Fluid Dynamics, Autumn 2024, CMI Assignment 1

Due by the beginning of the class on Monday, Aug 19, 2024 Heat capacities, Adiabatic process for ideal gas

- 1. $\langle \mathbf{2} + \mathbf{3} \rangle$ Heat capacities at constant volume and pressure are $C_v = \lim_{\delta T \to 0} \left(\frac{\delta Q}{\delta T}\right)_V = T\left(\frac{\partial S}{\partial T}\right)_V$ and $C_p = \lim_{\delta T \to 0} \left(\frac{\delta Q}{\delta T}\right)_p = T\left(\frac{\partial S}{\partial T}\right)_p$, where δQ is the heat added reversibly to a gas, T its absolute temperature and S its entropy. Use the 1st and 2nd laws of thermodynamics dU = TdS pdV and the definition of enthalpy in terms of internal energy H = U + pV to express C_v and C_p as partial derivatives of U and H. For N molecules of an ideal gas $(pV = Nk_bT)$ show that $C_p = C_v + Nk_b$ and that $\gamma = C_p/C_v > 1$.
- 2. $\langle 5 \rangle$ Adiabatic process for an ideal gas. Show that for an ideal gas undergoing a reversible adiabatic process, pV^{γ} is constant. Hint: $dU = C_v dT$ is the increase in internal energy. Use the results of Prob. 1.