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Chapter 1
Hanf’'s Theorem

Hanf’s theorem plays a very interesting role in model theasyt provides connections be-
tween logical equivalence and locality. It gives an upperabto the extent to which a formula
in first order logic can distinguish two structures.

1.1 Definitions and Notations

Any first order formula contains one or more relational sytalamd constants. We first fix
a set of relational symbols and constant symbols and thdgzmthe first order formulae built
up from these symbols. The set of relational and constanbeistiixed in advance is called the
vocabulary.

The notations that we will use in the remainder of this chiagte as follows:-

* The vocabulary is=(R,,...,R,,c1,...,G) where,Vi, 1< i <m, R; is a relation symbol of
arity k;, for some k € N andvi, 1< i <s, G is a unique constant symbol.

« A=(AR!,...,RL,cl,..., ¢") and B=(B,RP,....RZ, cP,...,&) are two finite structures inter-
pretingo over the domaing andB respectively.

Definition 1.1.1. If the two structuresd and B as considered above satisfy the same first order
formulae upto a quantifier depth of r for somesrN, then we say thatl and B are logically
r-equivalent, denoted byl =, B.

Simply stated,A =, B, if given any formulap of quantifier depth rd = ¢ iff B = ¢.



Definition 1.1.2 (The Gaiffman Graph)Given a structure4A=(A,R%,...,RY, ci,....c}), the
Gaiffman graph is the undirected gragh, = (A,E) where

* A is the domain of the structure.

» E is a binary relation oA such that for any two elements a&bA, E(a,b) holds iff there
is a relation R* of arity k; and k elementsay, ..., a,} € A such that R, ..., a;,) and
{a,b} - {al, e aki}

Example : A =({1,2,3,4},<)

Figure 1.1: The gaiffman graphga of .4=({1,2,3,4},<)

We also need some way of referring to a subgrapé gfin which, for a particular node in
the gaiffman graph, say @ A, designated as centre, every other node in the subgraptais at
distance< d, for some d= N . Given an element a A, we denote this subgraph bi(G 4,a)[d,
the d-neighbourhood ofa G 4. Also, we use the aliad(a,d) instead oiN(G 4,a)[d for the sake
of brevity.

Definition 1.1.3. Given any two elements from each structure, say /A and be B, and for
some de N we say that a and b ard-equivalent, iff there exists a bijective function h, given
by, h : N(a,d)— N(b,d) such that h(a) = b and for any relatiory'Rf arity k; and k elements
{ai,...a,} € N(a,d), R'(ay,...,a,) holds iff R (h(a,),...,h(a,)) holds. We denote this by-a, b.

Definition 1.1.4. We can extend d-equivalencedestructures by saying that twe-structures,
A and B are d-equivalent, again, denoted by~ B iff there is a bijectiory : A — B such
that,Va € A, a~4 g(a).

Note that~,; between elements of two different structures as well as dstwiwo struc-
tures are equivalence relations. If we fix the maximum nundberodes possible in a sub-
graph of radius d, to be m, for someamN, then, we have only finitely many equivalence
classes for-;, say n equivalence classes. We then fix an ordering of thevalguce classes
as (Type,Type,...Type,) and given any structurd=(A,R%,....R ,c,..., ¢'), we compute the
d-type signatureof A as (#Typé #Typel,... #Type') where #Typé is the number of elements,
a€ Asuch that NG 4,a)[d = Type.

Now, notice that if we constrain the number of possible nadesny subgraph of size d
to be the maximum of A | and| B |, A ~,; B holds iff the d-type signatures @& andB,

(#Type! #Type',... #Type') and (#Typé #Type ... #Type’), are component-wise equal.
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1.2 Hanf's theorem

Hanf’s Theorem. For any two structuresd and B and for any r,de N,
if d>3"1 and A~y B, then A=, B.

Proof Sketch. In order to prove the above result, we assume that, B, for d> 3"~1. Now,
in order to prove thatl =, B, we describe a winning strategy for the Duplicator in theusd
EF-game. In this strategy, the Duplicator maintains a pligomorphism defined by induction
oni (1<i<r), where i denotes the number of rounds that have been playbé EF-game so
far. Thus, after i rounds, this partial isomorphism is gibgrthe bijection

h: (Uj—yN(ay,3")) — (Uj—yN(by, 3°7)) (I-1)

In addition to being a bijection, it has to satisfy the follogy :-
(@V],1<]j<i, h(a) =b;, where (gb;) are the elements selected in round j.
(b) for any R, of arity k and for any k elements {@&, ... a} C (U:_,N(a;,3")),

R#(ay,ag,...a,) <= RE(h(a;), h(az),...h(ay))

If the Duplicator is able to maintaifi-[[)), then, at the end of thé"rround, i.e., when i =
r, we have the following partial isomorphism

h:(U_ N(a;,3"")) — (U_ N(b;,3""))
= h:(U_N(a;,1)) — (U_;N(b;,1))

— h:{a,as,...;a,.} —> {by,ba,...., 0.}
Furthermore, the conditions (a) and (b) BE) implies thatv i, h(a)=b; and for any R,
of arity k and for any {a,&, ... &} C {a;,&, ... a}, chosen during the game,
R#(ay,ag,...ax) <= RE(h(a;), h(az),...h(ay))
Thus, if the Duplicator is able to maintain the invaridiail, then the Duplicator can win

the r-round EF-game. Inductively, the Duplicator can mamthe invariantl€1)) after every
round and will be described below.



1.2.1 Round1

The Spoiler picks some vertex in one of the structures, say.4. The Duplicator considers
the graph, N(ad) and picks a vertex from the other structure, hgre I8 such that a~, b;.
We are guaranteed to have a pointéinceA ~,; B.

By the definition of d-equivalence, we are guaranteed to laalgection h that maintains
invariant [=I) and thus after Round 1I-{) is maintained.

1.2.2 Roundi+1

For the inductive case we assume that for all& 1< r, we have the partial isomorphism h,
given below that satisfies the requirementd[df)

h: (Ui N(a;, 3"7)) — (Uj1N(by, 3"7))

Given h we now need to give a strategy such that we get a nevalgagdmorphism, h’ that
satisfies[l-1)) after round i+1. For this, there are two cases to be coresitler

1.2.2.1 Casel

Figure 1.2: At the beginning of Round i+1

3r7i

In this case, the element that the Spoiler picks is within2tt8— (or 2*3~ (1) radius
of a previously selected element. More formally, the Spgleks an element from one of the
structures, say;a, € A, and3j, 1<j<i, such that a; € N(g;,2*3"~ (D),

Now, the Duplicator can select the element;h{pas h,; and the new partial isomorphism



Figure 1.3: At the end of Round i+1

can be given by,

B (U N (ay, 377 0F0)) — (ULIN(b;,3770D))
and, h'(a) = h(a)
The above function is well-defined &s’2] N (a;, 3"~(D)) C (Ui, N(a;,3"~))) which
implies that Domain(h’ ) Domain(h).
1.2.2.2 Case?2

The final case occurs when the Spoiler picks an element fraobthe structures, say,a
from A, such that j, 1<j<i, a;,; ¢ N(g;,2*3"~(*D),
This in turn implies that,

(N(ai1,3" )N (U§:1N<aj7 3y = ¢ (R2a)

Now, to prove that the duplicator can pick an element land maintain[£1), we use a
counting argument. Recall that we can fix a tuple of tyEgpe,, ...T'ype,) by considering
only the spheres of radius d which contain only n#gBj nodes. ThenA ~; B implies that
the type signatures as considered above are componenéguisé

Let N(a.1,d) be of the type, Type The Duplicator picks a point;b; such thati; ;1 ~4 b; 11
and

(N (big1, 3~ N (U;':lN(ij 3y = ¢ (R2Db)

Such a point will exist and it can be proved by contradictiemg the fact that the type



signatures of the 2 structures are component-wise equaforAle new isomomorphism, h’,
we first consider the isomorphism N (a1, 3"~ 0Y) — N (b1, 37~0+D) which satisfies the
requirements (a) and (b) dEL). The new isomorphsim h’ is

W (LN, 37 F0) — (UL N (b, 37

h(a) ifaecU_ N(b;3)

where, h'(a) = '
g(a) ifa€ N(ajq,3 D)

Once again, h’ is well-defined due o (R2a) ahd (R2b). It akisBes [-1) as g and h
satisfy the invarianfl{1)).
]

1.3 Concluding Remarks

In the theorem above, we defined d-equivalence in two way® @the ways of defining
d-equivalence was by stating that for any two structueand 53, A ~, B iff the signatures
(#Types, ...#Type,) are component-wise equal. In this definition, we are cogifie exact
number of times that any type occurs in the Gaiffman graphwé¥er, we need not maintain
the exact count and it is enough to count upto a threshold trencesult will still hold.

Notice that in the proof the maximum number of nodes that ewir be a part of any
isomorphism is bounded by the number of rounds, r. Thus, timeber of times we need to
count any particular type i&7_,3"¢ which is bounded by above byit=< 3". The d-type
signatures with counting upto a threshold t are then derag€¢@ype,, ... T'ype,,) | ¢t and two
structures4 andB are said to be d,t-equivalent if they are d-equivalent wites$hold t, denoted
by A ~;; B. This might merge many d-equivalence classes but nevekbtham up. If any
two structures are d-equivalent, they remain d,t-equntale

Thus, in this chapter we have discussed local equivalerstératrorder logical equivalence
and how the two are related. In the remainder of my thesisidistl papers that utilised Hanf’s
theorem to obtain some really amazing results pertainingottections between logic and
automata. Besides the connections with Hanf’s theorentiwikithe major theme of my thesis,
the papers | read also had other ground-breaking results.



Chapter 2
MSO and automata over Pictures

In this chapter, we discuss pictures, which are basicaltgresions of words to the two-
dimensional realm. A tiling system is defined over these abjand used as automata over
these 2D-words. Finally, the expressiveness of these attors studied. For the complete
proofs of the main theorems, please refer [2].

2.1 Preliminaries

Definition 2.1.1(Pictures, Picture Languages)
A picture, p, over an alphabét is basically a function of the form

p:{L,2,..,n} x{1,2,...,m} = %,

for some n,meN

The set of all pictures (over) is the set of all possible functions p for every renN. It is
denoted by_**. A picture language, L, is a subsetof*

Thus, a picture is an extension of words to two-dimensiongewti™* is the universe of
all two-dimensional pictures. Some sample pictures arevshzlow ,

o a a a a a a a a
a b b b b b b b
r a a a a a a a
a a b
q: b b b b b b b
’ a b a

Figure 2.1: Sample Pictures



For convenience of defining automata over pictures, we us#fied picturespy , obtained
from a picture p by surrounding it by a special boundary syimo¢ 3. Note thatp is also
a picture. Some examples of these special pictures obté&ioedthe pictures p,r from 211 are
shown below,

#o# # # # b b b b b b b #
# a b # R
D r. # a a a a a a a #
# b a #
# b b b b b b b #
# o # # #

Figure 2.2: Pictures surrounded by hash symbols

Definition 2.1.2 (Concatenation of Pictures)
Let p and g be two pictures given py [n,] x [m;] — X andq : [ny] x [ms] — X. The row
concatenation of p and q denotegg is the new picture

PEq:Ing+mns x[my] =%
where pq(i,j) = p(i,)) if i < n; else p>q = q(i,)). It is well-defined only ifn; = mo.

Column concatenation denoted by @ is defined similarly. The example for row concate-
nation is given at Figure 2|13 and the one for column concatienaat Figure[2.4.

Figure 2.3: Examples for Row concatenation

NGEOSE -0

p © g : Undefined
por: g e r: Undefined

(As the number of columns are incompatible)




Figure 2.4: Examples for Column concatenation

NGEOSE NGO

p @ r: Undefined
. Og0202020,
q @ r: Undefined poq: ”‘..
0, e.e =@

(As the number of rows are incompatible)

The concatenation operations can be applied on pictureiéayes too.
LetL,L; and L, be 3 picture languages (subsets1f). Then,

(@ L oLy ={xoy|xe€L;andye Ly}. Similarly forL; @ L.
(b) LS =L ; Lo = L® Vg L. Similarly for L",

(c) Row Kleene Closure of L, 1° = | J,L®".

(d) Column Kleene Closure of L, = J,L?".

Definition 2.1.3(Projections)

Let 3, and >, be two finite alphabets such that:; | > | ¥, |and7 : ¥, — Y is a
mapping. Then given g ¥1*, 7(p) is the picture p’e ¥3* such that p'(i,j) == (p(i, j)) Vi, j
such that,l <i <ly(p),1 <j < ly(p) where |(p)is the number of rows of p ang(p) is the
number of columns.

Similarly, given a picture language € X7, the projection of L byr : >; — ¥, is defined
asr(L) = {n(p) | p € L} C 55"

2.1.1 The Families LOC and REC

In this section, we describe the automata given as tilingesys over pictures. First, of
all given a picture p of size (m,n), f < m andk < n, we denote byl}, ,(p) the set of all
subpictures (contiguous rectangular subblocks) of p & gi1k).

Definition 2.1.4(Local Picture Languages(LOC))

A picture language IC I'** is local if there exists a sek of pictures (or “tiles”) of size(2,2)
overI'U {#}, such that L={pc I'** | T5»(p) C A} and A is alocal representation by tilgsr
the language L.
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The family of all local languages is denoted by LOC. As an eplanof a picture language in
LOC, consider k C {0, 1}** of square pictures (of size at least (2,2)) in which all nagdnal
positions carry symbol 0 whereas the diagonal positiony cymbol 1.

An appropriate set of tiles ford.consists of the 16 different (2,2)-subblocks of the picture
displayed below in Figule 2.5

Figure 2.5: A for Ly is T2 2(p)

)

Definition 2.1.5(Recognizable Picture Language (REC))
A picture language LC X** is recognizable if there exists a local language L’ over an
alphabetl” and a mappingr : I' — X such that L=r(L’)

The family of all recognizable languages is denoted by RE€eRrample of a language in
REC is the set of squares over= {a} and a suitable local language would bgdonsidered
previously and the mapping,: {0,1} — {a}. The above language is nothing but the set of all
square pictures labelled with the letter

Henceforth, we restrict our attention to only those locagiaages given by L'3(, A) where
I' = ¥ x Qisthe alphabet of L. The recognizable language, E** is obtained from the local
language L’ by the canonical projection: >x Q — . It is sufficient to consider Local
languages of the type above as every local language L’ givémei definition, with an arbitrary
alphabet may be modified into a local language with the alph@b= > x Q.

Under the above considerations, the tiling System is denogehe triple(X,Q, A).

2.2 Some properties of the family REC

REC is closed with respect to
* projection,
e row and column concatenation,
e row and column closure,

* Boolean union and intersection.
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Theorem 2.2.1.REC is not closed with respect to Boolean complementation.

Proofidea. LetY be an alphabet and let L be a language aveiven by
L={pe¥™|p=s0O s, wheresisasquare}

The claim is that L¢ REC whileL € REC. O

2.3 Logical definability of Picture Languages

Given a picture ge X**, we can identify the structure associated with the pictsre a

p= (d0m<p)7 Sl7 527 (Pa>a62)7

In the logic x,y,z,%,Xs, ..., denote first-order variables for points of dom(p) wtitie vari-
ables X,Y,Z,X,X, ..., are MSO variables denoting sets of positions.

Atomic formulas are of the fornx=y, xSy, X(X) and P,(x) interpreted as equality between
xandy, (x,y)e S;, xe X ,xe P, respectively. Formulas are built up from atomic formulas by
means of the Boolean connectives and the quantifiensdV applicable to first-order as well
as second-order variables.

If (X4, ..., X,) is a formula with at most X ..., X,, occurring free inp, p is a picture, and
Q1, ...,Q, are subsets of dom(p), we write

((p)a Qla ceey Qn) ): §Z5(X1, ey Xn)

if p satisfiesp under the above mentioned interpretation wheyées@aken as interpretation
of X;. If ¢ is a sentence we Writ@): 0.

Definition 2.3.1(MSO-definable) A picture language L is monadic second-order definable (L
€ MSO), if there is a monadic second-order senteneéth L = L(¢).

Definition 2.3.2(FO-definable) A picture language L is first-order definable §_.FO), if there
is a sentence containing only first-order quantifiers such that L =d)(

Definition 2.3.3(EMSO-definable)
Finally, A picture language L is existential monadic secamder definable (Le EMSO), if
there is a sentence of the form

¢ =3X;..3X,0(X, ..., X,)

wherey contains only first-order quantifiers such that L =¢)(
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2.4 Equivalence theorem for REC and EMSO

This is the main result of this chapter and of the article [Rhwespect to picture languages.
Theorem 2.4.1.For any picture language L, & REC iff Le EMSO.

Proof Sketch. (REC=— EMSO)

The direction (REC=- EMSO) is the easy one. Let& REC and letX,Q, A) be the tiling
system accepting L. Now, we know that @. iff 3 a picture cc Q** of the same size as p such
thatp x c is tilable by A.

Hence, in order to prove theorém 2]4.1, it is sufficient tostnrct an EMSO formula such
that given a picture pp = p iff 3 a picture ce Q™ of the same size as p such th;a/k\c is
tilable by A. The formula¢ basically guesses a picturescQ** and then verifies if) x ¢ is
tilable by A as given below,

¢ = 3X1...3Xk(Dpartition N V1.2 (Xm A Xt A Xo A Xt A X
AXt N Xer A Xot A Xor))

where

Gpartition (X1, ..., Xi) = V2(X1(2) V... V Xi(2))
AN ~(Xi(2) A X(2)).

i

WHhIle X, Xt X0s X1 Xr X, X Xol: X TETEr to the formulae describing (2,2) local neigh-
bourhoods that are a part &f.

This proves that REE=- EMSO.

The proof that EMSG—=- REC follows as a result of the following three theorems.

Theorem 2.4.2.
If L € EMSO then L is a projection of an FO-definable language.

Theorem 2.4.3.
A picture language is FO-definable iff it is locally threstiaéstable.

Theorem 2.4.4.
Any locally threshold testable language is the union of grtipns of local languages.

From theoremB 2.4.2, 2.4.83", Z}4.4 and using the fact that RE®sed under union we
can conclude that if L« EMSO then L is a union of projections of local languages antthe
we get that Le REC.
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Proof sketch of Theorem 2.4.2.
Let L € EMSO and letp) be an EMSO formula such that L=¢), given by,

¢ = 3X,..3X, (X, ..., X,)

where is a pure first order formula. If the alphabet of L35, then, we consider the
extended picture models of L where the alphabétiis= 3, x {0, 1}* and the atomic formula
X € X; is true over, iff x = (x',t) and thei’* component tis 1.

Now it makes sense to speak of satisfiability/obver the alphabet, with the semantics
as described above, and let L be the set of all pictures Byéhat satisfy,). Now if we use the
canonical mapping : ¥; x {0,1}¥ — 3, then we get L=(L). Thus L is the projection of
an FO-definable language. O

Before we discuss the other theorems, we need to define whaear by locally threshold
testable languages and locally strictly threshold d-té#steanguages which are slight variants
of what we discussed in chapter 1. In the definitions belowusgsquares instead of spheres
for defining locality. Also, recall that, given a picture p; J(p) is the set of all sub-pictures of
p of i rows and j columns.

(a) Given a picture p#1(; ;) (p) is the multiset of T; ;)(p) which keeps track of the exact
number of occurrences of each sub-picture of i rows and jnsokiin p, while #7; ;y(p)[ t
is the same a#7|; ;)(p) counted upto the threshold t.

(b) Given two pictures, pp. and d,te N, if

Vi,j < d, #T65)(p1) Tt = #1655 (p2) Tt

then, we say that,ps d,t-equivalent to pdenoted p ~ 4, Po.
(c) For the same parameters as above, if

Vi, j =d, #T5p1) [t =#T65p2) It

then, we say that,ps exactly d,t-equivalent to,pdenoted p ~;, .
(d) If L, is a union of~, ;-equivalence classes then itazally d-testable with threshold t
(e) Given d, if it holds for some t,we say that Ligcally threshold d-testable
(f) If it holds for some d and t then we say Lliscally threshold testable
(9) If L is a union of~,;-classes for some t, L is callédcally strictly threshold d-testable.

The above definitions deal with locality conditions and tfeayn the bridge for transferring
a language from EMSO to the tiling systems. The proof makesiaruse of Hanf's theorem
in making the transition.
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Proof sketch of Theorem 2.4.3. (FO-definable—>- Locally threshold testable).

The proof for the directior=- is by an adaptation of Hanf’s theorem to pictures. We can
use the bound as d=2+1 ard t=r3* for r-equivalence. The reason for these values is that we
are dealing with squares whereas the results proved in@haplealt with spheres. Hence, we
accomodate the square into the sphere by providing more@enealues.

For the other direction, we can actually describe a suhsmodf radius at most d in first
order logic and say that it occurs exactly i times or less thtames or greater than i times.
Thus, from this it follows that a locally threshold testaldeguage is FO-definable. O

Thus, what we have learnt so far, in summary, is thadfEMSO, then it is the projection
of a locally threshold testable language. Now, for the last which is the outline of the proof
that any locally threshold testable picture language iptbgection of a local language. Before
that, we need one definition that forms a sort of transitiep $tom local threshold systems to
tiling systems.

Definition 2.4.1(d-local picture language)
Let d>2 be a positive integer. A picture language 7", is d-local if there exists a seX )
of pictures of size (d,d) (or “d-tiles”) oveEU {#}, such that L={pe ¥** | T, 4(p) C A}

Proof sketch of theorem 2.4.4. (Locally threshold testable to Tiling systems)

This follows as a result of the following theorems.

Theorem 2.4.5.Each locally threshold d-testable language L can be decamgpmto LU LU
... ULg_o where L; C ¥** (0<i<d-2) is locally strictly threshold (i+2)-testable.

Theorem 2.4.6.Let d> 3 be a positive integer. A locally strictly threshold d-tdsie picture
language LC ¥3*, is the projection of a d-local language.

Theorem 2.4.7.A d-local picture language is a projection of a local langeag

0

Thus, we learn that expressibility of EMSO logic and recaghility of tiling systems co-
incides in the case of picture languages.
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Chapter 3

Alternation hierarchy of MSO over grids
and graphs

In this chapter, we discuss the MSO alternation hierarchichvis defined based on the
number of second order quantifier alternations of an MSO @temThis hierarchy over grids
and graphs is infinite and an overview of this fact will be giveere. For further details and
complete proofs se&l[3]. It should be noted that we count thrdyguantifier alternations of the
variables denoting sets of positions and we can have ampmesting of first order quantifier
after the last second order quantification.

The inclusion results are as shown the diagram below witlrectgd edges indicating strict
inclusion.

> (Grid) 11, (Grid)

A+1(Grid)

B(2,)(Grid)
5 (Grid) T, (Grid)

Figure 3.1: Hierarchy of MSO over grids

3.1 Preliminaries

The signature of grids is given by;,..; = ([m,n],5"",S,"") where [m,n] = [m]x [n]. The
relations $"" denotes the horizontal successor afjd’ ®lenotes the vertical successor. More
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formally,Vh,7, 1 < h,i < mandVyj, k, 1 < j, k < n, the following holds

S0, 5), (h k) <= h=i+1 and k = j
Sy " ((1,7), (k) <= h=1i and k=j+1

Besides the logical structure of grids, we also use ano#fated structure called a t-bit grid.
The signature of t-bit grids for some tN is given byr,_g..q = ([Mm,n],S"",S"",X1,...,X)
where the relatiorX; is a unary relation.

The logic for discussing formulae over grids is similar te ine we have seen in the second
chapter. The atomic formulae consist of x=yyXwhere X is a unary relation) and;S"(x,y).

The first order formulae consist of the atomic formulae awdwte with respect to the boolean
combinations and first order quantifications.

The MSO formulae are built up like the first order formulae bgsing with respect to
boolean combinations and quantifications but the quartiicas arbitrary and can be applied
to first order as well as second order variables.

The MSO formulae belonging @6, are defined inductively. The base case is when there are
no second order quantifiers involved and thus no quantifierradtion. It is the set of all first
order formulae denoted by,. Then, for every k> 0, ¥; ., is the smallest set of formulae that
contains negations of all formulae ¥, and is closed under existential monadic second-order
guantification I, denotes the set of negations of formula&in

3.2 The MSO alternation hierarchy over grids

In this section, the main theorem 0f [3] is stated and disedisMlost of the hard work is done
to show that the alternation hierarchy over grids is infini@nce that is done, the results are
then transferred to directed graphs by encoding grids imextbd graphs and then all directed
graphs are encoded into undirected graphs.

Thus the main theorem of this chapter is,

Theorem 3.2.1.
Boolean combinations af,-formulas over grids is a strict subset 4f, ,; over grids.

Vk > 1, B(X;)(Grids) G Agy1(Grids)

The above theorem implies that the hierarchy of MSO oversggdnfinite. It is proved by
using definability results for sets of grids. For a functiaf¥f— N we denote by . the set of
grids whose size is (m,f(m)) for m 1. A formula¢ overrg,;; defines the functionN — N
iff Mod ¢ia(¢) = L.
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Further, we say that a function is at most k-fold exponeiitig@n) is s, (O(m)), where,

3

so(m) =

Spy1(m) = 25+

Proof Sketch.
The proof of Theoreri 3.2.1 follows as a result of the follogvtheorems,

Theorem 3.2.2.Every BE,)-definable function is at most k-fold exponential.

Theorem 3.2.3.Given any ke N, we inductively define the function:fN — N as follows,

fl(m> = 2m7
fer1(m) = fr(m)25m),

Then,vk > 1,the functionfis definable i, andIl, overrg,iq.

The function { is more than (k-1)-fold exponential and hence due to thef@n2, it cannot
be described by a formula witk k-1 second order quantifier alternations. Besides, thelyami
of functions is infinite and for each & N thereis a function {, in the family such that it lies
in the K" level of the quantifier alternation hierarchy. These claioli®w from the above two
theorems and thus prove that the MSO quantifier hierarchygngs is infinite. O

Proof Sketch for Theorem[3.2.2

Here, we outline the various steps needed to show that)Bfefinable function is at-most
k-fold exponential. The manner of doing it is by using thmglsystems and other results from
standard automata theory. Also, we use t-bit grids to exteadogical structure of the grid
with additional unary relations that provide the semantteripretation to the second order free
variables.

In chapter 2, given an alphalb®ei we defined the sef** as the universe of all pictures over
the alphabek. Here, given an alphab&t we denote by, the subset oE** with exactly m
rows whileX™! is the subset oE** of size mx 1.

» For a picture language L over alphatieand an integer m» 1, we denote by L(m) the
language L restricted t6™. Now, instead of considering L(m) as a picture language,
we view it as a word language over the alphab&t' by merging all the rows along a
particular column into a single letter in the alphab&t!. We do this in order to make
use of standard automata-theoretic results.

* YVt > 0 and for everyy € 3; with free variables among ... ,X;, 3¢ >1 such that for
allm >1, there is an NFA with 2" states that recognises the word language Modm)
over ({0,1})™!.
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* Yk >1and for every € ¥ with free variables amongX... ,X;, 3¢ >1 such that for all
m>1, there is an NFA with,gcm) states that recognises the word language,f0¢m)
over ({0,1})™!,

» Let N C N be recognizable by some n-state NFA. Thek < (n+2) and an integer p
such that N is recognized by a DFA A with states 0,...,k+(sUdgh that A reaches the
state k+({-k) mod p) after reading an input of lengtb>k.

* Let ¢ be a BE,)-sentence. There is a constanticsuch that for every ml the set
Mod,(¢)(m) is s.(cm)-periodic.

The end result of the above statements is that, given a farmalB(X>), we have an NFA,
sayA,, that is g(cm)-periodic accepting the language Mgg)(m) when considered as a word
Language oveF™!. Now, if the formulap € B(X;) defines a function fN — N, then for any
me N, f(m) is unique and hence there is only one picture, p sudhttra p. If f(m) was more
than g(c¢m), then due to the,$cm)-periodicity of A,, it would accept more than one word
and thus there would be more than one picture p, such¢thap. Hence f is at most k-fold
exponential. O

Finally, we describe below how to construct a formula in M®@escribe a function,fand
thus prove the theorem 3.2.3. In fact, there are two ways sdri@ng the functionf, one of
them is by &, formula while the other one isld, formula.

Proof Sketch for Theorem3.2.3

Given ke N, a procedure exists whereby given a grid of height (numbeowt) m, we
can decide whether the width (or number of columns).{gn). This procedure is in essence a
method of counting over the grid. We will describe this metlod counting and then hint as to
how this method is captured by, formula.

The method of counting over the grid is described inducfivEhe base case is when k=1,
then the procedure simply consists of checking whether timeber of columns is equal td"2
This is done by considering the 1-bit grid which is the oradigrid marked with the alphabet
from {0,1} such that each column represents the binary nurabiae column when viewed as a
word from top to bottom (the most significant bit on top andldaest significant at the bottom).
See Figuré_3]2 to get an idea as to how the marking is done.

However, what is displayed in Figure B.2 is not exactly thesbezase. Rather the Figufes] 3.2
and 3.8 indicate how to check the inductive case, i.e., vdrdtte grid is of the size (m,fm)).
The manner we do that is by first marking the whole grid witlL§Guch that when considering
the binary number represented by a column, with the mosif&ignt bit at the top row and the
least significant bit at the bottom-most row, the value ofribenber will be the number of the
column modulo 2. At the end of this marking, if the binary number along the kedumn
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0|0 1/1(0|0 1{1|0(0 1(1
0|1 0|1]|0(1 0|1(/0f1 0]1],/
f1(m)=2"

Figure 3.2: The Complete column-numbering of the
grid

is not 21, then we can reject this grid as for the grid to be of the typd,(im)) it has to
be divisible by f(m), Vi, 1 < i < k. In particular, when i = 1, for the grid to be of the form
(m,fx(m)) the width of the grid has to be divisible by(fn) = 2”. This initial marking is called
the Complete column-numbering of the grid and is illustlateFigure 3.D.

Now, for the second type of marking which verifies that thelgsi actually of the form
(m,f(m)), we mark only the top row by an additional layer of alpétsfrom {0,1}. Assuming
that we have split the grid intq(fn) pieces and we have marked the starting and the ending
positions of these pieces. Now, the way to proceed frgim)fto ;. ;(m) is by adding an
additional layer of {0,1} by using the,fm) pieces as the number of binary digits and counting
the number of {m) pieces from left to right as shown in Figurel3.3. If durimgy stage we
do not have the last piece to consist of all ones, then, we reject the grid. At thddvel of
the numbering we additionally have to check if there is dyamie sequence starting from all
zeroes and ending in all ones, and only then do we acceptithe gr

'/—fi(m)—\
00..00| 11..11/0..... 100..000 [11..11
\—fH»l(m) =f;(m) x 2fi(“‘)—/

Figure 3.3: Complete £numbering along the top row of the grid

The above procedure can be captured by formulag,ims well asll,. The Y, formula
is constructed by second order variables that first des¢héecomplete column numbering
and then there is an inductive procedure to compute the @mpl,-numbering given the
f;-numbering. O
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3.3 Reduction from Grids to Graphs

In order to transfer the non-inclusion results from gridgtaphs, we define and use a type
of strong first-order reductions. This tool can be used tosfier separation results from one
class of structures to another class of structures.

3.3.1 Strong First-order Reductions

This section first defines the strong first-order reductiaomkthen, we state the theorems that
will be used in the later part of this section. There are mang%xof reductions and the main
idea in any reduction is to be able to translate a formula owerstructure to a similar formula
in the other structure without adding much to the logical ptaxity. What we mean by strong
first order reduction is that there is only addition of som&t farder formulae in going from one
structure to another.

Definition 3.3.1(Strong First-order reduction)

Let C be a class of structures over the relational signatuteS’ a class of structures over
the relational signature’ and n>1. Then,a strong first order reduction from C to C’ with rank
n is an injective mappin@ : C' — C’ such that

1. For every structure M= C the universe ob(M) is given by, ({i} x dom(M)), i.e., a
disjoint union of n copies of the universe of M.

2. There is a first-order formula(x, ..., x,,) overr’ such that for all structures M in C, all
Uy, ..., u, € dom(M) and alli, ..., 7, <n:

(I)(M) ): ¢[(i17u1)7 ) (Znaun)] — \V/] <n: ij :]/\ Uj = uy.

(For structures in®(C), the formula) describes the n-tuples of the form ((1,u), . . . ,
(n,u)), which serve as representations of M-elements u.)

3. For every relation symbol r’ from’ , say of arity/, and everys : [I] — [n] there is an
FO- formula¢”, (1, ..., 2;) overr such that for all structures M in C and ally, ..., u; €
dom(M) we have

M E= gbg[ul, o] = (M) Er'[(k(1),u1), ..., (k(1),w)]

4. Forevery relation symbol r from, say of arityl, there is a first-order formula” (z1, ..., 7;)
over7’ such that for all structures M in C and all;, ..., u; € dom(M) we have

M ): r[ula ---,Ul] — CI)(M) ): ¢r[(17u1)7 P (laul)]
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Theorem 3.3.1.
Let C, C’ be classes of structures over the relational sigregr and 7’ , respectively. Let
® be a strong first-order reduction from C to C’, and letlL.C. Then,

L e (C) < 3L € X(C") with (L) =L N®(C)
If, additionally, ®(C), is ¥ -definable, then
L e X(C) <= ®(L) € Z(C")

Thus, strong first-order reductions is a type of embeddiag ltlas the required properties
for transferring the separation results from one classratsires to another.

We say that C istrongly first-order reducibléo C’ iff there is a strong first-order reduction
from C to C’. By the above theorem 3.8.1, it is sufficient toggstrong first-order reductions
from grids to other structures, to prove that the hierarcher the other structure is also infinite.
This is what will be done to show that the hierarchy over gsaghnfinite.

3.3.2 Reduction from Grids to Directed Graphs

Now, to transfer the hierarchy results from grids to grapyes give a reduction from grids
to graphs of the kind described in Definitibn 313.1. The imagé, -definable. For every R
Grid we associate the gragh( R) := ({1, 2} x dom(R), E) with

={((1,2),(1,z)) | x € domR}
U{((1,2),(2,2)) | z € domR}
U{((2,2),(L,y) | (x,9) € ST}
U{((2,2),(2,9) | (z,y) € S5}
(11X) > (2,X)

Figure 3.4: gadget to embed grids into Directed Graphs

Let’s define the various formulae that are required of a firdeoreduction given in Defi-
nition[3.3.1 to show that the above reductibris indeed a Strong First Order reduction. First,
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we give the first order formula for Definition_3.8.A] (2), of tgrih=2, where n is the num-
ber of copies, that allow us to pick a particular element & ¥arious copies. It is given by,
(w1, x3)=E(x1, 1) N E(x1, 2) N2 E (22, 22). Next, the various formula fob{3)f : [I] — [n],
and sincé is 2(arity of E) and nis also 2 (number of copies), the founfalae for each function
f 2] — [2] is given by,

Qf)ﬁ,l) =T = T2
P12 = 11 = T2
$a,1) = Si(w1, 72)
<Z>§,2) = So(x1,22)

Now,finally, to describe the first-order formulae in a grapattcaptures the relations over
grids, to fulfill (4), the formulae are,

(21, 22) = Fy 3y (P (1, y1) Ap(z2,y2) A E(y1,72))

o
¢ (w1, 22) = Ty Fy2(V(w1, y1) A (w2, 42) A E(y1, y2))

Thus, the reductio® from grids to directed graphs satisfies all conditions s$éfad in
Definition[3.3.1 and hence we have a strong reduction froasga directed graphs.

3.3.3 Reduction from Directed Graphs to Undirected Graphs

Finally, we give a reduction from directed graphs to undedaraphs. For this reduction
too, the image id1;-definable. Given a directed graph G = (V,E), we associateth the
undirected graph given by(G)=(V", E’), whereV’ = [6] x V and the edge set E’ among the
six copies is as shown in Figure B.5 plus an edge betweendk{6,y) whenever (x,\ E.

BX) — (4.x)

I

1,x) — (2x) —— (6x) — (6,X)

Figure 3.5: Gadget for embedding directed graphs into undirected gsaph
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Formally, let

M = {{1,2},{2,3},{3,4},{4,5},{5,2}, {3,5}, {5,6}}
N = {{1,3},{1,4},{1,5},{2,4},{2,6},{3,6}, {4,6}}

The edge set ob(G) is given as

E' = {((i,2), G, 9) | (w =y r{i,j} € M)V ((i,5) = (1,6) A (z,y) € E(G))}.

The formulae required to show thétis indeed a strong first-order reduction that satisfy the
conditions stipulated in Definitidn 3.3.1 are describedbel

Y@l . 26) = V2(B(z,24) = (13 = 2Vas =2)) A N\ (Bl@,z)n N\ (B, ).

{i,jyeM {i,j}EN
1 fixes the six nodes of a gadget (in the sense of Definifion]3-§2)).
In order to satisfy Definition 3.3/1 +£](3), for any relationrr (&), we need first order
formulaeV f such thatf : [I] — [n] wherel is the arity of the relation r and n is the number of

copies used ip(G). There is only one binary relation in an undirected gragaly E’, and let
the only binary relation we are allowed to use in the Direggeabh be E. Then,

=1y if {i,7} e M
I By G =61
—(z = x) else

Finally, for Definition[3.3.11 —(4) we have,

¢E(x7y) = HIEQ---IEGHQL--?/B(@Z)(L X2y ouey xﬁ) A w(yla ceey y5>?/) A E(:E7y))

Thus, we have managed to produce Strong First Order redsctiom grids to Directed
graph and from Directed graphs to Undirected graphs andeh@nappealing to Theordm 3.8.1,
the quantifier alternation hierarchy of MSO over grids, clieel graph and undirected graphs is
infinite.
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Chapter 4

Message-Passing Automata and EMSO
over MSC

The main objects of discussion in this chapter is Messageedeg charts(MSC) and Message-
Passing automata over MSCs which are used in distributedragsdevelopment. An MSC is
basically a drawing scenario as shown in Fiduré 4.1 desqgibow we intend the behaviour of
the system to be. A collection of MSCs may be designed to tiépécvarious ways in which
concurrent processes may react with one another duringuengfrthe system. The message-
passing automata helps in realizing a set of desirable MSCs.

1] 2] E
\-—
J—

AN

Figure 4.1: A sample Message Sequence Chart for three
processes

The main result of this chapter is that MPA and EM$§. are expressively equivalent.
Similar to the proof for the equivalence of EMSO over pictuagd tiling systems discussed in
Chaptef® , in this proof too, we use Hanf’s theorem as annrgdiate step in arriving at the
result. Then, finally we prove that EMSO is strictly less pdwethan MSO by proving the
more general theorem that the quantifier alternation lsgaof MSO over MSCs is infinite.
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This last result is obtained by embedding the grids into M®@ appealing to the theorem
discussed in Chaptel 3.

For complete proofs and additional details of any theoredefinition please se&l[1] which
is the primary reference for this chapter.

4.1 Preliminaries

In this section we will formalize the definitions of Messageg8ence charts and Message
passing automata. An MSC can be represented in many wayise paper([1], it is described
as a partial order on the events that take place. Furthepamial order may be represented as
a special kind of graph, called a directed acyclic graph aigli$ explained first.

Let 3, C' be two sets of alphabets. Then(directed) graph over (%, C) is represented by
the structure G £F, {<.}.cc, A) wWhere E is its nonempty finite set of nodes, theC E x E
are disjoint binary relations on E, and E — X is a (node-)labeling function.

Let the set of allacyclic graphs of the type above be denotedlb§ (%, C). Given two
processes p and g, p!q denotes the event “p sends to q ” witldeyites “g receives from p”.
Let Act ={p!q} U {p?q} where p,q are processes from a set P=[n], wher&n Finally, the set
P. = Pw {c} is the set of labels over the edges. The labels from P \alidl subsequent events
of a particular process (along a process line) while thel lgbés marked along the channels
(across processes). Ch(P) is a subset-dPBuch that (p,gE Ch(P) iff there is a channel from
p to q.

Having given enough background, | will now introduce the nigtins for MSCs as well as
MPA. The definitions are not completely formal as presemddl]i but they convey the essence
of what is given in that paper.

Definition 4.1.1(Message Sequence Charts)
An MSC (over P) is a graph M = (Es{,},cr.<c,\) € DG(Act,P.) such that

* <, is a total order that connects any event along a process liiie ¥ successor event
(if one exists).

* 4. C E x Eisthe set of edges denoting messages such that for ang & &< e’ iff
— A(e) = p!lqand A(e)=g?p and (p,q)e Ch(P)

— For some & N, if the number of messages of type p!q sent by p before e i (n-1
then, the number of messages of type q?p received by q isalgo (

s |[{e€ E|Xe)=plg} |=]{e€ E|Ae) = q?p} | (Basically, the channel is reliable,
in the sense that every message that is sent is received).
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The figure 4.R illustrates an example of a sample MSC graphenwhe set of processes is
given by P={1,2,3,4,5}. Notice the labelling over any eddefe form eq,e’ is p while the
edges of the forme. e’ is labelled by ‘c’.

2?1

Figure 4.2: Example of an MSC graph

Definition 4.1.2(Message-Passing Automata)
MPA (over P) is a structuréA) = (((A),)pepr,D,s ,F) such that

» Dis a set of synchronization messages.
« for each =P ,(A), is a pair (S, 6,) where

— S, is a set of local states

— 0, € Spx Act, x D x S,
» s e 11, pS, is the global initial state.
* F CIL,cpS, is the set of global final states.

Thus, the message passing automaton is given by a set ofdat@hata, one for each
process. The run of an automaton over an MSC is by running leaehautomaton along its
process line and guessing the next state from its localitrans. The initial state of a local
automaton is given by the projection of’® onto the particular process. The final state of any
run is the global final state along the maximal events. We lsatythe MPAA accepts an MSC
if there is an accepting run over it.

An example of a message-passing automata with two processesith the synchroniza-
tion messages as {o,x} is illustrated in Figlrel4.3. The diagonly shows the behaviour of
the two local automata.
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Figure 4.3: Example of an MPA

Now, we move over to the logical characterisation of MSCsr this, we fix the supply
of first-order variables to be Var = {x,y, ...} denoting evenh a graph while the supply of
Second-Order variables are from VAR={X,Y,...} denotindgoset of events in a graph.

Definition 4.1.3(MSO overDG(X, C)).

MSOE,C) over the clas®G(X, C) are built up from the atomic formulas(x) = a (for a
€ ), x<.y (for ce C), x¢ X and x=y and then, as usual, we close under boolean opemation
and quantifications of first-order as well as second-ordetalaes.

Now, given a graph G £E, {<.}.cc, A) € DG, and two nodes e,e G, we define d(e,e’)
as k, the minimum natural number such that there is a sequdredements g...,. € E with
e=e, =€’ and e<.e,, or e, <.e foreachic {0, . . ., k- 1}. If there is no such natural
number k, then g(e, ¢’) = oco. For some R N, an R-sphere DG(X, C) is a graph denoted
by H=(E, {<.}cec, A, 7), Wherey is the distinguished element called the center such that for
any node e= F, dy(v,e) <R.

Definition 4.1.4(Graph Acceptor)
A graph acceptor over’{,C) is a structureB = (Q, R,S,0cc) where

* Qisits nonempty finite set of states
* R € Nis the radius
» Sis afinite set of R-spheres over « Q,C) and

* Occ is a boolean combination of conditions of the form “gghtd € S occurs at least n
times” where ne N.

Any formulag in EMSO@Z, C) is of the form3 X 3 X,...3X; (X1, Xo, ..., Xi), wherey is
a first order formula. Now, if we consider graphs wherein eamihe in addition to the alphabets
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from X is also labeled with the k-tuple vector {0/1}then, checking for satisfiablility of EMSO
over these graphs with the canonical semantics reducegtgidy the satisfiability of the inner
core FO sentences.

The graph acceptor is an automata-theoretic approach todakeequivalence described in
the discussion of Hanf’s theorem. A run of the graph accept@ny graph G £E, {<.}cec, A) €
DG(X, ), is given byp : E — @ such that for any & E, the R-sphere of G around e is iso-
morphic to some sphere &S. The runp is said to be accepting if it satisfies OCC.

4.2 Equivalence between MPA AND EMSQysc

Theorem 4.2.1.For any classk C DG(3, C) of bounded-degree , EMSO= G A,

Note that for any graph G £FE, {<.}.ec, ) € MSC , the degree of G is bounded by
3 and hence it holds that for any EMSO formuglaover M[SC, we can find a corresponding
graph-acceptor B that accepts the same language as thptetbg .

Theorem 4.2.2.MPA <— EMSQy;5¢

Proof Sketch of Theoremd.2.2

The proof for the direction#=>) is done using the standard translation of an automata to an
EMSO formula.This method involves guessing a set of staitegs the MPA to label the MSC
with and then, checking that the guessed set of states forsssond order variable is a valid
run of the MPA. Finally, we have to add a clause that the stateslling the maximal nodes
belongs to the set of final states of the MPA.

The other direction (MPA— EMSO,,s¢) is the harder one and we use graph acceptors
as an intermediate stage before constructing the actual Wi#A the EMSO formula. By
Theoreni4.2]1, and the fact that an MSC is a graph of maximugrede3, it follows that for
any ¢ € EMSQO,,5¢, we have an equivalent graph accepfor (Q, R,S,0cc) that accepts the
same language of MSCs that are accepted.by

Having obtained an equivalent graph accefior (Q, R,S,0cc), from the formulap, we
construct an MPAA that accepts the same language as that acceptBd Dye idea behind the
construction is to create a message-passing automatomitmats the behaviour of the graph
acceptor. For this, the state of the automaton will be of thenfZ, a subset of the possible
spheres used in the graph acceptor alongwith some extnanaftmn.

Thus, for defining the states gf, we introduce what are called extended spheres, denoted
by ST={((E,{<c}eec; A, 7, €),1) | (B, {<c}eec: A7) € S,e € E,i € {0,1..4 - mazE* +
1}}. The maximum number of nodes of any sphereSiis denoted by maxE and the extra
distinguished node in the sphere is the active or curreng ioak is being read by the MPA.
Also we denote bys, C S, such that\(y) = pdq whileS}} C S* is the set of extended spheres
such that\(e) = pdq, wheref € {!,?7}, a send or a receive.
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Now, any local automaton4,,) of A, is given by ($, J,) where eacly € S, is of the form
(X,v) where XC S such that

(a) d exactly one sphere X where the active node and the center coincigde €).
(b) For any two spheres{ {<.}cec, X, 1.e)i), ((E', { < ece, N, ,€),1) € X,
* Ae) = A(€') € Act, x Q is the same.
o If (E,{<Qc}eec, A, 7,€),1) = (B, {<Lteeo, Ny, €),i)andi=ithene =¢’.

(c) v is a mappingS, — {0,...,maz(Occ)} and letr) be a function that sets every sphere
Re S, 10 0.

The set of messages isD 25" x 25" wherein, the first component of a message contains
obligations the receiving state/event has to satisfy, avtiie second component imposes re-
guirements that must not be satisfied by the receiving psdoesnsure isomorphism. Moreover,

s "= ((¢, v )pep and, for (S, 1) € S, (S, 13))per € F if the union of mappings, satisfies
Occ and, forallp= P and (E, <, \,v,¢e),i) € S, , e is maximal in (E, < p).

Let (S, v) and (5, V') be two states in Sand let (E, <, A, v, e), i) and (E', <', X, 7/, €'), ')
be two arbitrary spheres belongingfcand S’ repectively. Then, the definition of the p-local
transition relatiom,, is such that if (S, v), o, (P, N), (S', V")) € A, then the following hold:

1. M(S") = (o,q) , for some e Q.

2. If (B, 9, \,7) = (F', <, N,v), andi =7/, then eq,€e’.

3. Ife’is not minimal in &', <,), then3 ((£', <', X',+/,e7),7’)) € S such thate<, e.
4. If eis not maximal in £, <,), then3 ((E, <, \,v,e™),7)) € S" such that eq,, et.
5. If S# ¢ and e’ is minimal in £, <,) then, d(e’y")=R.

6. If eis maximalin ¢,, <,), then, d(ey)=R.

™~

() In case thatr = p!q for some ¢¢ P :

(@) Foranye'e F',ife’<.e”, then (E', <, N,~,e"),i") € P.

(b) Foranye’c F',if =(¢’ <. €”), then (E', <', N, 7, €"),I") € N.

() F((E,<,\,v.e))ePAJe € E( <.e) = ((F,<, A, v,e),) €S
(ii) In case thatr = p?q for some ¢ P :

(@) PCS

(b) NNS' =¢, and

(c) Foranye’e F',ife"<.e’then (E', <', N, ~,€),l") € P.
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8. v =v[e(5")/min{v(c(S")) + 1, max(Occ)}] (Where c(S’) is a sphere in S’ such that the
center is the active node) is basically the same asexcept for the value of c(S’)).

Thus, from the definition of B, we have described the corradpay automatond. Now,
to complete the proof for the Theordm 4]2.2, all we need tavsisathat L(B) = L(A4). To
show that any MSC,M =K, <1, \, v), accepted by B will also be accepted dywe first assign
p: E — @ to be the accepting run of B on M.

Givenp, it is easy to break up the marking into pieces and distrithuten and mark each
event in the MSC by a subset of extended spheféss@ch that each sphere in the set reflects
the local structure of the MSC. Also we fix the values of i inleagtended sphere such that
there are no isomorphic copies denoting different centréise same set with the same i value.
Then, itis easy to argue that this marking is a valid rupdain M.

The other direction is slightly more involved as we have toverthat anything thayd
accepts is also accepted by B. For this, we assume an aggetiof.4 on M. As each set has
a distinct center, we obtain the mappin@s the projection of the state of the set labelling the
sphere with center as the current event onto the event.

Now, that we have the mapping, we have to show that this mgppiactually acepting for
B. That is done by showing that the extended sphere actuailyiates the MSC and the MSC
simulates the extended sphere. The heart of the mattetti$ tha MPA finds a run in the MSC
then, the local spheres actually represent the local neigthiood in the MSC and vice versa.
This then entails that the rynwill also be accepting for B.

O

4.3 Infinite hierarchy of MSO over MSCs

Theorem 4.3.1.The monadic quantifier alternation hierarchy over MSC isnié.

Proof Sketch of Theorem4.3.1l

The idea is to use the theorems from Chapter 3 with some matidfits to obtain similar
results for MSCs. First, the emebddings of the grids intdMIs€ are discussed. Then, we show
that the set of MSCs that are a valid embedding of some gridofge M(n,m) for some n,m
€ N) can be expressed in EMSO. Having done that, we show howrisl&i@ any>, formula,
¢, over grids to an equivaleit, formula,¢’ over the family M(n,m)¥n, m € N.

Finally, the main proof of Theorem 4.3.1 is in the same spsithat discussed over grids.
However, here we construct an MPA instead of an NFA to showadhg function g N —
N definable in%; is at most §(O(n)) exponential. Then, we show that there is a particular
function f,;; : N — Nin X, that is not $(O(n)) exponential where,f: N — N and g(n)
are as defined in the Matz, Thomas paper over grids. To regéll) = 2" ands; ;(n) = 25+
while fo(n) = n and fi,1(n) = fi(n) - 2%, Clearly fi,1(n) ¢ s:(O(n)) but fi(n) € Si(n)
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(by the formula over grids and our embedding) and thus we agrttsat the MSO hierarchy
over MSCs is also infinite.

Now, to describe the embedding, we start of with a few exampteillustrated for some
sample grids in Figure 4.4. We need an MSC with only two preegso embed any arbitrary
grid and the figure illustrates the embedding for the grid4 33x2 and 3« 3.

(1,1) 112 »s 221
(1,1 112 > 271 1211 (1,2
3211 (1,2) (2,1) 1123 3271
2,1) 1121 >l 271 1211 (2,2
1211 (2,2) (3,1) 1121 3271
(1,1) 112 2721 (3,1) 1123 >3 271 1?2‘/ 1211 (3,2
1?2‘/ 121 (32) (1,3) 112} 1271
2.1) 112 3221 1?2‘/
1223 (2,3) 1123 / >3 271
(3,1) 112 »1271 1223
122! (3,3) 1121 »1271
(a) 3x1 (b) 3x2 (c) 3x3

Figure 4.4: Embedding of grids into MSCs

The grids are basically “folded” such that any point on thd grrepresented by a send event
and any send event in the MSC corresponds to a point on theTgr@lMSC, by definition has
to have the receive events for these sends as the chann&ssless and these receive events
are also used to ensure proper alignment and to capture iy faf M(n,m) by an EMSO
formula. Formally, M(n,m) is given by its projections asléols,

(112)[(172)(112)](m=D/2)if m is odd

M(n,m) | {Act;,{1}} = { (1!2)n[(1?2)(1!2)](n'((m/2)*1)) if m is even

[(271)(2!1)]0(m=D/2)(271)» if m is odd

M(n,m) | {Acty, {2}} = { [(271)(2!1)](n~(m/2)) if m is even

Theorem 4.3.2.For each ke N, the MSC languagéy f) is X 3-definable.

Theorem 4.3.3.Let f : N — N be a function. IfL(f) is (X,)-definable over MSC for some Kk,
where k> 1, then f (n) is ins,(O(n)).

The EMSO-sentence that defines the set of all grid foldings lma defined byqr =
IXyar(X) (over MSCs) with first-order kernebg-(X) by saying that there is a chain of
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events iterating between process 1 and 2 and each chairstoofsalternating send and receive
events.The second variabl&s= { X, X,} is enough for expressing the above formula.

From theX, formulag = 3Y,VY5...3/VY,.¢' (Y1, ..., Y;.) with a core first order formula’
over grids, we obtain the equivalen} formulaV,, over M(n,m), given by

3Z3AXAYVIVY,... 3/YY5 (Vvottom (Z) A Ve (X) A6/ (Y, ..., Yi) |l 2)

wherevy.om (Z) ensures that Z refers only to the points at the end of any columd it can
be constructed by taking the chain of elements from the lastirmal receive on any process
1 or 2. This is done to ensure that the vertical successormuaea®fer to any point that is not
actually a vertical successor. Then, obtaining the comesimg inner formuld ¢’ (Y1, ..., Y3) || 2
is simply a matter of redefining the atomic formuldgz, y), Sa(x, y), | 3¢||~ to refer to the
appropriate formulae in M(n,m).
O

Thus, in summary, MPA=EMS{)s- ; MSO,,;sc and hence it entails that MPA is not
closed under complementation, which was the original natitwm for the paper J1].
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