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Quantum three-rotor problem in the identity representation
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The quantum three-rotor problem concerns the dynamics of three equally massive particles mov-
ing on a circle subject to pairwise attractive cosine potentials and can model coupled Josephson
junctions. Classically, it displays order-chaos-order behavior with increasing energy. The quantum
system admits a dimensionless coupling with semiclassical behavior at strong coupling. We study
stationary states with periodic ‘relative’ wave functions. Perturbative and harmonic approxima-
tions capture the spectrum at weak coupling and that of low-lying states at strong coupling. More
generally, the cumulative distribution of energy levels obtained by numerical diagonalization is well-
described by a Weyl-like semiclassical estimate. However, the system has an S3×Z2 symmetry that
is obscured when working with relative angles. By exploiting a basis for invariant states, we obtain
the purified spectrum in the identity representation. To uncover universal quantum hallmarks of
chaos, we partition the spectrum into energy windows where the classical motion is regular, mixed
or chaotic and unfold each separately. At strong coupling, we find striking signatures of transitions
between regularity and chaos: spacing distributions morph from Poisson to Wigner-Dyson while
the number variance shifts from linear to logarithmic behavior at small lengths. Some nonuniver-
sal features are also examined. For instance, the number variance saturates and oscillates at large
lengths for strong coupling while deviations from Poisson spacings at asymptotically low and high
energies are well-explained by purified quantum harmonic and free-rotor spectra at strong and weak
coupling. Interestingly, the degeneracy of free-rotor levels admits an elegant formula that we deduce
using properties of Eisenstein primes.
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I Introduction

The study of quantum manifestations of chaos and the
transition from regular to chaotic behavior in Hamilto-
nian systems has been a fertile area of research with
several applications such as to the electronic states of
a donor impurity in a semiconductor crystal [1] and to
quantum dynamical localization and transport [2]. The
development of quantum chaology has benefited from the
study of several model systems such as billiard problems
[3], the anisotropic Kepler problem [1], free particle mo-
tion on constant negative curvature Riemann surfaces [4],
kicked rotors and tops [5] and the planar elastic pendu-
lum [6]. Some themes that have emerged from these stud-
ies in quantifying quantum chaos are energy level spac-
ing statistics (level repulsion and avoided crossings) [7],
trace formulae and sums over periodic orbits as a bridge
between classical and quantum mechanics [1], the na-
ture of Wigner and Husimi functions [8], nodal patterns
of wave functions [9] and out-of-time-ordered correlators
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[10, 11]. These investigations have revealed both uni-
versal features (modeled by random matrix ensembles)
depending only on the symmetry class of the model as
well as system-dependent features (such as oscillations in
the spectral rigidity) on various scales [12].

In this paper, we focus on the quantum three-rotor sys-
tem that models a chain of coupled Josephson Junctions
[13–16]. Interestingly, the classical version has also been
found to display rich features [17, 18]. In the classical
three-rotor problem, point particles of mass m move on
a circle of radius r subject to attractive cosine interparti-
cle potentials. If the rotor angles are denoted θ1,2,3, then
their total energy is

Ecl =
mr2

2
(θ̇21 + θ̇22 + θ̇23) + g[3− cos(θ1 − θ2)

− cos(θ2 − θ3)− cos(θ3 − θ1)]. (1)

In terms of the center of mass angle ϕ0 = (θ1 +θ2 +θ3)/3
and relative angles ϕ1 = θ1 − θ2 and ϕ2 = θ2 − θ3, the
energy of relative motion is

E =
mr2

3

(
ϕ̇2
1 + ϕ̇2

2 + ϕ̇1ϕ̇2

)
+ g[3− cosϕ1 − cosϕ2 − cos(ϕ1 + ϕ2)]. (2)

In the application to coupled Josephson junctions, rotor
angles correspond to superconducting phases of metallic
segments [16]. Quite apart from this physical realiza-
tion, the three-rotor problem is interesting for its rich
dynamics. For instance, it displays order-chaos-order
behavior with increasing relative energy E and a glob-
ally chaotic phase (5.33g . E . 5.6g) where the dy-
namics has been argued to be ergodic and mixing [18].
Intriguingly, the transition to widespread chaos around
E = 4g seems to be associated with (i) an accumulation
of a doubly infinite sequence of fork-like isochronous and
period-doubling bifurcations [16] in the pendulum family
of periodic orbits and (ii) a loss of strict positivity in the
curvature of the Jacobi-Maupertuis metric on the config-
uration space [17]. Several other remarkable phenomena
concerning the classical three-rotor problem have been
reported in Refs. [16–18].

A natural question concerns the quantum dynamics of
three rotors and in particular, quantum manifestations
of its order-chaos-order behavior. In this paper, we ini-
tiate the study of the quantum three-rotor problem and
address this question by examining the spectrum of sta-
tionary states and investigate both universal as well as
system-specific properties. We begin in Section II by for-
mulating the quantum theory via canonical quantization.
The parameters m, r and g of the classical system do not
admit any dimensionless combination. Thus, the energy
E of a state in units of g served as a dimensionless clas-
sical control parameter, with order-chaos-order behavior
with increasing energy [17]. A distinctive feature of the
quantum system is the possibility of using Planck’s con-
stant to define a dimensionless coupling g̃ = gmr2/~2,
which helps in organizing the quantum theory. The weak
coupling limit g̃ → 0 is an extreme quantum limit while

semiclassical behavior may be expected when g̃ is large.
In Section II C, we show that the passage from rotor an-
gles to center of mass and relative angles also entails new
features following from the requirement that the wave
function be singlevalued. The center of mass and rela-
tive wave functions arising from separation of variables
in the Schrödinger eigenvalue problem must satisfy any
one of three ‘periodicity up to a phase’ boundary condi-
tions, labelled by the cube roots of unity. In the sequel,
we restrict to the simplest type of boundary condition
and the corresponding sector with center of mass angular
momentum quantum number ` divisible by 3. Although
the use of relative angles reduces the number of degrees
of freedom, it obscures an S3 × Z2 permutation-parity
symmetry of the model. In Section II D, we identify the
action of this group on relative angles. It will be seen to
play a crucial role in ‘purifying’ the energy spectrum into
irreducible representations.

Section III contains results that employ variational,
perturbative and harmonic approximations. Our vari-
ational ansatz accurately captures the energy of the
ground state over the entire range of values of g̃ from
weak to strong coupling. Perturbation theory reveals the
pattern of energy level degeneracies and their breaking at
weak coupling. By exploiting number theoretic proper-
ties of the ring of Eisenstein integers, we derive a closed
form expression for the unperturbed level degeneracies
in terms of prime factorization and explain why (with
the exception of the ground state) they are multiples of
6 (details are provided in Appendix A). On the other
hand, our harmonic approximation around the ground
state retains the S3 × Z2 symmetry and works well for a
significant number of low lying states at strong coupling.

In Section IV, we begin by describing a spectral
method for numerical diagonalization of the relative
Hamiltonian in a Fourier basis. We find that, aside from
the very low-lying states, the cumulative distribution of
energy levels is closely captured by a Weyl-like semiclas-
sical approximation that we derive. To examine spec-
tral statistics and its universality, we need to ‘purify’ the
spectrum, i.e., decompose it into unitary irreducible rep-
resentations of S3 × Z2. After enumerating these repre-
sentations in Section IV B, we restrict attention to the
identity representation. A basis for the invariant states
carrying this representation is constructed and the ma-
trix elements of the Hamiltonian are found in this basis.
Numerical diagonalization of a truncated Hamiltonian of
size ∼ 3×104 in this basis allows us to reliably determine
the lowest ∼ 104 levels and their spacings.

Having obtained the purified spectrum in the iden-
tity representation, we examine the statistics of near-
est neighbor spacings in Section V. To look for quantum
manifestations of the classical order-chaos-order behavior
with increasing energy, we first consider the semiclassical
regime of large g̃ & 1000. Here, we partition the spec-
trum into energy windows where the classical dynamics is
regular, mixed and chaotic, and unfold each separately to
have approximately unit mean spacing. This enables us
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to glimpse striking universal signatures of the transitions
between regularity and chaos that were hidden in the un-
purified or unpartitioned spectrum: spacing distributions
morph from Poisson to Wigner-Dyson (Gaussian orthog-
onal ensemble, since the Hamiltonian is time-reversal in-
variant and real symmetric) and back. However, even
in the semiclassical regime, the low-lying spectrum does
not show Poisson statistics, although the classical dy-
namics is nearly integrable. Interestingly, the behavior
at low energies is accurately captured by a purified ver-
sion of our harmonic approximation (Section V B). On
the other hand, in the weak coupling limit of small g̃, we
see departures from universal semiclassical expectations.
In fact, in Section V C, we see signatures of the puri-
fied free-rotor spectrum superposed on the semiclassical
Poisson distributions of spacings at high energies.

Section VI is devoted to another spectral statistic: the
number variance Σ(L). It is the variance in the num-
ber of unfolded levels in a spectral window of length
L. The variance is computed via an ensemble average
over the centers of such spectral windows. As with level
spacings, we find that evaluating the number variance in
energy windows where the classical dynamics is chaotic
or regular facilitates interpretation and comparison with
universal expectations for small L from the Gaussian or-
thogonal ensemble and a Poisson process. We find that
for relatively large g̃, the number variance in classically
regular (for g̃ = 300) and chaotic (for g̃ = 6000) en-
ergy windows shows the expected linear and logarithmic
behavior for small L and then displays saturation and
nonuniversal oscillations when L is larger. We conclude
in Section VII with a brief discussion of our results and
open questions and conjectures inspired by our work.

II Formulation

The classical Hamiltonian for the equal-mass three ro-
tor system is

Hcl =

3∑
i=1

{
π2
i

2mr2
+ g[1− cos (θi − θi+1)]

}
(3)

with θ1 ≡ θ4 and g > 0 the strength of the attractive
coupling. Here, θi are the rotor angles and πi their con-
jugate angular momenta: {θi, πj} = δij [17]. Quantizing
canonically by taking πi = −i~∂θi , we get the quantum
Hamiltonian

Htot =

3∑
i=1

− ~2

2mr2
∂2

∂θ2i
+ g[1− cos(θi − θi+1)]. (4)

A Center of mass and relative variables

As in the classical theory[17], it is convenient to intro-
duce center of mass (CM) and relative anglesϕ0

ϕ1

ϕ2

 =

1/3 1/3 1/3
1 −1 0
0 1 −1

θ1θ2
θ3

 , (5)

in terms of which Htot = HCM +H where

HCM = − ~2

6mr2
∂2ϕ0

and H =
~2

mr2
T + gV (ϕ1, ϕ2)

with T = −
(
∂2ϕ1
− ∂ϕ1

∂ϕ2
+ ∂2ϕ2

)
and V = − [cosϕ1 + cosϕ2 + cos(ϕ1 + ϕ2)− 3] . (6)

Here, the conjugate momenta are represented by pj =
−i~∂ϕj for j = 0, 1 and 2.

B Nondimensional coupling and Hamiltonian

The classical three-rotor model has three parameters
m, g and r. Since their dimensions are independent, the
classical theory does not admit any dimensionless pa-
rameter. However, physical quantities may be nondi-
mensionalized by measuring them in units of suitable
combinations of m, r and g. For instance, energies of
states may be measured in units of g and time in units
of
√
mr2/g. On the other hand, the quantum theory

admits one dimensionless parameter due to the introduc-
tion of Planck’s constant. We may take this dimension-
less parameter to be the coupling constant g̃ = mr2g/~2.
Thus, upon nondimensionalization, measured values of
physical quantities (eigenvalues of observables) become
dimensionless functions of g̃. Two limiting values of g̃ are
noteworthy. The weak coupling limit or extreme quan-
tum limit is the one where g̃ → 0. The strong coupling
limit g̃ →∞ is a semiclassical limit.

Bearing this in mind, it is convenient to define a di-
mensionless Hamiltonian. In fact, there are two obvious
possibilities

H̃ =
H

g
=

1

g̃
T + V and Ĥ =

H

~2/mr2
= T + g̃V,

(7)

which are related by Ĥ = g̃H̃ = (g̃/g)H. We will denote

the eigenvalues of H, Ĥ and H̃ by E, Ê and Ẽ. Similarly,
ÊCM denotes eigenvalues of ĤCM.

C Separation of variables and boundary conditions

The boundary conditions (BC) on the wave function Ψ
in the CM and relative variables follow from the require-
ment that it be single-valued when viewed as a function
of the 2π-periodic rotor angles θ1,2,3. For instance, from
(5), θ1 7→ θ1 + 2π implies that ϕ0 7→ ϕ0 + 2π/3 and
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ϕ1 7→ ϕ1 + 2π. Thus, we have the following ‘boundary’
conditions on Ψ(ϕ0,1,2):

Ψ(ϕ0,1,2) = Ψ(ϕ0 ± 2π/3, ϕ1 ± 2π, ϕ2)
= Ψ(ϕ0 ± 2π/3, ϕ1, ϕ2 ∓ 2π)
= Ψ(ϕ0 ± 2π, ϕ1, ϕ2). (8)

Since Htot is a sum of CM and relative energies, we
may factorize Ψ(ϕ0, ϕ1, ϕ2) = Υ(ϕ0)ψ(ϕ1, ϕ2) in the
Schrödinger eigenvalue problem HtotΨ = EtotΨ. We now
derive BCs on ψ(ϕ1, ϕ2) and Υ(ϕ0) by imposing (8). To
begin with, (8) implies

Υ(ϕ0) = Υ(ϕ0 ± 2π) and
Υ(ϕ0)ψ(ϕ1, ϕ2) = Υ(ϕ0 ± 2π/3)ψ(ϕ1 ± 2π, ϕ2)

= Υ(ϕ0 ± 2π/3)ψ(ϕ1, ϕ2 ∓ 2π). (9)

Now, without loss of generality, we may write

ψ(ϕ1 + 2π, ϕ2) = $1(ϕ1, ϕ2)ψ(ϕ1, ϕ2), (10)

for some function $1(ϕ1, ϕ2). This by (9) implies

Υ(ϕ0 + 2π/3) = $1(ϕ1, ϕ2)−1Υ(ϕ0). (11)

Thus $1 must be a constant which again by (9) must be
a cube root of unity:

Υ(ϕ0) = Υ(ϕ0 + 2π) ⇒ $3
1 = 1. (12)

Similarly, we may write

ψ(ϕ1, ϕ2 − 2π) = $2(ϕ1, ϕ2)ψ(ϕ1, ϕ2) (13)

which by (9) implies

Υ(ϕ0 + 2π/3) = $−12 Υ(ϕ0). (14)

From (11) and (14), $1 = $2 ≡ $. In summary, the
BCs on the CM and relative wave functions are

Υ(ϕ0 + 2π/3) = $−1Υ(ϕ0) and
ψ(ϕ1 + 2π, ϕ2) = ψ(ϕ1, ϕ2 − 2π) = $ψ(ϕ1, ϕ2) (15)

where $ must be a cube root of unity. Hence, we arrive
at the CM and relative Schrödinger eigenvalue problems
which must be solved subject to (15):

− 1

6
∂2ϕ0

Υ = ÊCMΥ and [T + g̃V ]ψ = Êψ (16)

with Êtot = ÊCM + Ê. Although the BCs for $ 6= 1
render Υ and ψ discontinuous (say at 0, ±2π/3 on the
ϕ0-circle and along the two cycles ϕ1,2 = 0 on the ϕ1-ϕ2

torus), the total wave function Ψ is nevertheless contin-
uous.

The center of mass eigenvalue problem is particularly
simple with the solutions

Υ(ϕ0) = ei`ϕ0 and ÊCM = `2/6 (17)

where ` is an integer with ` ≡ 0, 1, 2 (mod 3) accord-
ing as $ = 1, e4πi/3 and e2πi/3. All CM energy levels
other than ECM = 0 are doubly degenerate (clockwise
and counterclockwise rotation of the CM corresponding
to ` and −`) and is a consequence of the parity symme-
try θi 7→ −θi. For simplicity, we will henceforth restrict
attention to the case $ = 1 and take ` = 0 so that the
CM is at rest. In this case, the BC on ψ(ϕ1, ϕ2) reduces
to 2π periodicity in each relative angle.

g acts on (θ1, θ2, θ3) acts on (ϕ1, ϕ2) acts on (m,n)

e (θ1, θ2, θ3) (ϕ1, ϕ2) (m,n)

π (−θ1,−θ2,−θ3) (−ϕ1,−ϕ2) (−m,−n)

τ12 (θ2, θ1, θ3) (−ϕ1, ϕ1 + ϕ2) (n−m,n)

τ23 (θ1, θ3, θ2) (ϕ1 + ϕ2,−ϕ2) (m,m− n)

τ31 (θ3, θ2, θ1) (−ϕ2,−ϕ1) (−n,−m)

σ123 (θ2, θ3, θ1) (ϕ2,−ϕ1 − ϕ2) (−n,m− n)

σ132 (θ3, θ1, θ2) (−ϕ1 − ϕ2, ϕ1) (n−m,−m)

TABLE I: Action of the elements of the parity Z2 = {e, π}
and permutation S3 = {e, τ, σ} groups on rotor angles θ1,2,3,
relative angles ϕ1,2 and the Fourier basis element (m,n) ≡
ei(mϕ1+nϕ2)/2π. The action of ordered pairs of elements of
Z2 and S3 is obtained by composition. Under this action,
Z2 × S3 is a symmetry of Htot as well as of H.

D Symmetries of the three-rotor system

Simultaneous rotation of rotor angles θj → θj + θ by
any fixed θ is a symmetry of Htot = HCM +H. It takes
ϕ0 → ϕ0 + θ but acts trivially on the relative angles ϕ1,2

so that it is a symmetry of HCM but not H. The system
also admits discrete symmetries. Htot is symmetric under
G = S3×Z2 where S3 = {e, τ12, τ23, τ31, σ123, σ132} is the
group of permutations of the rotor angles and Z2 = {e, π}
is the parity group with π taking θj → −θj (see Table I).
These continue to be symmetries of the relative Hamilto-
nian H with the action on relative angles given in Table
I. The CM angle ϕ0 is invariant under rotor permuta-
tions but reverses sign under parity. As a consequence,
HCM is also invariant under G. These discrete symme-
tries will play a crucial role in ‘purifying’ the spectrum
of the Hamiltonian into irreducible representations of G.

III Some approximate results

Here we discuss variational, perturbative and harmonic
approximations that allow us to understand the spectrum
of the relative Hamiltonian Ĥ in limiting cases. They also
help to validate our numerical approach to diagonalizing
the Hamiltonian in Section IV.

A Variational approach

We will obtain a variational upper bound on the
ground state energy

Ê0 = min
ψ
〈ψ|Ĥ|ψ〉/〈ψ|ψ〉 (18)

by minimizing over a class of wave functions obeying ap-
propriate boundary conditions. For $ = 1, from (15),
the wave functions and their first partial derivatives in
ϕ1,2 must be 2π-periodic. A constant trial function
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(a) (b)

FIG. 1: (a) Variational ground state energies of Ĥ (blue
dots) as a function of g̃ based on the ansatz ψ ∝ e−aV are very
close to the numerical values (red squares). Optimal values of
the variational parameter a are also shown (black stars). (b)
The variational ground state normalized probability density
on the −π ≤ ϕ1, ϕ2 ≤ π torus for g̃ ≈ 0.3 where a = 0.3. The
state is localized around the minimum (0, 0) of the potential
V (6).

ψ leads to the crude upper bound Ê0 ≤ 3g̃. A bet-
ter ansatz with dimensionless variational parameter a is
given by ψ(ϕ1, ϕ2) = e−aV , which automatically satisfies
the BCs as V (ϕ1, ϕ2) (6) is periodic. The expectation
values and optimal values of a are found numerically for
10−3 ≤ g̃ ≤ 100. The resulting variational estimates for
Ê0(g̃) and optimal a(g̃) are plotted in Fig. 1. They com-
pare favorably with the results of numerical diagonaliza-
tion in Section IV. For instance, for g̃ = 1, the variational
estimate Êvar

0 ≈ 1.62 for the optimal value a ≈ .68 is

quite close to the numerically obtained Ê0 ≈ 1.593. By
fitting the variational estimates over the above range of
g̃, we find the following asymptotic behaviors:

Êvar
0 ≈

{
3g̃ − 1.5g̃2 as g̃ → 0
√

3g̃ as g̃ →∞
and

a ≈

{
g̃ as g̃ → 0√
g̃/e as g̃ →∞.

(19)

In the weak coupling limit (g̃ → 0), this variational es-
timate matches the ground state energy obtained from
second order perturbation theory in Section III B. More-
over, in this limit, a→ 0 and the optimal trial wave func-
tion approaches the constant ground state wave function
of noninteracting rotors. On the other hand, in the semi-
classical (g̃ →∞) limit, a→∞, and ψ is concentrated at

the minimum of V with Ẽvar
0 ∼

√
3/g̃ → 0, in agreement

with the vanishing energy (in units of g) of the classical
ground state [17].

B Perturbative approach

Here we use first order perturbation theory for the
Hamiltonian Ĥ = T + g̃V (7) to estimate the ener-
gies of several low-lying states. The eigenvalues of T
are of the form m2 + n2 − mn where m and n are in-
tegers corresponding to the Fourier eigenmodes em,n =

x

y

−ω2 (1, 1)

−ω (0,−1)

1 (1, 0)−1 (−1, 0)

ω (0, 1)

ω2 (−1,−1)

(1, 2)

(1,−1)

(2, 1)

FIG. 2: Eigenstates of kinetic energy T , represented as
(m,n) pairs on the Z+ωZ lattice on the complex plane for ω =

e2πi/3. Rotations by elements of the cyclic group C6 = 〈eiπ/3〉
are symmetries of the lattice that preserve the distance |m+
nω| from the origin (and hence preserve the eigenvalues of T ).
So the cardinality of each orbit must be divisible by 6 implying
that the degeneracies are multiples of 6. Dashed (red) and
solid (blue) arrows point to two such orbits corresponding to
energies T = 1 and T = 3.

ei(mϕ1+nϕ2)/2π. The first few eigenenergies T along with
their degeneracies d are T d = 01, 16, 36, 46, 712, 96, 126

and 1312. Aside from the ground state, the degenera-
cies must be multiples of six. To see this, notice that
m2 + n2 −mn = |m+ nω|2 where ω = e2πi/3 (or e4πi/3)
is a nontrivial cube root of unity. Hence, we may view
the energy eigenvalue m2 + n2 −mn for m,n ∈ Z as the
square of the distance from the origin to the point m+nω
lying on the triangular integral lattice spanned by (1, ω)
in the complex plane, as shown in Fig. 2. The vertices of
this lattice labelled (m,n) represent the linearly indepen-
dent eigenstates em,n of the kinetic energy T . The cyclic

group C6 of rotations generated by eiπ/3 (sixth roots of
unity) is a symmetry of the lattice that preserves the dis-
tance from the origin. Thus, the number of lattice points
at a fixed distance from the origin must be a multiple of
six. In fact, using further properties of the Unique Fac-
torization Domain Z + Zω, one may obtain an explicit
formula for the degeneracies. Suppose the eigenenergy T

has the prime factorization 3γpα1
1 · · · pαrr qβ1

1 · · · qβss , where
pi ≡ 1 mod 3 and qi ≡ 2 mod 3 with βi even. Then the
degeneracy of the eigenvalue T is (see Appendix A)

degen(T ) = 6(α1 + 1)(α2 + 1) · · · (αr + 1). (20)

If any of the βi is odd, then T cannot arise as an
eigenvalue and the ‘degeneracy’ vanishes. For example,
T ∈ {1, 3, 4 = 22, 9 = 32, 12 = 223} have no prime factors
congruent to 1 modulo 3 and the β’s are even so that all
these degeneracies are equal to 6. T = 7 and T = 13
are both primes ≡ 1 (mod 3) so that r = 1, α1 = 1 and
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γ = s = 0 leading to a degeneracy of 12 for both lev-
els. These multiplicities agree with the ones given at the
beginning of this section.

The ground state e0,0 of the noninteracting system T

is nondegenerate with Ê
(0)
0 = 0 and ψ

(0)
0 = 1/2π. This

implies that

Ê
(1)
0 = 〈1/2π|V |1/2π〉 = 3. (21)

Thus, to the first order, Ê0 ≈ Ê
(0)
0 + g̃Ê

(1)
0 = 3g̃. At

second order, Ê
(2)
0 = −1.5, so that Ê0 ≈ 3g̃ − 1.5g̃2. For

small g̃, this agrees well with the numerically obtained
ground state energy as well as our variational approxi-
mation (see (19) and Fig. 1).

The first excited state of T is 6-fold degenerate with en-

ergy Ê
(0)
1 = 1 and the eigenspace is spanned by e±iϕ1/2π,

e±iϕ2/2π and e±i(ϕ1+ϕ2)/2π. We find that the matrix
representation of V has eigenvalues 2, 2.5, 2.5, 3.5, 3.5
and 4. Thus, to first order in degenerate perturbation
theory, we have

Ê1 = 1 + 2g̃, Ê2,3 = 1 + 2.5g̃

Ê4,5 = 1 + 3.5g̃ and Ê6 = 1 + 4g̃. (22)

We find that this agrees well with the low-lying spectrum
derived numerically for small g̃ . 0.15. For the second
and third excited states of T , first order perturbation
theory does not break the 6-fold degeneracies, and we
get Ê7−12 = 3 + 3g̃ and Ê13−18 = 4 + 3g̃. However, the
12-fold degenerate 4th excited state of T splits into two
6-fold degenerate levels Ê19−24 = 7 + 2.5g̃ and Ê25−30 =
7 + 3.5g̃.

C Harmonic approximation around ground state

In Jacobi-like coordinates ϕ± = ϕ1 ± ϕ2, the kinetic
energy operator (6) becomes diagonal:

Ĥ = −
(
∂2ϕ+

+ 3∂2ϕ−

)
− g̃
[

cos
ϕ+ + ϕ−

2

+ cos
ϕ+ − ϕ−

2
+ cosϕ+ − 3

]
. (23)

In the harmonic approximation around the classical
ground state, ϕ± are small and the Hamiltonian

Ĥharm = −
(
∂2ϕ+

+ 3∂2ϕ−

)
+
g̃

4
(3ϕ2

+ + ϕ2
−) (24)

splits into a pair of uncoupled linear oscillators so that

Êharm
m,n =

√
3g̃(m+n+1) for m,n = 0, 1, 2, · · · . (25)

Pleasantly, the S3 ×Z2 symmetry of the three-rotor sys-
tem survives the harmonic approximation. The action of
group elements on ϕ± deduced from Table I are given in

Table II. It turns out that Ĥharm (24) is invariant under
this group action as we now argue. The kinetic energy is

g action on (ϕ+, ϕ−)

e (ϕ+, ϕ−)

π (−ϕ+,−ϕ−)

τ12 ((ϕ+ − ϕ−)/2,−(3ϕ+ + ϕ−)/2

τ23 ((ϕ+ + ϕ−)/2, (3ϕ+ − ϕ−)/2)

τ31 (−ϕ+, ϕ−)

σ123 (−(ϕ+ + ϕ−)/2, (3ϕ+ − ϕ−)/2)

σ132 (−(ϕ+ − ϕ−)/2,−(3ϕ+ + ϕ−)/2)

TABLE II: Action of the elements of the parity Z2 = {e, π}
and permutation S3 = {e, τ, σ} groups on Jacobi angles ϕ±.

FIG. 3: Lowest 100 numerically obtained eigenvalues of Ĥ
(red, lower) follow a pattern similar to that of the 2d harmonic
oscillator (blue, higher) provided g̃ is large.

unaffected by the approximation. To see the invariance
of the potential, we note that up to an additive constant,
it is proportional to ϕ2

1+ϕ2
2+(ϕ1+ϕ2)2 and observe that

elements of S3 permute the three terms while parity just
reverses the signs of ϕ1,2. The implementation of this
symmetry in the harmonic approximation will be rele-
vant to the purification of the spectrum to be discussed
in Section V B.

For large g̃ ≈ 300, we find that energies of low-lying
states are well captured by the harmonic approximation
as seen in Fig. 3. Although degeneracies of the 2d SHO
are somewhat broken, the multiplet structure (nth en-
ergy level being n-fold degenerate) is approximately re-
tained for the lowest few levels. This is to be expected
because for large g̃ (stiff spring), the low-lying states are
strongly localized around the classical ground state where
the harmonic part of the potential dominates. As g̃ is
increased, a larger number of low-lying levels (roughly

when m + n + 1 �
√
g̃/3) follow the harmonic approx-

imation. This observation suggests that we should omit
these low-lying states when comparing spectral statistics
with Poisson or Wigner-Dyson spacing distributions as
the spacing of an oscillator is quite different from the
latter ones, see Fig. 5.
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IV Numerical diagonalization and purification
of the spectrum

In this section, we first describe a scheme to determine
the spectrum of the relative Hamiltonian by numerical
diagonalization. The cumulative distribution function of
this ‘total spectrum’ is then compared with a Weyl-type
semiclassical asymptotic formula. We then address the
question of purifying the spectrum i.e., decomposing the
total spectrum into various irreducible representations of
the discrete symmetry group G = S3 × Z2. Finally, an
explicit basis forG-invariant states is constructed to com-
pute the purified spectrum in the identity representation.

A Total spectrum via Fourier basis

As mentioned in II C, for zero center of mass angular
momentum (` = 0), the wave function ψ must be 2π-
periodic in both ϕ1 and ϕ2. Such wave functions may be
expanded in an orthonormal Fourier basis

〈ϕ1, ϕ2|m,n〉 = em,n = ei(mϕ1+nϕ2)/2π ≡ (m,n). (26)

Noting that the potential V in (6) can be rewritten as

V = −1

2

(
eiϕ1 + e−iϕ1 + eiϕ2 + e−iϕ2

)
−1

2

(
ei(ϕ1+ϕ2) + e−i(ϕ1+ϕ2)

)
+ 3, (27)

the matrix elements of Ĥ are

Ĥa,b;m,n = 〈a, b|Ĥ|m,n〉
= δamδ

b
n

(
3g̃ + [m2 + n2 −mn]

)
− g̃

2

[
δbn(δam+1 + δam−1) + δam(δbn+1 + δbn−1)

]
− g̃

2

[
δam+1δ

b
n+1 + δam−1δ

b
n−1
]
. (28)

To find the eigenvalues of Ĥ, we proceed as follows. First,
we truncate the Fourier basis em,n to 0 ≤ |m|, |n| ≤ mmax

corresponding to the (2mmax + 1)× (2mmax + 1) integer
lattice on the plane centered at the origin. To get an or-
dered basis, we traverse this lattice columnwise upwards
starting from the south-west corner. This leads us to an
ordered orthonormal Fourier basis ei labeled by the single
index i(m,n) = (2mmax + 1)m+n+ 2m2

max + 2mmax + 1
with 1 ≤ i ≤ (2mmax + 1)2. The matrix elements

Ĥij = 〈ei|Ĥ|ej〉 are computed in this basis resulting
in a truncated Hamiltonian matrix of dimension N =
(2mmax + 1)2 that we diagonalize numerically. However,
the larger eigenvalues suffer from truncation errors. By
requiring that the eigenvalues do not change appreciably
when N is increased, we isolate the reliably computed
portion of the spectrum.

1 Density of states and Weyl’s law

A version of Weyl’s semiclassical law [19] for sys-
tems with a potential says that the asymptotic number

FIG. 4: Numerically computed number of energy levels
N(Ê, g̃) below energy Ê for g̃ = 300 (blue dots) agrees well

with semiclassical estimate of Eq. (33) (black dashes for Ê >

4.5g̃ and black circles for Ê < 4.5g̃). Asymptotically, N ∼
(2π/
√

3)(Ê − 3g̃).

N(E, ~) of energy eigenvalues below E is given by

N(E, ~) ∼ 1

(2π~)2

∫
H<E

dϕ1dp1dϕ2dp2. (29)

The RHS is simply the energetically-allowed phase space
volume in units of h2 = (2π~)2. Since N(E, ~) is di-
mensionless, it can depend on E and ~ only via the di-
mensionless energy Ê = E/(~2mr2) and coupling g̃ =
gmr2/~2. Introducing the dimensionless angular mo-

menta p̃i = pi/
√
gmr2 allows us to write

N(Ê, g̃) ∼ g̃

(2π)2

∫
Ĥ≤Ê

dϕ1dp̃1dϕ2dp̃2. (30)

Here, from (6),

Ĥ = T + g̃V = g̃[p̃21 − p̃1p̃2 + p̃22
+3− cosϕ1 − cosϕ2 − cos(ϕ1 + ϕ2)]. (31)

Formula (30) is expected to hold in a semiclassical limit

where Ê � 1 and/or g̃ � 1. To evaluate (30), the
angular momentum integral is performed first for fixed
(ϕ1, ϕ2) followed by an integral over the energetically al-
lowed Hill region of the configuration torus. For each
point (ϕ1, ϕ2), the energetically allowed region Rϕ1,ϕ2

in

angular momentum space is given by T ≤ Ê− g̃V . Defin-
ing K(ϕ1, ϕ2) = Ê/g̃ − V (ϕ1, ϕ2), the boundary of this
region is the ellipse

p̃21 − p̃1p̃2 + p̃22 = K(ϕ1, ϕ2). (32)

It may be brought to the standard form p̃2+/(2K) +

p̃2−/(2K/3) = 1 upon defining p̃± = (p̃1±p̃2)/
√

2, whence

it encloses an area 2πK/
√

3. Consequently,

N ∼ g̃

(2π)2

∫∫
K(ϕ1,ϕ2)≥0

dϕ1dϕ2

∫
Rϕ1,ϕ2

dp̃1dp̃2
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=
g̃

(2π)2

∫∫
K≥0

dϕ1dϕ2 (2π/
√

3)K(ϕ1, ϕ2). (33)

The angular integrals simplify if the rotors can explore
the whole of the configuration torus. This happens if
Ê > 4.5g̃ because T ≥ 0 and 0 ≤ V ≤ 4.5 leading to
N ∼ (2π/

√
3)(Ê − 3g̃). When Ê < 4.5g̃, the integral

(33) extends only over the energetically allowed region

V < Ê/g̃ of the ϕ1 − ϕ2 torus and is evaluated numeri-
cally. Fig. 4 shows that these semiclassical estimates are
in good agreement with the numerically obtained cumu-
lative distribution of levels for g̃ = 300.

B Purification of the spectrum

The Hamiltonian possesses the discrete symmetry G =
S3×Z2 (see II D). Thus the Hilbert space H spanned by
the Fourier modes em,n may be written as a direct sum
of subspaces that carry irreducible representations of G.
The Hamiltonian is block diagonal with respect to this
decomposition. To examine spectral statistics and its
universality, we must ‘purify’ the spectrum by isolating
the energy levels corresponding to each irreducible block
since the universal Poisson and Wigner-Dyson spacing
distributions expected in integrable and chaotic systems
do not incorporate any such discrete symmetries [7, 20].

1 Unitary irreducible representations of S3 × Z2

The group S3 (see Table I) has two 1d irreducible rep-
resentations (i) identity or trivial: ρi(g) = 1 ∀g ∈ S3, (ii)
sign: ρs(g) = −1 for transpositions and ρs(g) = 1 for
the remaining permutations and (iii) a 2d unitary rep-
resentation coming from the dihedral symmetries of an
equilateral triangle centered at the origin with vertices
labeled counterclockwise and with vertex 2 on the upper
vertical axis:

ρd(e) = ( 1 0
0 1 ) , ρd(τ12) =

1

2

(
1
√
3√

3 −1

)
,

ρd(τ23) =
1

2

(
1 −

√
3

−
√

3 −1

)
, ρd(τ31) = (−1 0

0 1 ) ,

ρd(σ123) =
1

2

(
−1 −

√
3√

3 −1

)
, ρd(σ132) =

1

2

(
−1

√
3

−
√
3 −1

)
. (34)

On the other hand, Z2 has only two irreducible represen-
tations, both of dimension one: the identity representa-
tion %i(g) = 1 for all g ∈ Z2 and the sign representation:
%s(e) = 1 and %s(π) = −1. Since the tensor product of
irreducible representations is an irreducible representa-
tion of the Cartesian product (see Section 2.6 of [21]), we
get six unitary irreducible representations of S3 × Z2:

(i) ρii(g1, g2) = ρi(g1)⊗ %i(g2),
(ii) ρis(g1, g2) = ρi(g1)⊗ %s(g2),
(iii) ρsi(g1, g2) = ρs(g1)⊗ %i(g2),
(iv) ρss(g1, g2) = ρs(g1)⊗ %s(g2),
(v) ρdi(g1, g2) = ρd(g1)⊗ %i(g2) and
(vi) ρds(g1, g2) = ρd(g1)⊗ %s(g2) (35)

where g1 ∈ S3 and g2 ∈ Z2. These representations have
dimensions 1, 1, 1, 1, 2, 2. The sum of the squares of the
dimensions is 12, which is the same as the cardinality
of S3 × Z2. Thus, by the dimension formula [21], these
exhaust all the irreducible representations of S3 × Z2.

2 Basis for the identity representation

In what follows, for simplicity, we will restrict atten-
tion to the identity representation ρii. To find the puri-
fied spectrum in this case, we need to diagonalize H in
the invariant subspace of H corresponding to ρii. To this
end, we seek a basis sm,n(ϕ1, ϕ2) for the identity repre-
sentation. A simple way of obtaining such a basis is by
‘averaging’. Given a Fourier basis element em,n(ϕ1, ϕ2),
we find its orbit under the action of S3 × Z2 (see Table
I) and define sm,n to be the (normalized) sum:

sm,n = c−1m,n(em,n + en−m,n + em,m−n + e−n,−m
+ e−n,m−n + en−m,−m + e−m,−n + em−n,−n
+ e−m,n−m + en,m + en,n−m + em−n,m) (36)

where cm,n are normalization constants defined in (38).
To enumerate the independent basis elements we need
to restrict to a single (m,n) pair from each orbit. In
Appendix B, we show that this is achieved by restricting
to

m ≥ 0 and 0 ≤ n ≤ bm/2c, (37)

where b·c denotes the greatest integer part. We order
them in increasing order of m and in decreasing order of
n for fixed m: s0,0, s1,0, s2,1, s2,0, s3,1, · · · as indicated
in Fig 9. It is noteworthy that all the Fourier basis states
ep,q that appear in the formula (36) for a particular sm,n
are eigenvectors of kinetic energy T = Ĥ(g̃ = 0) with
the same eigenvalue. Thus each sm,n is an eigenstate of
the kinetic energy: Tsm,n = (m2 + n2 −mn)sm,n. Note
that the above order does not correspond to increasing
kinetic energy although T does increase with decreasing
n for fixed m. Furthermore, each level of T could con-
tribute more than one symmetrized basis state sm,n. For
instance, s7,0 and s8,3 have the same kinetic energy 49.

By virtue of the orthogonality of em,n, the sm,n are
also orthogonal. If the normalization factors are chosen
as

cm,n =


12 if m = n = 0,

2
√

6 if m 6= n = 0,

2
√

6 if n = m/2 6= 0 and

2
√

3 otherwise,

(38)

then sm,n subject to (37) furnish an orthonormal basis
for the identity representation:

〈sa,b|sm,n〉 = δamδ
b
n. (39)
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3 Matrix elements of Ĥ in sm,n basis

The matrix elements of Ĥ = T + g̃V in the sm,n basis
for the identity representation are

Ta,b;m,n = (m2 + n2 −mn)δamδ
b
n and

Va,b;m,n = 3δamδ
b
n −

c−1
m,n

2

(
cm+1,nδ

a
m+1δ

b
n + cm,n−1δ

a
mδ

b
n−1

+cm−1,n−1δ
a
m−1δ

b
n−1 + cm−1,nδ

a
m−1δ

b
n

+cm,n+1δ
a
mδ

b
n+1 + cm+1,n+1δ

a
m+1δ

b
n+1

)
. (40)

In this formula, if (i, j) in ci,jδ
a
i δ
b
j does not satisfy (37),

then it is to be replaced by the appropriate orbit rep-
resentative that does satisfy (37). In other words, we
replace

(0,±1)→ (1, 0), (−1, j)→ (1, 0), (i,−1)→ (i+ 1, 1)
and (i, bi/2c+ 1)→ (i, i− bi/2c − 1) when i > 0. (41)

Taking these replacements into account, we get

Va,b;m,n = 3δamδ
b
n −



3(c1,0/c0,0)δa1δ
b
0 if m = n = 0,

c−1
1,0

2
(c2,0δ

a
2δ
b
0 + 2c2,1δ

a
2δ
b
1 + 2c1,0δ

a
1δ
b
0 + c0,0δ

a
0δ
b
0) if m = 1, n = 0,

c−1
m,0

2
(cm+1,0δ

a
m+1δ

b
0 + 2cm+1,1δ

a
m+1δ

b
1 + cm−1,0δ

a
m−1δ

b
0 + 2cm,1δ

a
mδ

b
1) if m > 1, n = 0

c−1
m,n

2
(cm+1,nδ

a
m+1δ

b
n + cm,n−1δ

a
mδ

b
n−1 + cm−1,n−1δ

a
m−1δ

b
n−1

+cm−1,m−n−1δ
a
m−1δ

b
m−n−1 + cm,m−n−1δ

a
mδ

b
m−n−1 + cm+1,m−nδ

a
m+1δ

b
m−n) if bm/2c = n 6= 0 and

c−1
m,n

2
(cm+1,nδ

a
m+1δ

b
n + cm,n−1δ

a
mδ

b
n−1 + cm−1,n−1δ

a
m−1δ

b
n−1

+cm−1,nδ
a
m−1δ

b
n + cm,n+1δ

a
mδ

b
n+1 + cm+1,n+1δ

a
m+1δ

b
n+1) if m ≥ 4, 0 < n < bm/2c.

(42)

4 Purified spectrum in the identity representation

For numerical calculations, we limit 0 ≤ m ≤ mmax.
We define a single index i(m,n) =

∑m
j=0(bj/2c+ 1)− n

to label the basis elements in the identity representa-
tion. The resulting truncated Hamiltonian matrix Ĥ in
this basis is of dimension (bmmax/2c+ 1)(bmmax/2c+ 2)
when mmax is odd. To avoid truncation errors and ensure
convergence, we stipulate that the fractional difference
in energy eigenvalues be less than 10−10 when mmax is
increased from 339 to 349 corresponding to matrix size
increasing from 28, 000 to 30, 000. This allows us to reli-
ably determine the lowest ≈ 12, 000 eigenvalues.

V Spacing distributions

Nearest neighbor energy level spacing distributions are
a standard way of quantifying quantum manifestations
of regular or chaotic dynamics [3, 5]. For integrable and
chaotic systems, the spacing distributions of purified lev-
els are expected to display universal Poisson and Wigner-
Dyson statistics [7, 20]. To extract this universal behav-
ior, we ‘unfold’ the purified spectrum to have, on aver-
age, unit level spacing [5, 22]. Denoting energy levels by
Ei for i = 1, 2, 3, . . . , N , the unfolded levels are defined
as ξi = ξ(Ei) where ξ(E) is the polynomial (say of de-
gree 7) that best fits the cumulative distribution function

n(E) =
∑N
i=1 θ(E − Ei) where θ is the right-continuous

Heaviside step function.
However, the classical three-rotor problem is neither

fully chaotic nor integrable but shows order-chaos-order
behavior with increasing energy. To interpret the spacing

distributions, we partition the spectrum into energy win-
dows where the classical dynamics is regular, mixed or
chaotic and do the unfolding separately in each window.
In the semiclassical regime of large g̃ & 1000, this par-
titioning allows us to see striking quantum signatures of
the regular to chaotic and chaotic to regular transitions.

Interestingly, even in the semiclassical regime, we find
that the low-lying energy levels do not follow Poisson
statistics although the classical dynamics is nearly in-
tegrable. However, we find that the harmonic approxi-
mation of Sections III C and V B is able to capture the
spacing distribution in this regime.

Finally, when g̃ is relatively small (e.g. g̃ = 2, 10)
semiclassical expectations are not a useful guide and the
order-chaos transition is barely visible due to a paucity of
levels with Ê < 6g̃. However, as shown in Section V C, we
find that the noninteracting rotor system provides a good
approximation, especially at relatively high energies.

A Semiclassical regime of large g̃

In the classical three rotor problem [17], we have reg-
ular behavior for E . 3.5g, a transition to chaos for
3.5g . E . 5g followed by a globally chaotic band
5.33g . E . 5.6g. There is then a gradual return
to regularity as E → ∞. Thus, in the semi-classical
limit of large g̃, we expect to see quantum signatures
of this behavior in spacing distributions in the corre-
sponding energy windows. Working in the identity rep-
resentation, we partition the energy spectrum and inves-
tigate the nearest-neighbor spacings of unfolded levels in
various Ê windows. One expects to find an exponen-
tial spacing distribution Pe(s) = e−s when the classical
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behavior is close to integrable and the Wigner surmise

Pw(s) ≈ (πs/2)e−πs
2/4 for classically chaotic behavior

[5, 20]. The latter corresponds to the Gaussian Orthog-
onal Ensemble of random matrices that is appropriate
to a real symmetric and time-reversal invariant Hamilto-
nian [23]. When the classical dynamics is mixed (islands
of regular behavior interspersed with chaotic regions), we
expect to find a spacing distribution that may be crudely
modeled by a Brody distribution [24]

P (s; ν) = (1 + ν)f(ν)sνe−f(ν)s
1+ν

where f(ν) = Γ ((2 + ν)/(1 + ν))
1+ν

(43)

that interpolates between exponential (ν = 0) and
Wigner (ν = 1).

As shown in Fig. 5, for g̃ = 6000, we observe (b) 2d

harmonic oscillator-like spacing for Ê < 0.5g̃ anticipated
in Section III C and further discussed in Section V B, (c)

exponential spacing when 0.5g̃ ≤ Ê ≤ 2g̃, (d) a Brody-

like distribution with ν ≈ 0.3 for 3.5g̃ ≤ Ê ≤ 4.5g̃, (e)

Wigner-Dyson spacing for 5g̃ ≤ Ê ≤ 6g̃ and (f) Brody

with ν = 0.5 for 6g̃ ≤ Ê ≤ 7g̃. In (g) and (h) we see a

return to regularity at higher energies (20g̃ ≤ Ê ≤ 29g̃

when g̃ = 1000 and 120g̃ < Ê < 130g̃ when g̃ = 300).
Thus, at least for large g̃, we see a quantum analogue of
the classical order-chaos-order behavior. Notably, while
the classical degree of chaos (as quantified by the fraction
of chaos estimated in Fig. 12 of [17]) showed a rather
sharp transition around E ≈ 3.8g, the quantum spacing
distribution shows a more gradual transition for large g̃.

B Harmonic approximation: large g̃ and low Ê

As mentioned in Section III C, for large g̃, the states
with low Ê may be captured by the harmonic approxima-
tion (24). Prior to purification, the harmonic spectrum
(25) is

Êharm
m,n√
3g̃

= m+ n+ 1 for m,n = 0, 1, 2, . . .

= 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, · · · . (44)

Evidently, the degeneracy ism+n+1. By comparing with
the numerically obtained purified spectrum, we empiri-
cally deduce that the states in the identity representation
have the energies

Êharm
identity√

3g̃
= 11, 31, 51, 72, 92, 112, 133, 153, 173, 194, 214, . . .

(45)
with superscripts denoting degeneracies. In other words,
from the full spectrum (44), we select only levels with

‘odd’ energies with the following frequency: Ê/
√

3g̃ =
2i + 1 is chosen d 2i+1

6 e times. Here, dxe is the smallest
integer greater than or equal to x. The resulting spacing
distribution (after unfolding) shown in Fig. 5a accurately

0 1 2 3 4
0

1

2

3

4

5

6 P(s)

s

0 < E < 0.5g

g = 6000

2d Harmonic oscillator spacing
(purified)

25 levels

(a) exact oscillator spacing
0 1 2 3 4

0

1

2

3

4

5

6 P(s)

s

Numerical three-rotor spacing
(purified)

0 < E < 0.5g

g = 6000

25 levels

(b) oscillator-like

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

s

P(s)
0.5g < E < 2g

g = 6000

 ≈ 0.1

378 levels

(c) regular: exponential
0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

s

P(s)
3.5g < E < 4.5g

g = 6000

 ≈ 0.3

1398 levels

(d) mixed

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

s

P(s)
5g < E < 6g

g = 6000

 ≈ 1.

1836 levels

(e) chaotic: Wigner
0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

s

P(s)
6g < E < 7g

g = 6000

 ≈ 0.5

1830 levels

(f) mixed

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

s

P(s)
20g < E < 29g

g = 1000

 ≈ 0.2

2744 levels

(g) regular: exponential
0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

s

P(s)
120g < E < 130g

g = 300

ν ≈ 0.2

913 levels

(h) regular: exponential

FIG. 5: Nearest neighbor spacing histograms (binwidth 0.1
for (a-b) and 0.3 for (c-g)) in various energy windows for
g̃ = 6000 [in (g) and (h) we take g̃ = 1000 and g̃ = 300 due to
inadequate high energy data for g̃ = 6000]. At low energies
the spacing distribution in (b) is a perturbation to that of a
‘purified’ 2d harmonic oscillator (see Section V B) shown in
(a) which displays a large number of nearly degenerate levels.
In (c-h) the spacing distributions are compared with exponen-
tial (black dotted), Wigner surmise (red dashed) and Brody
(blue dot-dashed) distributions showing an order-chaos-order
transition. The fitted Brody parameter ν is indicated. Semi-
classical expectations are seen to hold even when g̃ is reduced
to 300.

captures the spacings obtained from numerical diagonal-
ization shown in Fig. 5b.

It would be useful to find a basis for the identity
representation of S3 × Z2 in the harmonic approxima-
tion to check our proposed rule for purification. Prior
to purification, the energy eigenfunctions [with energy

Êm,n =
√

3g̃(m+ n+ 1)] in this approximation are

ψm,n(ϕ+, ϕ−) = ψ+
m(ϕ+)ψ−n (ϕ−) where

ψ+
m(ϕ+) ∝ Hm((3g̃/4)1/4ϕ+) e−

√
3g̃/4ϕ2

+ and

ψ−n (ϕ−) ∝ Hn((g̃/12)1/4ϕ−) e−
√
g̃/12ϕ2

− . (46)
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Here, ϕ± are viewed as taking values on the real line
although they arose as angles. This is a reasonable ap-
proximation since the Gaussian factors ensure that ψ+

m

and ψ−n decay rapidly. Hn is the nth Hermite polyno-
mial. The exponent in the Gaussian factor in ψm,n is
invariant under the symmetry group G = S3 × Z2 since
it is proportional to the potential V (ϕ+, ϕ−) (24). Hence,
the desired basis consists of those linear combinations of
HmHn that are invariant under G. One may find them
by group averaging: add to HmHn all its translates un-
der G. Since G is a symmetry of the Hamiltonian, the
orbit of HmHn consists of states with the same energy.
From (45), we expect that

(i) for even Ê/
√

3g̃, this average vanishes so that there
is no invariant combination, while

(ii) for odd Ê/
√

3g̃ there should be
⌈
Ê/6
√

3g̃
⌉

inde-

pendent invariant energy eigenstates.

We now furnish a proof of (i). The action of S3 × Z2

on ϕ± can be inferred from Table II. Given the action of
τ31 ∈ S3 and π ∈ Z2, the translates of (ϕ+, ϕ−) may be
organized as six pairs. The two translates in each pair
differ only in the sign of the image of ϕ+:

(±ϕ+, ϕ−), (±ϕ+,−ϕ−),
(±(ϕ+ − ϕ−)/2, (3ϕ+ + ϕ−)/2),
(±(ϕ+ − ϕ−)/2,−(3ϕ+ + ϕ−)/2),
(±(ϕ+ + ϕ−)/2, (3ϕ+ − ϕ−)/2),
(±(ϕ+ + ϕ−)/2,−(3ϕ+ − ϕ−)/2). (47)

Evidently, they may also be arranged so that each pair
differ only in the sign of the image of ϕ−. Now we con-
sider the group average of

ψm,n(ϕ+, ϕ−) = ψ+
m(ϕ+)ψ−n (ϕ−). (48)

Suppose m is odd, so that ψ+
m is an odd function of ϕ+.

Then the two terms from each pair in the above G-orbit
cancel, leading to a vanishing group average. Analo-
gously, the group average vanishes if n is odd. Thus,
there is no nontrivial G-invariant state in the Êharm

m,n

eigenspace if either m or n is odd. From (44), for

Êm,n/
√

3g̃ to be even, either m or n must be odd. We
thus conclude that in the identity representation, there
cannot be any energy levels with even Ê/

√
3g̃ within the

harmonic approximation.
Although we have not yet found a general argument

for (ii), we have verified our conjecture on degenera-

cies for low-lying levels with odd Ê/
√

3g̃ in the identity

representation. The first three levels Ê/
√

3g̃ = 1, 3, 5
are nondegenerate as we now show. The ground state
has a constant G-invariant eigenfunction ∝ H0H0 = 12.
The group averages of H2H0 and H0H2 are both equal
to 4(3

√
3ϕ2

+ +
√

3ϕ2
− − 6) while the group averages of

H4H0, H2H2 and H0H4 produce only one independent
G-invariant state given by 6, 2 and 6 times

(24− 8
√

3ϕ2
− + ϕ4

− − 24
√

3ϕ2
+ + 6ϕ2

−ϕ
2
+ + 9ϕ4

+). (49)
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FIG. 6: Exact free rotor (g̃ = 0) spacing in the identity
representation shown in (a) captures that of the highly ex-
cited levels for low g̃ = 2 shown in (b). For g̃ = 10, the
highly excited levels in (c) show some departures from free
rotor spacings while the moderately excited levels in (d) show
features of both exponential and free rotor spacings. When
g̃ = 100, spacings of moderately excited states in (e) is nearly
exponential while those of intermediate levels in the classi-
cally chaotic regime is Wigner-like as shown in (f).

For the fourth level with Ê = 7
√

3g̃, we find that the
group averages of H0H6 ± H6H0 are equal to those of
H4H2 −H2H4 and 5(H4H2 +H2H4), leading to two lin-
early independent states, as expected from (45). It would
of course be satisfying to extend these special cases to a

proof of the proposed degeneracy formula
⌈
Ê/6
√

3g̃
⌉

for

odd Ê/
√

3g̃.

C Spacings at low and moderate g̃

When g̃ is smaller, the main change is that there are
very few energy levels in the range 0 ≤ Ê ≤ 6g̃ making it
difficult to use spacing distributions to examine the quan-
tum analog of the classical transition from regularity to
chaos. For example, there are only 14 levels for g̃ = 10
and 105 levels for g̃ = 100 in this energy window. On the
other hand, when Ê > 25g̃, where the classical behavior
is relatively regular, we may expect spacing distributions
to display Poisson statistics. However, there can be de-
partures from this expectation for at least two reasons:
(i) the semiclassical approximation may break down for
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small g̃ and (ii) when Ê � g̃, the dynamics should be
a small perturbation to free rotor motion, for which the
spacing distribution is different from exponential. In fact,
the free rotor (g̃ = 0) energy eigenvalues in the identity

representation are given by Êm,n = m2+n2−mn for m,n
satisfying (37) with eigenfunctions sm,n(ϕ1, ϕ2) leading
to the spacing distribution shown in Fig. 6a. Pleasantly,
for g̃ = 2, the spacings of highly excited unfolded levels
shown in Fig. 6b closely mimics the free rotor spacings.
For g̃ = 10, departures from free rotor at high energies
are more pronounced as seen in Fig. 6c. By contrast, at
lower energies in the classically regular regime, we begin
to observe signatures of the exponential spacing distri-
bution in addition to that of free rotors. This is visible
in Fig. 6d for g̃ = 10. However, when g̃ is increased to
100, the free rotor effects seem to become insignificant
for these energies with spacing distributions approaching
exponential as seen in Fig. 6e. Moreover, at g̃ = 100, we
also begin to see Wigner-like spacing distributions in the
classically chaotic regime (see Fig. 6f).

VI Number variance

Let d(ξ) =
∑N
i=1 δ(ξ − ξi) denote the spectral density

function for the unfolded energy levels ξ1, . . . , ξN . Then
the number of levels in a spectral window [ξ−L/2, ξ+L/2]
is given by

n(ξ, L) =

∫ ξ+L/2

ξ−L/2
d(ξ′) dξ′. (50)

The number average 〈n(ξ, L)〉 is defined as the mean
value of n(ξ, L) as ξ ranges over a desired portion of
the spectrum. In practice, this ensemble average is per-
formed by summing over an equally spaced grid of values
of ξ (with a spacing of 0.1 for L > 2 and 0.05 for L ≤ 2).
Since the unfolded spectrum is constructed to have ap-
proximately unit spacing on average, 〈n(ξ, L)〉 ≈ L.
Fluctuations in n(ξ, L) are captured by the number vari-
ance [3, 23] defined as

Σ(L) = 〈[n(ξ, L)− 〈n(ξ, L)〉]2〉. (51)

To interpret the number variance, we evaluate it for por-
tions of the three-rotor spectrum in two representative
regimes: (a) 1836 levels with 5g̃ < Ê < 6g̃ for g̃ = 6000

and (b) 921, 914 and 913 levels when Ê ∈ [30g̃, 40g̃],
[70g̃, 80g̃] and [120g̃, 130g̃] for g̃ = 300 where level spac-
ing distributions in Fig. 5 of Section V A indicate that the
quantum dynamics are predominantly chaotic and regu-
lar respectively. It is conjectured that in these regimes,
the number variance should show universal behavior for
small L that is captured by the Gaussian orthogonal en-
semble (GOE) of random matrices and a Poisson process
respectively. For the GOE, Mehta (see Appendix A38 of
[23]) derives the asymptotic behavior

Σ(L) ∼ 2

π2
(log(2πL) + γ + 1− π2/8) +O(L−1), (52)

(a) (b)

FIG. 7: Number variance Σ(L) in classically regular regime

of large Ê � g̃. (a) Σ(L) shows linear growth for small L
with a universal slope of unity. (b) For larger L, the number
variance saturates and oscillates. The universal linear behav-
ior persists up to higher values of L at higher energies, where
the dynamics approaches integrability.
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FIG. 8: Number variance for 1836 levels in the classically
chaotic energy band (5g̃ < Ê < 6g̃) for g̃ = 6000 displays
GOE asymptotics for moderately small L (0.1 ≤ L ≤ 4) and
then displays oscillations for larger L.

while for a Poisson process, Σ(L) = L. Note that,
though Mehta’s logarithmic GOE formula is derived for
asymptotically large L, while comparing with our num-
ber variance, it may be expected to hold in an inter-
mediate regime: the O(L−1) remainder term dominates
when L → 0 while nonuniversal effects can become im-
portant for large L. We compare the number variance
in the above regular and chaotic regimes against these
expectations in Figs. 7 and 8. Although universal behav-
ior is manifested for small/moderately small L, we find
that in both the regimes, the number variance saturates
and displays oscillations whose character depends on the
details of the three rotor system. In fact, it should be
possible to capture these oscillations in a semiclassical
approximation by examining the short periodic orbits of
the three-rotor system [12].
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VII Discussion

Here, we discuss our results while highlighting some
novel features of the quantum three-rotor problem and
mention some avenues for future research.

To begin with, the formulation of the quantum three-
rotor problem involved some subtleties: singlevaluedness
of the wave function allowed for nontrivial boundary con-
ditions on the relative wave function (labelled by the
cube roots of unity) with consequences for the center
of mass angular momentum quantum number as well.
The presence of a dimensionless coupling constant g̃ dis-
tinguished the quantum theory from its classical coun-
terpart. This was exploited in organizing the quantum
theory into weak and strong coupling regimes with semi-
classical behavior observed at strong coupling allowing
us to interpret subsequent results on spectral statistics.
However, even for large g̃, making contact with univer-
sal semiclassical expectations in spectral statistics was
complicated by the need to partition the spectrum into
energy windows where the classical dynamics is regular,
mixed or chaotic. By contrast, in models such as the pla-
nar elastic pendulum [25, 26], which also displays order-
chaos-order behavior, there is a control parameter (other
than energy) whose variation shifts the entire spectrum
from Poisson to Wigner-Dyson.

Another interesting feature of the three-rotor model is
the presence of an S3×Z2 discrete symmetry of the rela-
tive Hamiltonian. Although this symmetry is manifest in
the rotor angle description, it is not obvious while work-
ing with the relative or Jacobi angles. A key step was
to identify the implementation of this symmetry on rel-
ative angles in order to be able to decompose the energy
spectrum into irreducible representations where univer-
sal behavior may be expected. In fact, incorrect purifi-
cation via a more obvious Z2 ×Z2 symmetry would lead
to spurious Shnirelman-like peaks [27, 28] in spacing dis-
tributions.

Group averaging allowed us to construct a convenient
basis for the subspace of the Hilbert space that carries
the identity representation of S3×Z2, allowing us to pu-
rify the spectrum. However, we suspect that there is a
more elegant way of choosing orbit representatives to la-
bel the basis elements. The analogous problem of finding
suitable bases for the remaining five irreducible represen-
tations and qualitative features of the corresponding en-
ergy spectra has not been addressed in this paper. Pleas-
antly, for the identity representation, we have a closed-
form sparse matrix representation of the Hamiltonian.
Moreover, we demonstrate that numerically determined
eigenvalues are insensitive to an increase in the size of
the truncated Hamiltonian ensuring that spacing distri-
butions are computed to desired accuracy.

Remarkably, the above S3×Z2 symmetry continues to
apply even at the level of the harmonic approximation,
which allowed us to use the latter to predict the spac-
ing distributions at low energies where there are marked
departures from the semiclassical Poisson distribution.

However, while we have conjectured which harmonic lev-
els belong to the identity representation (along with their
degeneracies), we have not yet found general expressions
for suitable basis elements for the invariant subspace in
the harmonic approximation (unlike in the full problem
where we have explicit formulae for an orthonormal ba-
sis).

On the other hand, we showed that the free rotor ap-
proximation captures deviations from Poisson statistics
at asymptotically high energies and weak coupling. Inter-
estingly, finding the degeneracies of the free rotor spec-
trum led us to a number theoretic problem involving the
Eisenstein integers, whose solution could be expressed in
terms of the prime factorization of the energy in suitable
units.

There are several other interesting directions for fur-
ther research such as to understand (i) the nature of level
crossings and avoided crossings, (ii) higher order spacings
and spacing ratios, especially as a tool for purification
of the spectrum [29] in other representations, (iii) the
behavior of wave functions, Husimi functions and their
nodal curves in the regular and chaotic regimes, (iv) the
saturation and oscillation of the number variance Σ(L)
for large L using our knowledge of classical periodic or-
bits, and (v) the connection of out-of-time-ordered cor-
relators (OTOC) to classical Lyapunov exponents.
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A Free rotor degeneracy and Eisenstein primes

Recall from Section III B that the spectrum of the free
rotor Hamiltonian Ĥ = T is given by m2+n2−mn where
m and n are integers. Here, we outline a proof of formula
(20) for the degeneracy of free rotor energy levels based
on standard number theoretic techniques such as those
discussed in [30]: if the prime factorization of the en-

ergy eigenvalue is of the form T = 3γpα1
1 · · · pαrr qβ1

1 · · · qβss ,
where pi ≡ 1 (mod 3) and qi ≡ 2 (mod 3), then the num-
ber of integer solutions to m2 + n2 −mn = T is

degen(T ) = 6(α1 + 1)(α2 + 1) · · · (αr + 1) (A1)

if all βi are even and degen(T ) = 0 otherwise. After
this paper appeared as a preprint, S R Jain informed us
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that a similar result was presented by Itzykson and Luck
while studying arithmetic degeneracies in triangular bil-
liards [31]. However, they restrict to m > n > 0, so that
the prefactor 6 is absent. Moreover, their approach is
somewhat analytic, being based on generating functions
while ours is more algebraic.

To begin with, the factorization

m2 + n2 −mn = |m+ nω|2 = (m+ nω)(m+ nω2)
= (m+ nω)((m− n)−mω), (A2)

where ω is a primitive cube root of unity suggests that
the integral lattice spanned by 1 and ω is relevant to this
problem. Thus, let ω denote a complex number satis-
fying ω2 + ω + 1 = 0 and let L = Z[ω] = Z + Zω =
{m+ nω|m,n ∈ Z} be the triangular lattice in the com-
plex plane displayed in Fig. 2. The set L is closed under
addition and multiplication and forms a ring called the
Eisenstein integers, the ring of integers in Q(ω), which
is an imaginary quadratic (same as Q + Q(

√
−3)) and

cyclotomic number field [30]. The labels in Fig. 2 cor-
respond to the choice ω = e2πi/3, although one gets the
same triangular lattice upon choosing ω = e4πi/3.

Let us start with some terminology and basic facts
about L. (i) Given r, s ∈ L, we say that s divides r
(denoted s|r) if there is some q ∈ L such that r = sq.
(ii) The elements of the set

U = {1,−ω2 = ω + 1, ω,−1, ω2 = −ω − 1,−ω}
= {(−ω)k, k = 0, 1, . . . , 5} (A3)

lying at the vertices of the hexagon marked in Fig. 2
of the lattice constitute the group of units of L. They
behave like ±1 in the ring of integers Z. More precisely,
if xy = 1 for x, y ∈ L then x, y ∈ U . Furthermore, units
are the only elements of L of unit magnitude: |x| = 1
implies x ∈ U . (iii) An element q that is not a unit
(q ∈ L \ U) is called irreducible if in any factorization
q = ab, at least one of the factors is a unit (a ∈ U or
b ∈ U). On the other hand, q ∈ L \U is called a prime if
whenever q|rs either q|r or q|s. While primes are always
irreducible, one may show that all irreducible elements of
L must be primes as L is a Unique Factorization Domain
(see below).

Using these definitions, we state the following division
algorithm. Given a dividend a ∈ L and a nonzero divi-
sor b ∈ L, there are uniquely determined quotient and
remainder elements q, r ∈ L with a = bq + r where
0 ≤ |r| ≤ |b/2| or r = b/2. In other words, L is a norm
Euclidean ring. Consequently, L is a Principal Ideal Do-
main and hence a Unique Factorization Domain (Corol-
lary 4.4 of [30]). Moreover, from Proposition 4.7 of [30],
the primes in L (called Eisenstein primes) must be of one
of the following sorts up to units: (i) 1+2ω or (ii) m+nω
or m+nω2 where m2 +n2−mn is an ordinary prime ≡ 1
(mod 3) in Z or (iii) an ordinary prime q ≡ 2 (mod 3) in
Z.

We now return to the integers and explain the de-
generacy formula (A1). For given kinetic energy eigen-
value T , suppose (m,n) is one integer pair such that

T = m2 + n2 − mn = |m + nω|2. Then since the six
units u ∈ U have unit magnitude, T = |u(m + nω)|2
where u(m+nω) = m′+n′ω ∈ L. Thus we get five addi-
tional distinct integer pairs with the same eigenvalue T .
This explains the prefactor 6 in (A1).

It remains to find the contribution to the degeneracy
that does not arise from the freedom to multiply by units.
To do this, we will exploit the prime factorization (in Z)

T = 3γpα1
1 · · · pαrr qβ1

1 · · · qβss , where pi ≡ 1 (mod 3) and
qi ≡ 2 (mod 3). The general idea is that any represen-
tation of T as |m + nω|2 = (m + nω)(m + nω2) must
arise from a product of such representations of the indi-
vidual prime factors. The paired appearance of m + nω
and m + nω2 is because ω2 is the complex conjugate of
ω. This is analogous to the nonreal roots of a polyno-
mial with real coefficients appearing in complex conju-
gate pairs. We will now deal sequentially with the three
sorts of primes in Z: 3, p ≡ 1 (mod 3) and q ≡ 2 (mod 3).

(a) We begin with the ordinary prime 3 and note that
3 = |1 + 2ω|2 = (1 + 2ω)(1 + 2ω2) = −(1 + 2ω)2. Thus
although 3 is a prime in Z, it is not a prime in L. In
fact, 3 ramifies in L with ramification index two since
it is a unit times the square of the prime 1 + 2ω in L.
Moreover, up to multiplication by units, there is only
one way of expressing 3 as |m + nω|2. Thus, even if the
prime factorization of T includes 3γ for some γ ≥ 1, there
is only one way to write 3γ as (m + nω) × (m + nω2):
(1 + 2ω)γ × (1 + 2ω2)γ . Hence, it will only contribute a
factor of one to degen(T ).

(b) Suppose p ≡ 1 (mod 3) is a prime in Z, then there
exist integers m,n such that p = m2 + n2 − mn. For
example, p = 7, 13 and 19 are primes ≡ 1 (mod 3) with
7 = |1 + 3ω|2 = |3 + ω|2, 13 = |1 + 4ω|2 = |4 + ω|2
and 19 = |2 + 5ω|2 = |5 + 2ω|2. An inductive argument
can be used to show that the same applies to any other
such prime. Moreover, in each case, there are precisely
two representations p = |m + nω|2 = |m̃ + ñω|2 that
do not differ by a unit but are related by m̃ + ñω =
(−ω)k(n+mω) for some 0 ≤ k ≤ 5. This is a reflection of
the Galois symmetry ω → ω2 that matches the complex
conjugation i → −i. More generally, if T = pα where
α ≥ 1 and p ≡ 1 (mod 3), then (aside from the freedom to
multiply by units) there are α+1 distinct ways of writing
T = |m+ nω|2. To see this, we denote A = m+ nω and
B = n + mω. Then p2 = |A2|2 = |AB|2 = |B2|2 and
in general, pα = |Aα|2 = |Aα−1B|2 = · · · = |ABα−1|2 =
|Bα|2.

(c) Finally, suppose q is a prime number in Z and q ≡ 2
(mod 3). Then q is also an Eisenstein prime. Thus, if
T = qβ , then: (i) if β is odd, there is no way of writing
T as |m+ nω|2 but (ii) if β is even, there is only way of
writing T as |m+ nω|2 i.e., by taking m+ nω = qβ/2 up

to a unit. This generalizes to T = qβ1

1 · · · qβss .

Combining these, we arrive at the degeneracy formula
(A1).
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FIG. 9: Basis labels for identity representation of S3 × Z2

are orbit representatives (m,n) (denoted by black dots) lying
in a wedge in the Z ⊕ Z lattice. Each orbit intersects the
wedge exactly once.

B Basis labels for identity representation

As mentioned in Table I, the symmetry group G acts
on the Fourier basis states em,n which may be viewed as
points on the lattice of ordered pairs of integers (m,n).
The orbit of (m,n) is

O(m,n) = {(m,n), (n−m,n), (m,m− n), (−n,−m),
(−n,m− n), (n−m,−m), (−m,−n), (m− n,−n),
(−m,n−m), (n,m), (n, n−m), (m− n,m)}. (B1)

It is typically of length twelve except in the extreme cases
[boundary of the wedge defined in (B2) and displayed in
Fig. 9] when (a) m = n = 0 and it shrinks to a single
point and when (b) (m > 0, n = 0 or bm/2c) and it has
length six. Now, we show that each orbit can be labelled
uniquely by a representative (m,n) lying in the ‘wedge’
defined by

m ≥ 0 and 0 ≤ n ≤ bm/2c, (B2)

where b·c is the greatest integer part. The proof proceeds
in two steps: (i) We use the group action to argue that
every orbit enters the wedge and (ii) show that an orbit
cannot have more than one representative in the wedge.

Proof of (i). Of the points (m,n) and (−m,−n) lying
in O(m,n) [see (B1)] one must lie in the right half plane.
Without loss of generality we suppose that (m,n) lies
in the right half plane, i.e., m ≥ 0. Next, one of the
two orbit elements (m,n) or (m− n,−n) must lie in the
upper half plane. Taking (m,n) to lie in the upper half
plane, we get n ≥ 0 allowing us to restrict (m,n) to
the first quadrant. In a similar manner, either (m,n)
or (n,m) must lie in the south-east half plane allowing
us to restrict to the π/4 wedge: m ≥ n ≥ 0. Finally,
either (m,m− n) or (m,n) must lie in the π/8 wedge of
Eqn. (B2). Thus we have shown that every orbit has a
representative (m,n) satisfying (B2). The Proof of (ii)
will show that there is only one such representative.

Proof of (ii). We will now argue that if (m,n) satisfies
(B2) then all other points on O(m,n) either violate (B2)
or coincide with (m,n). Let us illustrate this with the
point (n−m,n) ∈ O(m,n). If this point lies in the wedge,
then (B2) implies n −m ≥ 0. But since (m,n) already
lies in the wedge we must also have n ≤ bm/2c. Both
conditions are satisfied only when m = n = 0, in which
case both points coincide: (m,n) = (n −m,n) = (0, 0).
A similar argument applies to all other points in Om,n.
This establishes that every orbit has a unique represen-
tative in the wedge defined by (B2). Thus, we may use
(m,n) satisfying (B2) to label a basis for the identity
representation of G.
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