \land \bigwedge_{i \neq j} \neg (X_i(z) \land X_j(z)).$

Now, the main theorem concerning picture languages

Theorem

For any picture language L:L \in REC iff L \in EMSO.

Proof Idea :

 The direction (REC ⇒ EMSO) is the easy one, and all we have to do is prove the following lemma

Definition

 $p \in L$ iff \exists picture $c \in Q^{**}$ of the same size as p such that $\widehat{p \times c}$ is tilable by Δ

- We capture the tiling of the picture $p \times c$ by the EMSO formula $\phi = \exists X_1 ... \exists X_k (\phi_{partition} \land \forall x_1 ... x_4)$ $(\chi_m \land \chi_t \land \chi_b \land \chi_l \land \chi_r \land \chi_{tl} \land \chi_{tr} \land \chi_{bl} \land \chi_{br}))$
- $\phi_{\text{partition}}(X_1,...,X_k)$: $\forall z(X_1(z) \lor ... \lor X_k(z)) \land \bigwedge_{i \neq j} \neg (X_i(z) \land X_j(z)).$
- While $\chi_m, \chi_t, \chi_b, \chi_l, \chi_r, \chi_{tl}, \chi_{tr}, \chi_{bl}, \chi_{br}$ refer to the formulae describing (2,2) local neighbourhoods.

- Given two pictures, p_1, p_2 , $d, t \in \mathbb{N}$, if $T_{(i,j)}(p_1) | (d,t) = T_{(i,j)}(p_2) | (d,t)$ $\forall i, j \leq d$, then we say that p_1 is d, t-equivalent to p_2 denoted $p_1 \sim_{d,t} p_2$.
- For pictures, we consider only rectangles and not spheres.

- Given two pictures, p_1, p_2 , $d, t \in \mathbb{N}$, if $T_{(i,j)}(p_1) \upharpoonright (d,t) = T_{(i,j)}(p_2) \upharpoonright (d,t)$ $\forall i,j \leq d$, then we say that p_1 is d,t-equivalent to p_2 denoted $p_1 \sim_{d,t} p_2$.
- For pictures, we consider only rectangles and not spheres.
- For the same parameters above, if $T_{(i,j)}(p_1) \upharpoonright (d,t) = T_{(i,j)}(p_2) \upharpoonright (d,t)$ $\forall i,j = d$, then we say that p_1 is exactly d,t-equivalent to p_2 denoted $p_1 \simeq_{d,t} p_2$.

- Given two pictures, p_1, p_2 , $d, t \in \mathbb{N}$, if $T_{(i,j)}(p_1) \upharpoonright (d,t) = T_{(i,j)}(p_2) \upharpoonright (d,t)$ $\forall i, j \leq d$, then we say that p_1 is d, t-equivalent to p_2 denoted $p_1 \sim_{d,t} p_2$.
- For pictures, we consider only rectangles and not spheres.
- For the same parameters above, if $T_{(i,j)}(p_1) \upharpoonright (d,t) = T_{(i,j)}(p_2) \upharpoonright (d,t)$ $\forall i,j = d$, then we say that p_1 is exactly d,t-equivalent to p_2 denoted $p_1 \simeq_{d,t} p_2$.
- A picture language,L, is called **locally d-testable with threshold t** if L is a union of $\sim_{d,t}$ -equivalence classes

- Given two pictures, p_1, p_2 , $d, t \in \mathbb{N}$, if $T_{(i,j)}(p_1) \upharpoonright (d,t) = T_{(i,j)}(p_2) \upharpoonright (d,t)$ $\forall i,j \leq d$, then we say that p_1 is d,t-equivalent to p_2 denoted $p_1 \sim_{d,t} p_2$.
- For pictures, we consider only rectangles and not spheres.
- For the same parameters above, if $T_{(i,j)}(p_1) \upharpoonright (d,t) = T_{(i,j)}(p_2) \upharpoonright (d,t)$ $\forall i,j = d$, then we say that p_1 is exactly d,t-equivalent to p_2 denoted $p_1 \simeq_{d,t} p_2$.
- A picture language,L, is called **locally d-testable with threshold t** if L is a union of $\sim_{d,t}$ -equivalence classes
- If it holds for some t, we say that L is locally threshold d-testable.

- Given two pictures, p_1, p_2 , $d, t \in \mathbb{N}$, if $T_{(i,j)}(p_1) \upharpoonright (d,t) = T_{(i,j)}(p_2) \upharpoonright (d,t)$ $\forall i,j \leq d$, then we say that p_1 is d,t-equivalent to p_2 denoted $p_1 \sim_{d,t} p_2$.
- For pictures, we consider only rectangles and not spheres.
- For the same parameters above, if $T_{(i,j)}(p_1) \upharpoonright (d,t) = T_{(i,j)}(p_2) \upharpoonright (d,t)$ $\forall i,j = d$, then we say that p_1 is exactly d,t-equivalent to p_2 denoted $p_1 \simeq_{d,t} p_2$.
- A picture language,L, is called **locally d-testable with threshold t** if L is a union of $\sim_{d,t}$ -equivalence classes
- If it holds for some t, we say that L is locally threshold d-testable.
- If it holds for some d and t then we say L is **locally threshold testable**.

- Given two pictures, p_1, p_2 , $d, t \in \mathbb{N}$, if $T_{(i,j)}(p_1) \upharpoonright (d,t) = T_{(i,j)}(p_2) \upharpoonright (d,t)$ $\forall i,j \leq d$, then we say that p_1 is d,t-equivalent to p_2 denoted $p_1 \sim_{d,t} p_2$.
- For pictures, we consider only rectangles and not spheres.
- For the same parameters above, if $T_{(i,j)}(p_1) \upharpoonright (d,t) = T_{(i,j)}(p_2) \upharpoonright (d,t)$ $\forall i,j = d$, then we say that p_1 is exactly d,t-equivalent to p_2 denoted $p_1 \simeq_{d,t} p_2$.
- A picture language,L, is called **locally d-testable with threshold t** if L is a union of $\sim_{d,t}$ -equivalence classes
- If it holds for some t, we say that L is locally threshold d-testable.
- If it holds for some d and t then we say L is **locally threshold testable**.
- Finally, if L is a union of ≃_{d,t}-classes for some t, L is called locally strictly threshold d-testable.

$\mathsf{EMSO} \Longrightarrow \mathsf{REC}$

Theorem (Theorem 1)

A picture language is first-order definable iff it is locally threshold testable.

$\mathsf{EMSO} \Longrightarrow \mathsf{REC}$

Theorem (Theorem 1)

A picture language is first-order definable iff it is locally threshold testable.

Theorem (Theorem 2)

Using theorem 1, we claim that if $L \in EMSO$ then L is a projection of a locally threshold testable picture language.

Theorem (Theorem 1)

A picture language is first-order definable iff it is locally threshold testable.

Theorem (Theorem 2)

Using theorem 1, we claim that if $L \in EMSO$ then L is a projection of a locally threshold testable picture language.

Thus, Theorem 1 \implies Theorem 2 \implies (EMSO \implies REC)

We only need to prove Theorem 1 now.

Theorem (Theorem 1)

A picture language is first-order definable iff it is locally threshold testable.

Theorem (Theorem 2)

Using theorem 1, we claim that if $L \in EMSO$ then L is a projection of a locally threshold testable picture language.

Thus, Theorem 1 \implies Theorem 2 \implies (EMSO \implies REC)

We only need to prove Theorem 1 now.

Proof sketch of Theorem 1 :-

 The proof for the direction ⇐ is by an adaptation of Hanf's theorem to pictures. We can use the bound as d=2*3ⁿ+1 and t=n*3²ⁿ for n-equivalence.

Theorem (Theorem 1)

A picture language is first-order definable iff it is locally threshold testable.

Theorem (Theorem 2)

Using theorem 1, we claim that if $L \in EMSO$ then L is a projection of a locally threshold testable picture language.

Thus, Theorem 1 \implies Theorem 2 \implies (EMSO \implies REC)

We only need to prove Theorem 1 now.

Proof sketch of Theorem 1 :-

- The proof for the direction ⇐ is by an adaptation of Hanf's theorem to pictures. We can use the bound as d=2*3ⁿ+1 and t=n*3²ⁿ for n-equivalence.
- So that completes the proof for \Leftarrow of theorem 1 and we only need to prove the reverse direction.

First-order definable \implies Locally threshold testable

Proof Sketch :-

Theorem

Each locally threshold d-testable language L can be decomposed into $L_0 \cup L_1 \cup \dots \cup L_{d-2}$ where $L_i \subseteq \Sigma_i^{**}$ ($0 \le i \le d-2$) is locally strictly threshold (*i*+2)-testable.

First-order definable \implies Locally threshold testable

Proof Sketch :-

Theorem

Each locally threshold d-testable language L can be decomposed into $L_0 \cup L_1 \cup \dots \cup L_{d-2}$ where $L_i \subseteq \Sigma_i^{**}$ ($0 \le i \le d-2$) is locally strictly threshold (i+2)-testable.

Definition

Let d≥2 be a positive integer. A picture language L⊆ Σ_{d-2}^{**} is d-local if there exists a set $\Delta_{(d)}$ of pictures of size (d,d) (or "d-tiles") over $\Sigma \cup \{\#\}$, such that L={p∈ $\Sigma^{**} \mid T_{d,d}(\hat{p}) \subseteq \Delta^{(d)}$ }

First-order definable \implies Locally threshold testable

Proof Sketch :-

Theorem

Each locally threshold d-testable language L can be decomposed into $L_0 \cup L_1 \cup \dots \cup L_{d-2}$ where $L_i \subseteq \Sigma_i^{**}$ ($0 \le i \le d-2$) is locally strictly threshold (i+2)-testable.

Definition

Let d≥2 be a positive integer. A picture language L⊆ $\Sigma_{d=2}^{**}$ is d-local if there exists a set $\Delta_{(d)}$ of pictures of size (d,d) (or "d-tiles") over $\Sigma \cup \{\#\}$, such that L={p∈ $\Sigma^{**} \mid T_{d,d}(\widehat{p}) \subseteq \Delta^{(d)}$ }

Theorem

Let $d \ge 3$ be a positive integer. A locally strictly threshold d-testable picture language $L \subseteq \sum_{d=2}^{\infty}$ is the projection of a d-local language.

First-order definable \implies Locally threshold testable

Proof Sketch :-

Theorem

Each locally threshold d-testable language L can be decomposed into $L_0 \cup L_1 \cup \dots \cup L_{d-2}$ where $L_i \subseteq \Sigma_i^{**}$ ($0 \le i \le d-2$) is locally strictly threshold (i+2)-testable.

Definition

Let d≥2 be a positive integer. A picture language L⊆ $\Sigma_{d=2}^{**}$ is d-local if there exists a set $\Delta_{(d)}$ of pictures of size (d,d) (or "d-tiles") over $\Sigma \cup \{\#\}$, such that L={p∈ $\Sigma^{**} \mid T_{d,d}(\widehat{p}) \subseteq \Delta^{(d)}$ }

Theorem

Let $d \ge 3$ be a positive integer. A locally strictly threshold d-testable picture language $L \subseteq \sum_{d=2}^{\infty}$ is the projection of a d-local language.

Theorem

A d-local picture language is a projection of a local language.

Alternation hierarchy of MSO over grids and graphs

Alternation hierarchy of MSO over grids and graphs

- The signature of grids is given by $\tau_{Grid} = ([m,n],S_1^{m,n},S_2^{m,n})$ where $[m,n] = [m] \times [n]$
- The signature of t-bit grids for some $t \in \mathbb{N}$ is given by $\tau_{t-Grid} = ([m,n],S_1^{m,n},S_2^{m,n},X_1,...,X_t)$

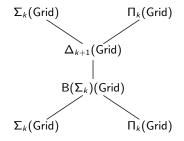
Alternation hierarchy of MSO over grids and graphs

- The signature of grids is given by $\tau_{Grid} = ([m,n],S_1^{m,n},S_2^{m,n})$ where $[m,n] = [m] \times [n]$
- The signature of t-bit grids for some $t \in \mathbb{N}$ is given by $\tau_{t-Grid} = ([m,n], S_1^{m,n}, S_2^{m,n}, X_1, ..., X_t)$

Theorem

$$\forall \ k \geq 1, \ B(\Sigma_k)(Grids) \subseteq \Delta_{k+1}(Grids)$$

The inclusion results are as shown the diagram in the right with undirected edges indicating strict inclusion.



The basis of the theorem is definability results for sets of grids.

• For a function $f:\mathbb{N}\to\mathbb{N}$ we denote by L_f the set of grids whose size is (m,f(m)) for $m\geq 1.$

The basis of the theorem is definability results for sets of grids.

- For a function $f:\mathbb{N}\to\mathbb{N}$ we denote by L_f the set of grids whose size is (m,f(m)) for $m\geq 1.$
- A formula φ over τ_{Grid} defines the function f: N → N iff Mod_{Grid}(φ) = L_f.

The basis of the theorem is definability results for sets of grids.

- For a function $f:\mathbb{N}\to\mathbb{N}$ we denote by L_f the set of grids whose size is (m,f(m)) for $m\geq 1.$
- A formula φ over τ_{Grid} defines the function f: N → N iff Mod_{Grid}(φ) = L_f.
- A function is at most k-fold exponential if f(m) is s_k(O(m)), where s₀(m) = m and s_{k+1}(m) = 2^{s_k(m)}.

The basis of the theorem is definability results for sets of grids.

- For a function $f:\mathbb{N}\to\mathbb{N}$ we denote by L_f the set of grids whose size is (m,f(m)) for $m\geq 1.$
- A formula φ over τ_{Grid} defines the function f: N → N iff Mod_{Grid}(φ) = L_f.
- A function is at most k-fold exponential if f(m) is s_k(O(m)), where s₀(m) = m and s_{k+1}(m) = 2^{s_k(m)}.

Theorem

Every $B(\Sigma_k)$ -definable function is at most k-fold exponential.

The basis of the theorem is definability results for sets of grids.

- For a function $f:\mathbb{N}\to\mathbb{N}$ we denote by L_f the set of grids whose size is (m,f(m)) for $m\geq 1.$
- A formula φ over τ_{Grid} defines the function f: N → N iff Mod_{Grid}(φ) = L_f.
- A function is at most k-fold exponential if f(m) is s_k(O(m)), where s₀(m) = m and s_{k+1}(m) = 2^{s_k(m)}.

Theorem

Every $B(\Sigma_k)$ -definable function is at most k-fold exponential.

Theorem

Let $f_1(m) = 2^m$, $f_{k+1}(m) = f_k(m)2^{f_k(m)}$ for $m, k \ge 1$. $\forall k \ge 1$, the function f_k is definable in Σ_k and Π_k over τ_{Grid}

Proof Sketch:

• For a picture language L over alphabet Γ and an integer $m \ge 1$, we denote by L(m) the word language L restricted to $\Gamma^{m,1}$.

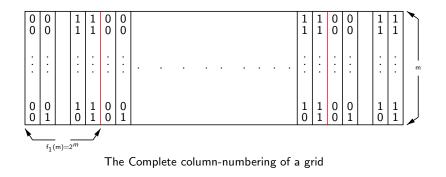
- For a picture language L over alphabet Γ and an integer m≥ 1, we denote by L(m) the word language L restricted to Γ^{m,1}.
- $\forall t \ge 0$ and for every $\phi \in \Sigma_1$ with free variables among X_1, \ldots, X_t $\exists c \ge 1$ such that for all $m \ge 1$, there is an NFA with 2^{cm} states that recognises the word language $Mod_t(\phi)(m)$ over $(\{0,1\}^t)^{m,1}$.

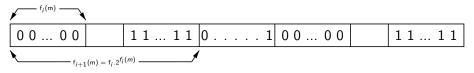
- For a picture language L over alphabet Γ and an integer m≥ 1, we denote by L(m) the word language L restricted to Γ^{m,1}.
- $\forall t \ge 0$ and for every $\phi \in \Sigma_1$ with free variables among $X_1, \ldots, X_t \exists c \ge 1$ such that for all $m \ge 1$, there is an NFA with 2^{cm} states that recognises the word language $Mod_t(\phi)(m)$ over $(\{0,1\}^t)^{m,1}$.
- $\forall k \geq 1$ and for every $\phi \in \Sigma_k$ with free variables among X_1, \dots, X_t $\exists c \geq 1$ such that for all $m \geq 1$, there is an NFA with $s_k(cm)$ states that recognises the word language $Mod_t(\phi)(m)$ over $(\{0,1\}^t)^{m,1}$.

- For a picture language L over alphabet Γ and an integer m≥ 1, we denote by L(m) the word language L restricted to Γ^{m,1}.
- $\forall t \ge 0$ and for every $\phi \in \Sigma_1$ with free variables among X_1, \ldots, X_t $\exists c \ge 1$ such that for all $m \ge 1$, there is an NFA with 2^{cm} states that recognises the word language $Mod_t(\phi)(m)$ over $(\{0,1\}^t)^{m,1}$.
- $\forall k \geq 1$ and for every $\phi \in \Sigma_k$ with free variables among X_1, \dots, X_t $\exists c \geq 1$ such that for all $m \geq 1$, there is an NFA with $s_k(cm)$ states that recognises the word language $Mod_t(\phi)(m)$ over $(\{0,1\}^t)^{m,1}$.
- Let $N \subseteq \mathbb{N}$ be recognizable by some n-state NFA. Then $\exists k \leq (n+2)^2$ and an integer p such that N is recognized by a DFA A with states 0,...,k+(p-1) such that A reaches the state k+((l-k)mod p) after reading an input of length $l \geq k. (\implies N$ is $(n+2)^2$ -periodic).

- For a picture language L over alphabet Γ and an integer m≥ 1, we denote by L(m) the word language L restricted to Γ^{m,1}.
- $\forall t \ge 0$ and for every $\phi \in \Sigma_1$ with free variables among $X_1, \ldots, X_t \exists c \ge 1$ such that for all $m \ge 1$, there is an NFA with 2^{cm} states that recognises the word language $Mod_t(\phi)(m)$ over $(\{0,1\}^t)^{m,1}$.
- $\forall k \geq 1$ and for every $\phi \in \Sigma_k$ with free variables among X_1, \dots, X_t $\exists c \geq 1$ such that for all $m \geq 1$, there is an NFA with $s_k(cm)$ states that recognises the word language $Mod_t(\phi)(m)$ over $(\{0,1\}^t)^{m,1}$.
- Let $N \subseteq \mathbb{N}$ be recognizable by some n-state NFA. Then $\exists k \leq (n+2)^2$ and an integer p such that N is recognized by a DFA A with states 0,...,k+(p-1) such that A reaches the state k+((l-k)mod p) after reading an input of length $l \geq k. (\implies N$ is $(n+2)^2$ -periodic).
- Let ϕ be a B(Σ_k)-sentence. There is a constant c ≥ 1 such that for every m ≥ 1 the set Mod₀(ϕ)(m) is s_k(cm)-periodic. Thus from all the above statements we get that every B(Σ_k)-definable function is at most k-fold exponential.

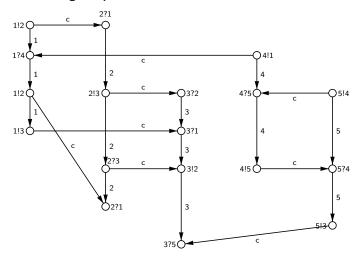
The Complete column-numbering of a grid



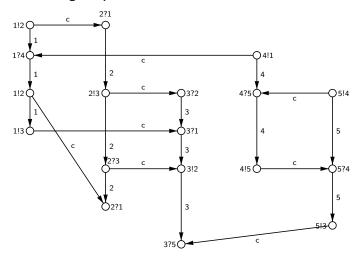


Complete f_i-numbering along the top row of the grid

Message Sequence Charts :-

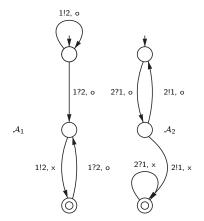


Message Sequence Charts :-

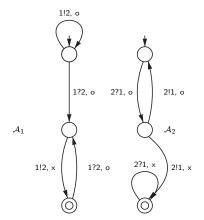


MSC (over P) is a graph $M = (E, \{\Delta_p\}_{p \in P}, \Delta_c, \lambda)$

Message Passing Automata :-



Message Passing Automata :-



MPA (over P) is a structure (A) = (((A)_p)_{p \in P}, \mathcal{D}, s^{-in}, F)

Definitions

Definition

An MSC (over P) is a graph $M = (E, \{\Delta_p\}_{p \in P}, \Delta_c, \lambda) \in \mathbb{DG}(Act, P_c)$ such that

- Δ_p is a total order.
- Δ_c ⊆ E × E is the set of edges connecting messages.
- Number of messages sent is equal to the number of messages received

Definitions

Definition

An MSC (over P) is a graph $M = (E, \{\Delta_p\}_{p \in P}, \Delta_c, \lambda) \in \mathbb{DG}(Act, P_c)$ such that

- Δ_p is a total order.
- Δ_c ⊆ E × E is the set of edges connecting messages.
- Number of messages sent is equal to the number of messages received

Definition

MPA (over P) is a structure $(A) = (((A)_p)_{p \in P}, \mathcal{D}, s^{-in}, F)$ such that

- \mathcal{D} is a set of synchronization messages.
- for each $p \in P$, \mathcal{A} is a pair (S_p, δ_p) where
 - S_p is a set of local states
 - $\delta_p \subseteq S_p \times \operatorname{Act}_p \times \mathcal{D} \times S_p$
- $s^{-in} \in \prod_{p \in P} S_p$ is the global initial state.
- $F \subseteq \prod_{p \in P} S_p$ is the set of global final states.

Definition $(MSO(\Sigma,C))$

$$\begin{split} \mathsf{MSO}(\Sigma,\mathsf{C}) \text{ over the class } \mathbb{D}\mathbb{G} \text{ are built up from the atomic} \\ \mathsf{formulas } \lambda(\mathsf{x}) = \mathsf{a} \text{ (for } \mathsf{a} \in \Sigma), \, \mathsf{x}\Delta_c \mathsf{y} \text{ (for } \mathsf{c} \in \mathsf{C}), \, \mathsf{x} \in \mathsf{X} \text{ and } \mathsf{x} = \mathsf{y}. \end{split}$$

Definition $(MSO(\Sigma,C))$

$$\begin{split} \mathsf{MSO}(\Sigma,\mathsf{C}) \text{ over the class } \mathbb{D}\mathbb{G} \text{ are built up from the atomic} \\ \mathsf{formulas } \lambda(\mathsf{x}) = \mathsf{a} \text{ (for } \mathsf{a} \in \Sigma), \, \mathsf{x}\Delta_c \mathsf{y} \text{ (for } \mathsf{c} \in \mathsf{C}), \, \mathsf{x} \in \mathsf{X} \text{ and } \mathsf{x} = \mathsf{y}. \end{split}$$

Definition

A graph acceptor over (Σ ,C) is a structure $\mathcal{B} = (\mathcal{Q}, \mathcal{R}, \hat{S}, Occ)$ where

- $\mathcal Q$ is its nonempty finite set of states
- $\mathcal{B} \in \mathbb{N}$ is the radius
- \widehat{S} is a finite set of R-spheres over ($\Sigma \times Q, C$) and
- Occ is a boolean combinations of conditions of the form "sphere $H \in \widehat{S}$ occurs at least n times" where $n \in \mathbb{N}$.

The Theorems

Theorem

 $MPA \equiv EMSO_{MSC}$

The Theorems

Theorem

 $MPA \equiv EMSO_{MSC}$

Theorem

The monadic quantifier alternation hierarchy over MSC is infinite.

Summary

Summary

- Hanf's theorem
- Picture languages
 - Local picture Languages
 - Recognizable picture languages
 - REC \iff EMSO
- Monadic quantifier Alternation hierarchy over Grids and graphs
- MSC \iff EMSO_{MSC}