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1 Dynamics of continuous media/deformable bodies: Lagrangian and Eulerian
descriptions

• Continuum mechanics begins by dealing with the non-relativistic classical dynamics of con-
tinuous media such as oscillations of stretched strings, heat conduction in rods, elastic motion
of solids (rods/beams), motion of fluids (air, water) and plasmas (ionized gases) in roughly in-
creasing order of complexity. All of these systems involve a very large number of molecules and
we will treat them as continuous mass/charge distributions with an infinite number of degrees
of freedom. Thus, unlike particle mechanics, continuum mechanics deals with fields (height
of string, temperature, elastic displacement, mass density, velocity, pressure, internal energy,
entropy, charge density, current density, electric and magnetic fields). Thus continuum mechan-
ics is a collection of (primarily non-relativistic, classical) field theories. Electromagnetism and
gravitation are other examples of field theories, though they often involve relativistic and/or
quantum effects.

• There are two principal formalisms for treating mechanics of continuous media, the so-called
Lagrangian and Eulerian descriptions. The former is closer to our treatment of systems of
particles, we follow the motion of each molecule or fluid element/bit of string. For example, if a
fluid element occupied the location ~a at t = 0, then we seek the trajectory ~r(~a, t) of this fluid
element, which should be determined by Lagrange’s equations (ironically, this treatment was
originally attempted by Euler). The Lagrangian description is particularly useful if we have some
way of keeping track of which material element is where. This is usually not possible in a flowing
liquid or gas, but is possible in a vibrating string since the bits of string are ordered and may be
labeled by their location along the string or by their horizontal coordinate x for small vertical
vibrations of a string that does not ‘bend over’. For an elastic solid, the corresponding variable
is the local displacement field s(r, t) or ~ξ(r, t) which encodes the departure from equilibrium
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location of the element that was originally at r . In a fluid like air or water, it is difficult
to follow the motion of individual fluid elements. So Euler developed the so-called Eulerian
description, which attempts to understand the dynamics of quantities (Eulerian variables) such
as density ρ(~r, t), pressure p(~r, t), velocity ~v(~r, t) and temperature T (r, t) in a fluid at a specified
observation point ~r at time t . However, it must be emphasized that the laws of mechanics
(Newton’s laws) apply to material particles or fluid elements, not to points of observation, so
one must reformulate the equations of motion so that they apply to the Eulerian variables.
The equations of motion in continuum mechanics tend to be expressed as partial differential
equations for fields (such as the density of fluid or height of string at a given location at a
given time). Thus we are dealing with the classical dynamics of fields. We will begin with the
Lagrangian description of the vibration of a stretched string.

2 Vibrations of a stretched string

2.1 Wave equation for transverse vibrations of a stretched string

• Perhaps the simplest physically interesting mechanical system with a continuously infinite
number of degrees of freedom is a vibrating stretched string. We will consider the special case
where, in equilibrium, the string is stretched between two clamps located at x = 0 and x = L .
We ignore the effects of gravity for now since the tensional forces in the string often dominate
(especially when the string is stretched, in a limp string tension can be weaker). We shall call
the direction in which the string is stretched, the ‘horizontal’ direction. The string is free to
move only in one direction (vertical) transverse to the direction in which the string is stretched.
We assume the string has a mass per unit length of ρ . The instantaneous configuration of the
string is specified by giving the height u(x, t) of the string above the horizontal position x at
time t . Since the string is stretched, there are tension forces that act on any segment of the
string, tangentially at either end of the segment, tending to elongate the segment. It is usually
assumed that the tension in the string is a constant τ , though we will allow it to vary slowly
with location, so τ = τ(x). When the string is horizontal, the tensions at either end of any
segment are horizontal, equal and opposite in direction so that the string is in equilibrium. At
the end points, the tension is balanced by the force applied by the clamps.

• Note that the length of the string is not fixed, it can stretch to a length more than L , for
instance when it is plucked as in a Veena. When the string is displaced from equilibrium by
small vertical displacements, tensional forces on the ends of a small segment are not necessarily
horizontal. But to a good approximation, the horizontal components of tension are equal and
opposite, ensuring that there is no longitudinal/horizontal movement of the string. On the
other hand, the vertical components of tension are in general unequal and result in a vertical
acceleration of the segment. Let us estimate this. Consider a small segment of string between
horizontal locations x and x + dx with corresponding heights u(x) and u(x + dx) ≈ u + du .
We suppose that the tangent to the string at any point x makes a counter-clockwise angle θ(x)
with respect to the horizontal. Draw a diagram of a string bit that is inclined upwards! Then
since we assume the inclination angles are small,

cos θ(x) ≈ 1− θ(x)2

2
≈ 1 and sin θ(x) ≈ tan θ(x) ≈ ∂u

∂x
≡ u′(x). (1)

Then the horizontal components of tension at the right and left ends of the segment are τ(x+
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dx) cos θ(x + dx) and −τ(x) cos θ(x). Since we are assuming that the string does not move
horizontally, these must be equal and opposite (this is possible if τ is independent of x . More
generally we must account for horizontal motion as well. We allow for non-constant τ to see
how it affects the equation for transverse motion. The vertical components of tension at the
right and left ends of the segment are

τ(x+ dx) sin θ(x+ dx)ẑ ≈ (τu′)(x+ dx)ẑ and − τ(x) sin θ(x)ẑ ≈ −(τu′)(x)ẑ. (2)

Thus the net upward force on the segment is

Fup = (τu′)(x+ dx)− (τu′)(x) ≈ ∂(τ(x)u′(x))

∂x
dx (3)

Note that the length of the string segment is |dx| upto terms quadratic in small quantities:√
dx2 + du2 ≈ |dx|

[
1 + (1/2)(∂u/∂x)2

]
≈ |dx|. (4)

So Newton’s second law for the segment, whose mass is ρ(x) dx is (subscripts denote partial
derivatives)

Fup = (τux)x dx = ρ dx utt. (5)

Thus the equation of motion for small transverse (1D) vibrations of the stretched string is
(τux)x = ρutt . If the tension τ is a constant, then we get the standard form of d’Alembert’s
wave equation:

∂2u

∂x2
=

1

c2
∂2u

∂t2
where c =

√
τ

ρ
=

√
tension

mass per unit length
. (6)

c has dimensions of a speed and will be seen to be the speed at which waves propagate on the
string. The wave equation utt = c2uxx is a linear, homogeneous partial differential equation
second order in both space and time derivatives. PDEs involve derivatives with respect to more
than one independent variable (x, t here) while ordinary differential equations (ODEs) involve
derivatives only in one independent variable (t in Newton’s equation for a point particle). The
wave equation is linear since it involves only the first power of the unknown function (dependent
quantity) u . The wave equation is hyperbolic in a sense to be described later (by contrast with
Laplace’s equation which is elliptic and Fourier’s heat equation which is parabolic). The wave
equation also appears in modelling electromagnetic waves, gravitational waves, shear waves in
elastic media, sound waves, free massless scalar (Klein-Gordon) fields etc.

• We are interested in solving the initial-boundary value problem for the string. The wave
equation is second order in time and requires two initial conditions (say at t = 0), just like
Newton’s equation. These are the initial height u(x, t = 0) and the initial velocity of the string
u̇(x, t = 0). In addition, we need to specify what happens at the boundaries. The boundary
conditions corresponding to a string clamped at the end points are u(x = 0, t) = u(x = L, t) = 0.
This is called Dirichlet boundary conditions. Other boundary conditions are also of interest.
For example, we might have an end (say at x = 0) of the string free to move up and down
(though not horizontally), so that the slope of the string vanishes at the end point. This could
be implemented by attaching the left end of the string to a massless ring free to move vertically
with out friction on a pole. This means u has no slope at the left end point, one cannot apply a
vertical force on the ring since it yields, it has no inertia. This leads to the free/open/Neumann
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boundary condition ∂u
∂x = 0 at x = 0. We could also consider an infinite string with decaying

BCs: u(x, t)→ 0 as |x| → ∞ . All of the above are homogeneous boundary conditions. On the
other hand a BC such as u(0, t) = 1 is inhomogeneous. In particular, the sum of two solutions
with inhomogeneous BCs would not satisfy the BCs and the superposition principle for the
linear wave equation would not apply. Sometimes we consider mixed or Robin BCs where a
linear combination of u and ux is specified at the boundaries.

• The nature of solutions and the physics they model depend crucially on boundary conditions.
It is important to recognize that without suitable BCs, the equations are in general underdeter-
mined and may have multiple solutions.

• If we were to include the weight of string segments (gravitational force due to constant accel-
eration due to gravity) show that the equation for small vibrations of a horizontally stretched
string becomes the linear inhomogeneous PDE

1

c2
utt = uxx −

g

c2
. (7)

• We note in passing that the wave equation for small oscillations of a stretched string is Lorentz
invariant (with c interpreted as the speed of light) even though the underlying system is non-
relativistic. This is associated with the linear dispersion relation for small oscillations. This is
an artefact of considering small oscillations and ignoring non-linearities.

• As a consequence of considering small vibrations and small angles θ the equation of motion is
linear, however, it is a partial differential equation unlike Newton’s ordinary differential equations
encountered in the mechanics of finitely many particles. Above, u(x) is the analogue of the
generalised coordinate and x labels the particles in the string. The configuration space is the
set of possible instantaneous locations of the string segments, i.e. the space of twice differentiable
functions u(x) on the interval [0, L] that vanish at the end-points. This is an infinite dimensional
space reflecting the fact that a string has infinitely many degrees of freedom. The equations of
continuum mechanics (e.g. fluid mechanics, electrodynamics, general relativity, elasticity) are
typically systems of partial differential equations and the wave equation is perhaps the simplest
prototype.

2.2 Finite differences: Wave equation as a system of ODEs

We may regard a partial differential equation such as the wave equation as a large (infinite)
system of coupled ODEs, one ODE for each value of x . To see this we consider the wave
equation, for definiteness, on the real line −∞ < x < ∞ and imagine discretizing the spatial
coordinate . . . x−2, x−1, x0 = 0, x1, x2, x3, . . . with small uniform spacing δx . The first derivative
may be approximate as a forward or backward difference:

u′FD(xi) =
1

δx
(u(xi+1)− u(xi)) or u′BD(xi) =

1

δx
(u(xi)− u(xi−1)). (8)

If we assemble the values of u in a vector (u(xi))i∈Z , then we may write the forward and
backward difference approximants to the first derivative as upper and lower triangular matrices
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with entries along the diagonal and the first super/sub diagonal

(
d

dx

)
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≈
1

δx



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. . . −1 1 0 0 0 . . .
. . . 0 −1 1 0 0 . . .
. . . 0 0 −1 1 0 . . .
. . . 0 0 0 −1 1 . . .
. . . 0 0 0 0 −1 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.


and

(
d

dx

)
BD

≈
1

δx



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. . . 1 0 0 0 0 . . .
. . . −1 1 0 0 0 . . .
. . . 0 −1 1 0 0 . . .
. . . 0 0 −1 1 0 . . .
. . . 0 0 0 −1 1 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.


(9)

With decaying BC, d/dx is an anti-hermitian operator (u, v′) = −(u′, v). This is reflected in
the relation (d/dx)BD = −(d/dx)tFD . Now the finite difference approximation to the second
derivative can be obtained in several ways. We could apply the forward difference twice or the
backward difference twice or compose the forward and backward difference operators (in either
order). We prefer the third option as the resulting matrix is hermitian, as is the operator d2/dx2

with vanishing/decaying BCs. Thus we have

d2

dx2
≈

1

(δx)2
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(10)

Now we may write the wave equation as an infinite collection of coupled ODEs:

1

c2
∂2u(xi, t)

∂t2
=

1

(δx)2
(u(xi+1, t)− 2u(xi, t) + u(xi+1, t)) for i = . . . ,−2,−1, 0, 1, 2, . . . . (11)

This system of ODEs can be solved with suitable initial and BCs.

Remarkably, there is another way of converting the wave equation into an infinite array of
ODEs, this time uncoupled! This is by the method of separation of variables and Fourier series,
which we turn to next.

2.3 Separation of variables, normal modes and solution by Fourier series

• On account of the linearity of the wave equation (subject to homogeneous boundary conditions,
say Dirichlet or Neumann), the superposition principle applies. Linear combinations of solutions
are again solutions. The solution space forms a linear vector space. This suggests that if we can
find a sufficiently large set of linearly independent solutions (called normal modes of oscillation),
we may be able to express a solution of interest as a linear combination of the normal modes of
oscillation.

• The wave equation utt = c2uxx is a partial differential equation for an unknown height function
u dependent on two independent variables t, x . Let us look for solutions which are a product
of a function of t alone and a function of x alone: u(x, t) = X(x)T (t). We hope that solutions
of this separable type form a basis for the space of all solutions of interest. We also hope that
X and T will be determined by simpler ODEs compared to the PDE for u . Indeed, we find,
wherever the quotients make sense (remarkably we will see that these quotients are well-defined
in a limiting sense even when the denominators vanish),

X(x)T̈ (t) = c2T (t)X ′′(x) ⇒ T̈ (t)

T (t)
= c2

X ′′(x)

X(x)
= −ω2. (12)
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Now LHS is a function of t alone while RHS is a function of x alone. Thus, both must equal
the same constant which we called −ω2 . We anticipate that the constant must be negative
for physically interesting vibrational motion. This is because −ω2 = ü

u is the ratio of the
acceleration of the string element to its displacement from the mean position. As in Hooke’s
law, this quotient must be negative for a restoring force. Thus, our PDE has reduced to a pair
of ODEs for each allowed value of ω .

T̈ (t) = −ω2T (t) and X ′′(x) = −k2X(x) where k =
ω

c
is the angular wave number.

(13)
Remarkably, the ODEs for one value of ω are not coupled to those for any other value of ω .
Contrast this with the ODEs we got by finite differences in the pervious section.

These ODEs are in fact eigenvalue problems. For example, the first is the eigenvalue problem for the
(infinite dimensional) operator d2/dt2 with T (t) the eigenvector and −ω2 the eigenvalue. To make the
connection to finite dimensional matrix eigenvalue problems more explicit, we could discretize time and
represent T (t) by the column vector whose entries are T (ti) where ti are a suitable set of times, say
δt(. . . ,−3,−2,−0, 1, 2, 3, . . .) where δt is a small time-step. Then we may represent the operator d2/dt2

in this basis by a tri-diagonal real symmetric matrix, a few of whose ‘middle’ rows and columns are

d2

dt2
≈ 1

(δt)2



...
...

...
...

...
...

...
. . . −2 1 0 0 0 . . .
. . . 1 −2 1 0 0 . . .
. . . 0 1 −2 1 0 . . .
. . . 0 0 1 −2 1 . . .
. . . 0 0 0 1 −2 . . .
...

...
...

...
...

...
...


where T (t) ≈



...
T (−2δt)
T (−δt)
T (0)
T (δt)
T (−2δt)

...


(14)

corresponding to the discretization of the second derivative

T̈ ≈ 1

δt

(
T (t+ δt)− T (t)

δt
− T (t)− T (t− δt)

δt

)
=
T (t+ δt)− 2T (t) + T (t− δt)

(δt)2
. (15)

The first ODE T̈ = −ω2T is the same as Newton’s equation for a simple harmonic oscillator1

and the second is essentially the same, so we can write their general solutions as

T (t) = A cosωt+B sinωt and X(x) = C cos kx+D sin kx. (16)

The clamping of end points of the string (Dirichlet boundary conditions) implies X(0) = X(L) =
0 so we must have C = 0 and sin kL = 0. So kL = nπ where n is an integer. Thus the allowed
eigenvalues are −ω2

n = −(nπc/L)2 and −k2n = −(nπ/L)2 . It suffices to take n ≥ 1 since the
negative values give (linearly dependent) solutions that only differ by a sign and n = 0 gives
the trivial solution. So we may write any separable solution of the wave equation as

un(x, t) = (An cosωnt+Bn sinωnt) sin
nπx

L
where ωn =

nπc

L
for some n = 1, 2, 3, . . .

(17)
Each of these solutions for n = 1, 2, 3, . . . is called a normal mode of oscillation.

1It is notable that Newton’s 2nd law for the SHO δ̈(t) = −ω2δ(t) where δ(t) is the displacement of a particle
from equilibrium is not an eigenvalue problem since ω =

√
k/m here is a fixed constant determined by the spring

constant k and mass of the particle m .
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The mode n = 1 is called the fundamental or first harmonic n = 2 the second harmonic or
first overtone etc. Normal modes are periodic functions of both x and t . At any fixed time,
a normal mode of oscillation has a definite angular wave number kn and spatial wave length
λn = 2π/kn = 2L/n . It has a definite angular frequency ωn = ckn and also a definite time
period of oscillation Tn = 2π/ωn . νn = ω/2π is the frequency at which every point along the
string vibrates about its mean position. As opposed to a normal mode, a more general motion of
a stretched string will not have such a definite wave length and time period, indeed it need not
even be periodic in time! Moreover, these normal modes do not necessarily satisfy the prescribed
initial conditions. But since the wave equation is linear, we can take linear combinations of
normal modes to produce new solutions. The most general such linear combination is a Fourier
series

u(x, t) =
∞∑
n=1

(An cosωnt+Bn sinωnt) sin
nπx

L
(18)

The ‘Fourier coefficients’ An, Bn must decay sufficiently fast as n → ∞ to ensure that the
sum converges ( |An|, |Bn| ∼ 1/n2 will do). The theorems of Fourier series tell us that we can
represent any continuous function of x that vanishes at the end points of the interval [0, L] as
a Fourier sine series (at any given instant of time). So we may try to fit the initial conditions
by a suitable choice of constants An, Bn for 1 ≤ n ≤ ∞ . They are fixed by the initial height
and velocity of the string

u(x, 0) =

∞∑
n=1

An sin
nπx

L
and u̇(x, 0) =

∞∑
n=1

Bnωn sin
nπx

L
where ωn =

nπc

L
. (19)

The initial height and initial velocity of the string must vanish at the end points x = 0, L so
that the BCs are satisfied.

Using the orthogonality of sin(nπx/L) on the interval [0, L] for n = 1, 2, 3, . . . and the fact
that the average value (over a period) of the square of the sine function is a half, we find2 the
Euler-Fourier formulas

An =
2

L

∫ L

0
u(x, 0) sin

(nπx
L

)
dx and Bn =

2

nπc

∫ L

0
u̇(x, 0) sin

(nπx
L

)
dx. (20)

Thus we have solved the initial-boundary value problem for the motion of a stretched string
clamped at the end points. It is instructive to plot a movie of the time evolution of one such
solution on a computer by choosing a simple initial condition such as an isosceles triangular
initial height, zero initial velocity and truncating the Fourier series after a few terms.

• We see that a general vibration of a stretched string involves a superposition of several normal
modes and does not possess a definite wave number or time period. However, we will see that
in general, higher harmonics cost more energy to excite. We might anticipate this since the
restoring force was found to be proportional to u′′(x). Higher harmonics sin(nπx/L), for n� 1
are rapidly oscillating functions with large second derivatives, so they involve significant forces
on the string segments. We would expect much energy to be stored in the oscillatory motion of
a higher harmonic.

2We multiply both sides by sin(mπx/L) and integrate over x ∈ [0, L] for integer m and consider the cases
m = n and m 6= n . Use 2 sinα sinβ = cos[α− β]− cos[α+ β] .
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2.4 Right- and left-moving waves and d’Alembert’s solution

• By playing with a stretched string, we may discover the phenomenon of a transverse wave that
moves along a string: a traveling wave. A vertical disturbance that is set up somewhere along
a string can propagate elsewhere. This is because the vertical component of tension causes the
neighboring string element to move vertically, and the process goes on. Indeed, such a traveling
wave can reach a boundary (clamp) and get reflected and come back. Two such traveling waves
moving in opposite directions can collide and superpose.

• More precisely, by a traveling wave, we mean a wave which maintains its profile as it moves
at constant speed (say c > 0) along the string (wither to the right or left). For example, if
u(x, 0) = f(x) is the initial height profile, then u(x, t) = f(x − ct) is a right-moving wave and
u(x, t) = f(x+ ct) is a left-moving wave.

• Now we investigate whether it is possible to describe the solution of the wave equation in
terms of traveling waves.

• Recall that the height u(x, t) (measured relative to the equilibrium height) of a stretched string
executing small transverse vibrations must satisfy the wave equation �u = ( 1

c2
∂2t − ∂2x)u = 0.

In other words, it must be annihilated by the wave operator or d’Alembertian � . d’Alembert’s
approach to solving the wave equation arises from factorizing the wave operator � into a pair
of first order operators. Let us consider the wave equation on an infinite interval −∞ < x <∞
subject to the initial height and initial velocity

u(x, t = 0) = h(x) and u̇(x, 0) = v(x). (21)

The wave equation may be factorized as(
c−2∂2t − ∂2x

)
u =

(
c−1∂t − ∂x

) (
c−1∂t + ∂x

)
u =

(
c−1∂t + ∂x

) (
c−1∂t − ∂x

)
u = 0 (22)

We assume that we are considering functions for which mixed partials commute ∂t∂xu = ∂x∂tu ;
this is true provided the mixed partials exist and are continuous (Clairaut’s Theorem).

• It follows that if u is annihilated by either ∂− = c−1∂t − ∂x or ∂+ = c−1∂t + ∂x , then it
will satisfy the wave equation3. Let us consider these first order equations. We notice that any
differentiable function u(x, t) = f(x − ct) satisfies (c−1∂t + ∂x)u = 0 while any differentiable
function u(x, t) = g(x+ ct) is annihilated by c−1∂t − ∂x . Thus, for any say, twice differentiable
functions f and g ,

u(x, t) = f(x− ct) + g(x+ ct) (23)

is a solution of the wave equation. A little thought shows that for c > 0, f(x − ct) is a right-
moving wave with speed c and initial profile (at t = 0) given by the function f(x). The shape
of the wave f(x− ct) is unaltered as it travels to the right. So f(x− ct) is called a right-moving
wave. Similarly, for c > 0, g(x + ct) is a left-moving wave. Thus we have found that any
superposition of a right- and left-moving wave is a solution of the wave equation.

• One wonders whether such superpositions of right and left moving waves are adequate to solve
the initial value problem for a stretched string4. We will see that this is indeed the case on an

3These are not necessary conditions for solving the wave equation, only sufficient. But functions of these
special sorts can be used to obtain the complete solution to the initial value problem as we will soon see.

4It can be shown (try!) that the initial value problem for the wave equation has a unique solution. So the
solution we find here in terms of left- and right-moving waves and expressed in terms of initial height and initial
velocity is the only one.
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infinite domain. To solve the IVP, we wish to fix f and g in terms of the initial data.

u(x, 0) = f(x)+g(x) = h(x) and u̇(x, 0) = −cf ′(x)+cg′(x) = v(x) or −f ′(x)+g′(x) =
1

c
v(x).

Integrating the latter equation with integration constant K we get

f(x) + g(x) = h(x) and − f(x) + g(x) =
1

c

∫ x

x0

v(ξ) dξ +K. (24)

Adding and subtracting we solve for f, g in terms of initial data

f(x) =
1

2

(
h(x)− 1

c

∫ x

x0

v(ξ) dξ −K
)

and g(x) =
1

2

(
h(x) +

1

c

∫ x

x0

v(ξ) dξ +K

)
(25)

K and x0 are not part of the initial data, so we hope to get rid of them. Fortunately, we are
not interested in f and g separately, but only u(x, t) = f(x − ct) + g(x + ct). Indeed, adding
f, g , we express the solution of the wave equation entirely in terms of initial height and velocity

u(x, t) =
1

2

[
h(x− ct) + h(x+ ct) +

1

c

∫ x+ct

x−ct
v(ξ) dξ

]
. (26)

It is instructive to plot a movie of this solution, for instance in the case of zero initial velocity
and a simple initial height profile such as h(x) = e−x

2/2 . One finds two little waves moving
away from x = 0. The height at xo at time to depends on the initial (t = 0) height at points
xo − cto and xo + cto . So the initial height only at points a distance cto from the observation
point xo can affect the height at the point of observation. This indicates that these ‘signals’
travel at the speed c5. The initial velocity v(x) only at points within a distance cto from the
observation point can affect the height at the observation point.

2.5 Conserved energy of small oscillations of a stretched string

• Since we have not incorporated any dissipative effects and are not supplying any energy or
applying external forces on the string at any time t > 0, we expect the energy of the vibrating
string to be conserved. Let us derive an expression for the conserved energy in the same way as
we did for Newton’s equation. Recall that we multiplied mq̈i+

∂V
∂qi

= 0 by the integrating factor
q̇i and summed over the degrees of freedom i . The resulting expression was the statement that
the time derivative of energy is zero.

• So let us begin with Newton’s equation for a string in its pristine form and multiply by ut

ρutt dx = (τux)x dx ⇒ ρututt dx− ut(τux)x dx = 0 ⇒ 1

2
ρ(u2t )t dx− ut(τux)x dx = 0.

(27)
Now we sum over the degrees of freedom by integrating over x ∈ [a, b]

∂t

∫ b

a

1

2
ρu2t dx−

∫ b

a
ut(τux)x = 0. (28)

5Note that the speed at which these (transverse) signals travel is quite distinct from the instantaneous vertical
velocity u̇ of a point on the string.
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The first term is the time derivative of what looks like a kinetic energy by analogy with a point
particle

m

2

∑
i

q̇2i →
∫ b

a

1

2
ρ u2t . (29)

So we would like to express the second term as the time derivative of a potential energy. To do
so we first integrate by parts (we assume τ(x) is independent of time)

∂t

∫ b

a

1

2
ρu2t dx− [τutux]ba +

∫ b

a
τuxutx dx = 0 (30)

The boundary term vanishes if we use Dirichlet or free boundary conditions (u = 0 or ux = 0 at
x = a, b) or even periodic boundary conditions (τ(a) = τ(b), u(a, t) = u(b, t), ux(a, t) = ux(b, t))
and we get

∂t

∫ b

a
ρ
u2t
2
dx+ ∂t

∫ b

a

1

2
τ(u2x) dx = 0. (31)

Thus the conserved energy is a sum of kinetic and potential energies (check the dimensions!)

E = T + V =

∫ b

a

[
1

2
ρu2t +

1

2
τu2x

]
dx =

∫ b

a
E dx with

dE

dt
= 0. (32)

The kinetic energy T is proportional to the sum of squares of speeds of the bits of string as
expected. T and V are separately non-negative and so E ≥ 0 with equality iff the stretched
string is in equilibrium (say u(x, t) = 0). The integrand is called the energy density E =∫
E(x, t)dx . In general, the energy density ‘moves around the string’ in such a way that the

total energy is conserved.

• The potential energy V is a gradient energy, it is proportional to the square of the gradient
(slope) of the string profile. However, the string cannot have a non-zero constant slope if it
is clamped at the same height at either end, it must bend. In fact, the potential energy can
be regarded as an energy stored in the curvature/bending of the string. By an integration by
parts we write PE = −

∫
1
2τuuxx dx . Here uxx measures the curvature of the string profile.

We also see that for fixed A,B , higher (n � 1) normal modes of oscillation sin(nπx/L) store
more potential energy, since higher Fourier modes are more undulatory and have higher second
spatial derivatives.

• We verify that the energy is conserved using the eom ρutt = (τux)x and integration by parts

dE

dt
=

∫
[ρututt + τuxuxt] dx =

∫ [
ρut

1

ρ
(τux)x − (τux)xut + ∂x(τuxut)

]
dx = [τuxut]

L
0 = 0.

(33)
We assumed the boundary term [τutux]L0 vanishes. This is automatic if u or ux vanish at
the end points, which is the case for a clamped string (Dirichlet b.c.) or a string with free
boundary conditions (ux = 0). Thus the energy of the string is conserved. The energy was
initially supplied to the string when it was set in motion through the initial gradients in the
string profile ux(t = 0) and initial velocity of the string ut(t = 0).

2.6 Three local conservation laws for the wave equation

1. The total energy E =
∫
E dx is globally conserved Ė = 0. In addition, it is locally conserved

in the sense that the energy density satisfies a continuity equation ∂tE + ∂xj = 0 for an energy
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current density j = −τuxut . Let us see why

∂tE = ρututt + τuxuxt = ut(τux)x + (τuxut)x − (τux)xut = (τuxut)x. (34)

The presence of a local conservation law implies that the energy density flows like a fluid, it can
move from place to place on the string due to the flux of the energy current, it cannot jump
from one place to another discontinuously. This is analogous to how the movement of electric
charges is associated to an electric current. It also ensures that the total energy is ‘globally’
conserved

Ė = ∂t

∫ b

a
E dx = −

∫ L

0
∂xj dx = j(0)− j(L) = 0 (35)

if the current vanishes at the boundaries or is equal at the boundaries. This is the case for
clamped or open boundaries with periodic boundary conditions (u and ux periodic with period
L) as well as for decaying BC on an infinite domain.

• More generally, the rate of increase of energy in any fixed region (say [a, b]) is given by the
flux of energy current across its boundary:

d

dt

∫ b

a
E dx = j(a)− j(b). (36)

j(a) is the inward flux of energy across the left boundary and j(b) the outward flus of energy
at the right boundary.

• In general, local conservation laws imply global conservation laws subject to suitable BCs.

2. The wave equation possesses two other simple conserved quantities for suitable boundary
conditions. For free (ux(a) = ux(b) = 0) or periodic boundary conditions the quantity Q =∫ b
a ρut dx is a constant of motion. This is checked by integrating by parts. (Note that a, b could

either or both be infinite.)

Q̇ =

∫ b

a
ρutt dx =

∫ b

a
(τux)x dx = [τux]ba = 0. (37)

ρut has the physical meaning of the vertical component of momentum of a string element. So
Q is the total vertical momentum of the string. We expect it to be conserved provided there is
no external vertical force, like gravity. Notice that Q is in general not conserved for Dirichlet
b.c. This is to be expected since there would be a vertical force on the string at the clamps in
that case.

• Like energy, Q =
∫
ρut dx too is locally conserved. What we mean is that we can find a

current j such that a local continuity equation ∂t(ρut) + ∂xj = 0 is satisfied. In fact, using the
wave equation ρutt = (τux)x we find that the required current density is j = −τux :

∂t(ρut)− ∂x(τux) = 0. (38)

We say that the wave equation can be expressed in conservation form.

3. There is another conserved momentum if the total horizontal force (x-component) vanishes,
and the density and tension are uniform (independent of x). This ‘field’ momentum is P =∫ b
a ρutux dx . It is conserved with periodic b.c. on (a, b) or decaying b.c. on (−∞,∞).

Ṗ =

∫ b

a
ρ (uttux + utuxt) dx =

∫ b

a

(
τuxxux +

1

2
ρ(u2t )x

)
dx =

∫ b

a

[
1

2
τ(u2x)x +

1

2
ρ(u2t )x

]
dx

11



=

∫ b

a

[
1

2
τu2x +

1

2
ρu2t

]
x

dx = 0 (39)

assuming ρ, τ are constants and using periodic b.c. P is in general not conserved for Dirichlet
b.c. P too arises from a local conservation law, with the current given by the negative of the
energy density:

∂t(ρutux) = ρuttux + ρutuxt = τuxxux + ρututx =
(τ

2
u2x +

ρ

2
u2t

)
x

⇒ ∂t(ρutux)− Ex = 0. (40)

• Q and P are the conserved quantities from Noether’s theorem applied to translation invariance
of the wave equation and its Lagrangian in u and in x respectively for suitable boundary
conditions. To understand this we need a Lagrangian for the wave equation.

2.7 Lagrangian and Hamiltonian for stretched string

• The possible instantaneous configurations of a vibrating stretched string are the heights u(x)
for 0 ≤ x ≤ L . So the configuration space is a space of functions, it is not finite dimensional.
The generalised coordinates are the values of the function u(x, t) for 0 ≤ x ≤ L at a given time
t . The generalised velocities at time t are u̇(x, t). We will show that a Lagrangian for small
transverse oscillations of the stretched string is

L =

∫ L

0

1

2

[
ρ(ut)

2 − τ(ux)2
]
dx ≡

∫
L dx (41)

where L = 1
2

[
ρu2t − τu2x

]
is called the Lagrangian density. This formula is simply L = T − V

obtained from our earlier formula for the conserved energy E = T + V .

• The action is defined as S =
∫ t2
t1
Ldt . The principle of extremal action states that the equations

of motion are the conditions for S to be stationary with respect to arbitrary small variations
u(x, t)→ u(x, t)+δu(x, t) holding the initial and final sting profile u(x, t1) and u(x, t2) fixed. In
other words, we ask for the ‘trajectory’ u(x, t) of the string for times t1 ≤ t ≤ t2 for prescribed
initial and final string profiles. The trajectory is the u(x, t) that extremizes S , i.e., δS should
be zero to first order in small variations δu(x, t). If we view u(x, t) as defining a surface over a
rectangle (0 ≤ x ≤ L , t1 ≤ t ≤ t2 ) in the x− t plane, then u+ δu represents a nearby surface
which coincides with the original surface along the edges t = t1, t2 .

• In general, for a Lagrangian density L that depends on u and its time and space derivatives ut ,
ux, uxx , the Euler-Lagrange conditions for S to be stationary are (subject to suitable boundary
conditions such as clamped or decaying etc.)

∂

∂t

∂L
∂ut

=
∂L
∂u
− ∂

∂x

(
∂L
∂ux

)
+ ∂2x

(
∂L
∂uxx

)
. (42)

To see this, we simply set the first variation of the action S =
∫
Ldx dt to zero after integrating

by parts in t in the 2nd term, x in the 3rd term and twice in x in the 4th term:

δS =

∫ [
∂L
∂u

δu+
∂L
∂ut

δut +
∂L
∂ux

δux +
∂L
∂uxx

δuxx

]
dx dt
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=

∫ [
∂L
∂u
− ∂t

(
∂L
∂ut

)
− ∂x

(
∂L
∂ux

)
+ ∂2x

(
∂L
∂uxx

)]
δu dx dt

δS = 0 ⇒ ∂

∂t

∂L
∂ut

=
∂L
∂u
− ∂

∂x

(
∂L
∂ux

)
+ ∂2x

(
∂L
∂uxx

)
. (43)

The boundary terms from the first two integrations by parts are∫ L

0
dx[

∂L
∂ut

δu]t2t1 and

∫ t2

t1

dt[
∂L
∂ux

δu]L0 (44)

The integrand in the first case vanishes since δu(x, t1) = δu(x, t2) = 0 by assumption. The
second integrand vanishes if, say, the variations respect clamped (δu(0, t) = δu(L, t) = 0) or
decaying BCs or even Neumann BCs as ∂L

∂ux
∝ ux for the Lagrangian proposed. You may try

to show that the boundary terms coming from two integrations by parts in the 4th term also
vanish subject to suitable BCs.

• For the above Lagrangian density we get ∂t(ρut) = ∂x(τux) or ρutt = ∂x(τux) since ρ is not
explicitly time dependent. When ρ, τ are constants, this reduces to the familiar form of the
wave equation utt = c2uxx with c2 = τ/ρ .

• The momentum conjugate to the coordinate u(x, t) is defined as

π(x, t) =
δL

δut(x)
= ρut(x, t). (45)

The Hamiltonian is the Legendre transform of the Lagrangian

H[u, π] = extut

∫ L

0
[πut − L] dx =

∫ [
π2

ρ
− 1

2
ρ
π2

ρ2
+

1

2
τu2x

]
dx =

∫ L

0

[
π(x)2

2ρ
+
τu2x
2

]
dx.

(46)
The extremization is with respect to the velocities ut(x, t) at all positions. The conditions
for extrema recover the definition of the conjugate momentum π = δL/δut . Evidently, the
Hamiltonian is the same as the energy, but now expressed in terms of u and π instead of u
and ut . Integrating by parts assuming clamped or free boundaries, we may also express the
Hamiltonian as

H[u, π] =

∫ [
1

2ρ
π2 − 1

2
u(τux)x

]
dx assuming [τuux]L0 = 0. (47)

• Hamilton’s equations are the first order equations

ut(x) =
δH

δπ(x)
=
π(x)

ρ
and πt(x) = − δH

δu(x)
= (τux)x (48)

Combining these two 1st order equations, we get the 2nd order wave equation ρutt = (τux)x or
utt = c2uxx for constant tension, as desired.

• The Poisson brackets between canonically conjugate variables (at a common time t) are

{u(x), π(x′)} = δ(x− x′) and {u(x), u(x′)} = {π(x), π(x′)} = 0. (49)

The equations of motion written using PBs take the form ∂tf = {f,H} for any dynamical
variable function f . Taking f = u(x, t) and f = π(x, t) verify that one recovers Hamilton’s
equations and the wave equation.
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2.8 Conserved quantities from Noether’s Theorem

• Recall that if the Lagrangian or Hamiltonian is independent of a particular coordinate, then
its conjugate momentum is conserved. This is clear from Hamilton’s/Lagrange’s equation ṗi =
−∂H
∂qi

= ∂L
∂qi

. Noether’s theorem is a generalization of this.

• The simplest version of Noether’s theorem in mechanics states that if the Lagrangian is
invariant under the infinitesimal coordinate transformation qi → qi + δqi (called an infinites-
imal symmetry), then the quantity Q =

∑
i piδqi is conserved, Q̇ = 0. The generalization

to our system is that if u → u + δu is an infinitesimal symmetry of the Lagrangian, then
Q =

∫
π(x, t)δu(x, t)dx is conserved.

• The Lagrangian L = 1
2

∫ (
ρu2t − τu2x

)
dx is invariant under translations in u and x . So we

may use Noether’s theorem to find the corresponding conserved quantities. They turn out to
the constants of motion Q,P found earlier.

• Under a translation x→ x+ ε , u(x)→ u(x+ ε) ≈ u(x) + εux . The Lagrangian is translation
invariant in x provided the string is homogeneous (τ, ρ independent of x) and we have either
periodic or decaying b.c. Dirichlet b.c. would violate translation invariance due to the positions
of the clamps. Noether’s theorem then gives us the conserved quantity P = ε

∫
ρutux dx which

we had discovered earlier.

• Under a translation (constant shift) of u , u→ u+ ε , the Lagrangian does not change since it
only involves derivatives of u . If, in addition, the b.c. are also invariant (this is the case for free
boundary conditions or periodic b.c., but not for Dirichlet b.c.), then we may apply Noether’s
theorem to deduce that Q =

∫
π(x)δu(x) dx is conserved, where π(x) = ρut . For translations

of u , δu = ε so Q = ε
∫
ρut dx . Omitting the constant ε we recover the conserved vertical

momentum introduced earlier.

• Q may in fact be interpreted as the conserved momentum conjugate to a cyclic coordinate
in the Lagrangian. Indeed, suppose we have periodic b.c. (by this we mean that u and ux are
both periodic with period l), then we may expand the height u(x, t) in a Fourier series

u(x, t) = a0(t) +
∑
n≥1

an(t) cos

(
2nπx

l

)
+
∑
n≥1

bn(t) sin

(
2nπx

l

)
. (50)

Note that cos(πx/l) is not periodic while the derivative of sin(πx/l) is not periodic with period
l which is the reason for the factor of 2 in the arguments.

The zeroth Fourier mode a0 = 1
l

∫ l
0 u(x, t) dx is the average height. Using orthogonality of

sines and cosines and the fact that the average value of their squares over a period is a half we
get

an =
2

l

∫ l

0
u(x) cos

(
2nπx

l

)
and bn =

2

l

∫ l

0
u(x) sin

(
2nπx

l

)
. (51)

The infinite collection of Fourier coefficients a0, an and bn furnish coordinates on the configu-
ration space of the vibrating string. Thus we are changing variables from the values of u at
various x to the Fourier coefficients. We find

ut = ȧ0 +
∑
n≥1

ȧn cos
(nπx

l

)
+ ḃn sin

(nπx
l

)
and ux =

2π

l

∑
n≥1

n
(
−an sin

(nπx
l

)
+ bn cos

(nπx
l

))
. (52)

The new velocities are the time derivatives ȧ0, ȧn, ḃb . The Lagrangian is expressed in terms of
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the Fourier coefficients and their velocities using orthogonality of the sines and cosines:

L =

∫ [
1

2
ρu2t −

1

2
τu2x

]
dx =

ρl

2

ȧ20 +
1

2

∑
n≥1

(
ȧ2n + ḃ2n

)− τπ2

l

∞∑
n=1

n2(a2n + b2n). (53)

All Fourier coefficients would be cyclic if τ = 0. For non-zero tension, we see that a0 is the
only cyclic coordinate, it does not appear in L , though its velocity ȧ0 does. It follows that the
momentum conjugate to the ‘zero mode’ a0 is

π0 =
∂L

∂ȧ0
=
∂T

∂ȧ0
= ρlȧ0 = ρl

1

l

∫ l

0
ut dx =

∫ l

0
ρut dx = Q. (54)

So we see that the Noether conserved charge Q corresponding to symmetry under translations in
the height u→ u+ ε is the same as the conserved momentum conjugate to the cyclic coordinate
a0 .

• Notice that we can find additional cyclic coordinates by going to ‘polar-coordinates’ in the
an, bn plane. Let an = rn cos θn and bn = rn sin θn or rn =

√
a2n + b2n and tan θn = bn/an .

Write the Lagrangian in terms of a0, rn, θn and their velocities and try to identify infinitely
many cyclic coordinates. What are the corresponding conserved conjugate momenta?

2.9 Dispersion relation, phase and group speeds

• The wave equation in 1D utt = c2uxx admits traveling wave solutions of the form ei(kx−ωt)

provided the angular frequency ω and wave number k > 0 satisfy the dispersion relation ω2 =
c2k2 . The two solutions ω = ±ck represent right and left moving waves. The waves move at
the phase velocities cp = ω/k = ±c .

• The first order wave equation ut = cux has the dispersion relation ω = −ck and admits
only left moving waves (for k > 0). Similarly, ut = −cux admits only right moving waves with
dispersion relation ω = ck .

• More generally, the 3D wave equation utt = c2∇2u admits plane wave solutions uk(r, t) =
ei(k·r−ωt) for any wave vector k provided the angular frequency satisfies the dispersion relation
ω2 = c2|k|2 . We call this a plane wave as uk(r, t) is constant on any plane orthogonal to the
wave vector k . These planes are the wave fronts. If we take ω = c|k| , this wave travels in the
direction of k at a phase speed ω/k = c .

• In all these cases, the phase speeds of all Fourier modes are the same, they are indepen-
dent of k . Such an equation is called non-dispersive. More general solutions of these equa-
tions may be obtained by superposing plane waves with different wave numbers k : u(x, t) =∫
A(k)ei(kx−ω(k)t)dk . If A(k) is a function peaked around some k = k0 , the resulting u(x, t)

can look like a wave packet peaked around some x0(t). Since the individual modes travel at the
same speed, they will tend to stay together and the wave packet retains its shape as it moves
with the same speed cp .

• On the other hand, for a dispersive equation such as the Schrodinger wave equation, modes
with different wave numbers k move at different phase speeds and a wave packet tends to spread
out. See Problem Set 1. It can be shown that the packet as a whole moves at the group speed
cg = dω

dk evaluated at k = k0 . This is obtained using a stationary phase approximation to
evaluate the above integral to find that x0(t) ≈ cgt .
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3 Fourier’s heat conduction/diffusion equation

• Suppose we have a body with some initial (absolute) temperature distribution T (r, t = 0).
We wish to know how this temperature distribution evolves with time.

• Empirically it is found that the heat flux between bodies or parts of a body grows with
the temperature difference. Fourier’s law of heat diffusion states that the heat flux density
vector (with units of energy per unit time crossing unit area normal to the heat flux vector) is
proportional to the negative gradient in temperature

q = −k∇T where k = thermal conductivity. (55)

For a perfect thermal insulator, k would be zero.

• If dS = n̂dS is a small area (vector), then the heat flux across it (energy crossing it per unit
time) is given by q · dS .

• Consider gas in a fixed volume V . The increase in internal energy U =
∫
V ρcvT (r, t) dr (here

T is the absolute temperature) must be due to the influx of heat across its surface ∂V . This is
a consequence of the first law of thermodynamics if we assume no work is done on the gas and
that there are no sources/sinks of energy inside the gas. Thus∫

V
∂t(ρcvT )dr = −

∫
∂V

q · n̂ dS =

∫
∂V
k∇T · n̂ dS = k

∫
V
∇ · ∇T dr. (56)

We used Gauss’ divergence theorem to convert the surface integral to a volume integral taking n̂
to be the outward pointing normal to the surface. cv = specific heat/mass (at constant volume,
no work) and ρ = density. V is arbitrary, so the integrands must be equal and Fourier’s heat
diffusion equation follows:

∂T

∂t
= α∇2T where α =

k

ρcv
is thermal diffusivity. (57)

α ≥ 0 has dimensions of area per unit time. Since the heat equation is linear and only involves
derivatives of temperature, we are free to translate or rescale temperature.

• Interesting boundary conditions for the heat equation arise when the temperature on the
boundary of the body is held fixed or the body is insulated (n̂ · ∇T = 0).

• For definiteness, consider heat conduction on a slender 1D rod that extends from x = 0 to
x = L . If the end points are held at fixed temperatures T0 and T1 , then we have Dirichlet BCs:
T (0, t) = T0 and T (L, t) = T1 at all times t . If the ends are insulated, it means the heat flux
vanishes at the ends. This leads to Neumann boundary conditions T ′(0, t) = T ′(L, t) = 0.

• Unlike the wave equation the heat equation is first order in time and requires only one piece
of initial data, which may be taken as the initial temperature distribution T (x, 0). We are then
interested in solving the initial-boundary value problem for the heat equation.

• Show that the heat equation is not time-reversal invariant: i.e., it is not invariant under
t → −t . In other words, the movie of a solution of the heat equation played backwards is
generally not a possible solution of the heat equation.

• The heat equation does not describe a conservative system, it is an example of a dissipative
system. Useful energy stored in the initial temperature distribution is lost with an attendant
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rise in entropy. Unlike the time-reversal invariant wave equation, the heat equation does not
admit a Hamiltonian or Lagrangian formulation.

• However, dissipative does not mean nothing is conserved. Show that the average temperature
of an insulated rod of length L , T̄ (t) = (1/L)

∫ L
0 T (x, t)dx is independent of time! In fact, this is

a consequence of the fact that the heat equation is in local conservation form Tt−α∇·(∇T ) = 0.

• Heat diffusion tends to smooth the temperature distribution. By Fourier’s law, temperature
differences tend to even out (unless they are maintained by external agents). Even a discontin-
uous initial temperature distribution such as θ(x) (Heaviside step function) becomes a smooth
temperature distribution after an arbitrarily short time. As t → ∞ , T approaches an equilib-
rium temperature distribution as t→∞ when net heat flow stops. The approach to equilibrium
is typically exponentially fast, as we shall see. By contrast, the wave equation does not smooth
the initial wave height.

• Moreover, the backward time evolution of the heat equation is often ill-posed. This means
that while we can specify practically any initial temperature distribution and evolve it forwards
in time, it cannot always be evolved backwards, such a solution may not exist. For instance, we
can take a Heaviside step function in temperate T (x, 0) = θ(x) and evolve it forward from t = 0
to t = ∞ , the sharp jump in temperature will get smoothed out. On the other hand, there is
no temperature distribution that upon evolution, from t = −∞ (or t = −t0 < 0) reaches the
above step function. Physically, heat evolution describes a process with increasing entropy and
tendency to smooth sharp temperature differences. T (x, 0) is discontinuous and it is plausible
that T (x, 0) is a rather specially arranged state with low entropy. It is not possible that a rod
whose temperature distribution has been evolving for infinitely long while increasing its entropy
and smoothing T (x) can arrive at the special discontinuous state T (x, 0).

• Note, however, that there are initial states that can be evolved backwards in time for some
duration. For instance, suppose we perform the forward evolution of the heat equation from
t = −10 to t = 0 starting from some T (x,−10) and ending at some T (x, 0). In this case, it
plausible that we can evolve the state T (x, 0) backwards in time, at least till t = −10.

• To be a good model for the conduction of heat, it is important that the heat equation preserve
the non-negativity of the initial absolute temperature distribution, after all, absolute tempera-
ture must be non-negative. Later, we will argue why this is the case.

• Let us argue that the solution to the initial value problem to the heat equation is unique
(subject to suitable boundary conditions). Suppose u(x, t) and v(x, t) are both solutions to the
heat equation with the same initial condition u(x, 0) = v(x, 0) = f(x) and the same (consistent)
boundary conditions. We wish to show that u(x, t) = v(x, t) at all t > 0 or equivalently that
w = u−v ≡ 0 at all x and t > 0. By linearity, w = u−v is also a solution to the heat equation
(with BCs that follow: w = 0 at the ends or w′ = 0 at the ends in the Dirichlet and Neumann
cases) satisfying the initial condition w(x, 0) ≡ 0. Since there is no temperature gradient for
w initially, the corresponding heat flux density vector vanishes everywhere at t = 0 and there
cannot be any re-distribution of the temperature w . Thus w(x, t) should remain zero at all
subsequent times.
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3.1 Solution of IVP for heat equation on an interval by Fourier’s series

• Fourier developed his series to solve the heat equation. Let us consider the heat equation ut =
αuxx on the interval 0 ≤ x ≤ L with the ends insulated so that ux(0, t) = ux(L, t) = 0 (Neumann
BC). We wish to solve the IVP to determine how the temperature distribution evolves with
time from a given initial distribution T (x, 0) = f(x) satisfying f ′(0) = f ′(L) = 0. Intuitively
we expect inhomogeneities in the initial temperature distribution to be washed out and for
the temperature all along the rod to settle down at a single temperature T̄ = (1/L)

∫
f(x)dx

determined by the conservation of the mean temperature mentioned earlier. How does this
equilibration occur?

• As with the wave equation, we make the separation of variables ansatz u(x, t) = X(x)T (t)
and obtain

Ṫ

T
= α

X ′′

X
= constant = −κ < 0. (58)

Here κ is a separation constant chosen positive so that the boundary conditions may be non-
trivially imposed and so that the time dependence is a decaying rather than growing exponential:
we expect equilibration to a steady state rather than a blowing up of the temperature distribution
as time evolves.

• The ODEs for X and T have the general solutions

X(x) = A cos
√
κ/αx+B sin

√
κ/αx and T (t) = Ce−κt. (59)

The Neumann BCs X ′(0)T (t) = 0 and X ′(L)T (t) = 0 for all times imply X ′(0) = X ′(L) = 0.
The left BC implies B = 0 while

X ′(L) = −A
√
κ/α sin(

√
κ/αL) = 0 ⇒ κ =

n2π2

L2
α. (60)

where n is an integer. Thus the linearly independent separable solutions to the heat equation
with insulated end points are the ‘normal modes’

un(x, t) = Ane
−κnt cos(

nπx

L
) for n = 0, 1, 2, 3 . . . . (61)

• Unlike for the wave equation, these modes are not oscillatory. Since κn = (n2π2/L2)α grow
quadratically with n , the higher modes decay faster with time. The n = 0 mode dominates
at large times t while the n = 1 mode controls the rate of approach to equilibrium. We may
now form a linear combination of these modes to arrive at a Fourier series solution of the heat
equation with Neumann boundary conditions

u(x, t) =

∞∑
n=0

Ane
−κnt cos(nπx/L) (62)

The Fourier coefficients An are determined by imposing the initial condition

u(x, 0) = f(x) =
∑
n

An cos(nπx/L). (63)

As before we get the Euler-Fourier formulae

A0 =
1

L

∫ L

0
f(x) dx and An =

2

L

∫ L

0
f(x) cos(nπx/L) dx for n = 1, 2, 3 . . . . (64)
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• What if the ends are maintained at a fixed temperature u0 , namely the temperature of the
heat bath or surroundings in which the rod is immersed? Can we use the Fourier method to
solve the corresponding IVP?

3.2 Evolution kernel for heat equation on a line

• The heat diffusion equation for the temperature distribution u(x, t) on an infinite rod is

∂u(x, t)

∂t
= α∇2u(x, t) with initial temperature distribution u(x, 0). (65)

The thermal diffusivity α > 0. The solution may be expressed in terms of the integral kernel
of the heat evolution operator ht = eαt∇

2
. The latter is defined via the convergent exponential

series which produces a differential operator of infinite order

ht = eαt∇
2

= I + αt∇2 +
α2t2∇4

2!
+ · · · . (66)

Differentiating term by term, ht is seen to satisfy the heat equation (ht and the Laplacian
commute)

∂tht = α∇2ht with initial condition ht→0+ = I. (67)

• Dirac-notation for vectors and operators: If |ei〉 for i ∈ I is a basis for a (finite-
dimensional) vector space, we may write a vector as a linear combination |v〉 =

∑
i |ei〉vi and

thereby define the components vi of v . If the space is an inner product space and the basis is
orthonormal 〈ei|ej〉 = δij , then taking an inner product with ej we may express vj = 〈ej |v〉 .
Since the basis is orthonormal, we also have the completeness relation

∑
i |ei〉〈ei| = I which

expresses the identity as a sum of outer-products: this is easily checked for any basis vector and
by linearity holds in general:

∑
i |ei〉〈ei|ek〉 = |ek〉 = I|ek〉 . Similarly, we define the components

of a linear transformation by the way it acts on the basis vectors A|ej〉 =
∑

i |ei〉Aij . Again
taking an inner product with ek and using orthonormality, we express the components of A as
the inner products (‘matrix elements’) 〈ek|A|ej〉 = Akj . This allows us to write A as a linear
combination of outer products of basis vectors A =

∑
ij Aij |ei〉〈ej | . Combining this expression

with |v〉 =
∑

k |ek〉vk we may write A|v〉 =
∑

ij |ei〉Aijvj or (Av)i =
∑

j Aijvj .

• These formulae can be formally extended to infinite dimensional inner product spaces (Hilbert
spaces of functions such as L2(R)). A convenient basis is that of position eigenstates |x′〉 which
are orthogonal, Delta normalized 〈x′|x′′〉 = δ(x′ − x′′) and satisfy the completeness relation∫
dx|x〉〈x| = I . They are eigenstates of the multiplication operator (Mf)(x) = xf(x), i.e.,

x|x′〉 = x′|x′〉 or xδ(x− x′) = x′δ(x− x′). Another basic operator is differentiation (Df)(x) =
f ′(x) or more generally the partial derivative on L2(Rn). The second derivative D2 is similarly
defined, as is the Laplacian ∇2 .

• Given an operator A on a function space we have the notion of its integral kernel A(x, y)
defined via (Af)(x) =

∫
A(x, y)f(y)dy . In Dirac notation A(x, y) = 〈x|A|y〉 . Check that the

integral kernel of the multiplication operator is M(x, y) = xδ(x−y) = yδ(x−y). Show that the
integral kernel of the differentiation operator is D(x, y) = ∂xδ(x− y) = −∂yδ(x− y). Similarly,
show that D2(x, y) = ∂2xδ(x− y) = ∂2yδ(x− y) and that the integral kernel of the Laplacian in
3D is 〈x|∇2|y〉 = ∇2

xδ
3(x− y)
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• Let us define the heat kernel ht(x, y) as the integral kernel of the heat evolution operator. By
this we mean that ht acts on functions via

(htf)(x) =

∫
ht(x, y)f(y) dy. (68)

Alternatively, ht(x, y) is the matrix element of ht between position eigenstates. In Dirac nota-
tion, ht(x, y) = 〈x|ht|y〉 .
• Then

∂tht(x, y) = α∇2
xht(x, y) with lim

t→0+
ht(x, y) = δ(x− y). (69)

The first statement is verified using the matrix elements of the laplacian 〈x|∇2|z〉 = ∇2
xδ(x−z).

Thus taking matrix elements of (67) we get 〈x|∂tht|y〉 = ∂tht(x, y) while

〈x|α∇2ht|y〉 = α

∫
〈x|∇2|z〉〈z|ht|y〉dz = α

∫
∇2
xδ(x− z)ht(z, y)dz = α∇2

xht(x, y). (70)

The second statement uses the fact that the matrix elements of the identity between position
eigenstates is the Dirac delta function.

• Note that ht(x, y) has dimensions of 1/Ld where d is the spatial dimension.

• Then the solution of the heat equation with initial condition u(x, 0) may be expressed as

u(x, t) =

∫ ∞
−∞

ht(x, y)u(y, 0) dy. (71)

To see this, we check that the RHS satisfies the heat equation (since ht(x, y) does) with initial
condition u(x, 0). By uniqueness, it must be the desired solution of the heat equation. In other
words, integration against the heat kernel transforms the initial temperature distribution into
the one at time t .

• Taking u(y, 0) = δ(y), we see that ht(x) ≡ ht(x, 0) may be interpreted as the temperature at
x at time t if the initial temperature distribution is a Dirac delta function supported at x = 0.
[Of course, this u(y, 0) and ht(x) do not have dimensions of temperature. One could use the
linearity of the heat equation to multiply by a dimensional constant to make u have dimensions
of temperature, but this constant plays no role in what follows.]

• Before trying to determine ht(x) by solving the heat equation let us try to guess its behaviour.
Physically we heat the center of an (infinitely) long rod to a high temperature while keeping
the rest of it at zero temperature, then withdraw the heat source and watch the temperature
redistribute. We expect the heat to flow out symmetrically in either direction from x = 0.
The temperature at x = 0 should gradually decrease and the temperature distribution should
gradually widen. Suppose we guess that the distribution is a gaussian, ht(x) = N(t)e−x

2/a(t)2 .
The width a(t) of the gaussian can depend only on time and α and must have dimensions of
length. Putting a2 ∝ t2ναγ we get ν = 1/2 and γ = 1 by dimensional analysis, so ht(x) ∼
N(t)e−x

2/cαt for some dimensionless numerical constant c .

• Now N(t) must be a monotonically decreasing function of time, so we might suppose N(t) ∝
1/tµ . To determine µ we note that the ‘total temperature’

∫
ht(x)dx is conserved (assuming

ht(x) → 0 as |x| → ∞) and by the initial condition its value is unity. So ht must have
dimensions of an inverse length. Consequently N(t) = N0/

√
αt for some positive numerical
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constant N0 . In fact, you may determine N0 in terms of c by requiring
∫
ht(x) dx = 1 at all

t ≥ 0. Thus on physical grounds, we guess that as t → ∞ the heat escapes to infinity and the
temperature at all points drops to zero: this is the expected equilibrium state.

• To find a formula for the heat kernel, we note that the heat equation and initial condition
for ht(x, y) is invariant under the translations x → x + a, y → y + a . In other words, if
ht(x, y) is a solution with IC δ(x − y) then so is ht(x − a, y − a). Taking a = y we see that
ht(x− y, 0) ≡ ht(x− y) is a solution of the heat equation with IC δ(x− y). By uniqueness, it
follows that the heat kernel is a function only of the difference in positions ht(x, y) = ht(x− y).
Thus we have reduced the job of finding the heat kernel to finding a time-dependent function
ht(x) of one rather than two arguments. To solve the equation

∂tht(x) = α∇2
xht(x), with h0(x) = δ(x), (72)

we go to momentum space since ∂2x is diagonal in momentum space, differentiation becomes
multiplication by ip and this will allow us to convert the PDE to a system of ODEs. Let

ht(x) =

∫ ∞
−∞

h̃t(p)e
ipx [dp], h̃t(p) =

∫ ∞
−∞

ht(x)e−ipx dx. (73)

Then the heat equation for ht(x) implies∫ ∞
−∞

[
(∂t − αp2)h̃t(p)

]
eipx

dp

2π
= 0 ∀ x, t > 0 (74)

This can be true for all x only if the quantity in parentheses vanishes, so the heat equation in
momentum space becomes

∂th̃t(p) = −αp2h̃t(p) and has solution h̃t(p) = Ae−αp
2t (75)

The constant of integration A = h̃0(p) = 1 by the initial condition h0(x) = δ(x).

• Now we go back to position space

ht(x) =
1

2π

∫ ∞
−∞

dp e−αt(p
2− ipx

αt ) =
1

2π
e−

x2

4αt

∫ ∞
−∞

dpe−αt(p−
ix

2αt
)2 =

1√
4παt

e−
x2

4αt . (76)

Thus the heat kernel is

ht(x, y) =
1√

4παt
e−

(x−y)2

4αt . (77)

The formula says that if the initial temperature is Delta distributed at x = 0, then as time
elapses, the temperature ht(x, 0) at any fixed point x 6= 0 first grows with time, reaches a
maximum and then decays to zero as a power law t−1/2 . For a fixed time t > 0, the temperature
exponentially decays to zero as we move x away from the origin. In d spatial dimensions, the
heat kernel is similar (it is just the product of d one-dimensional heat kernels)

ht(x, y) =
1

(4παt)d/2
e−

(x−y)2

4αt . (78)

Since the heat kernel ht(x, y) is positive, it follows that if u(x, 0) is non negative, u(x, t) will
also be non-negative. Thus the (absolute) temperature cannot become negative, as we expected
on physical grounds.

• Notice also that even an infinitely discontinuous initial temperature distribution δ(x) evolves
into a smooth distribution ht(x) at any t > 0.
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