Fluid Dynamics, Autumn 2024, CMI Assignment 4

Due by the beginning of the class on Monday, Sep 16, 2024 Entropy of ideal gas, Euler equation

- 1. $\langle 7 \rangle$ Derive the formula $s = c_v \log \left(\frac{p/\bar{p}}{(\rho/\bar{\rho})^{\gamma}} \right)$ for the specific entropy of a calorically perfect ideal gas with specific heat ratio $\gamma = c_p/c_v$. The specific heat (per unit mass) at constant volume is c_v , while $\bar{\rho}$ and \bar{p} are reference density and pressure. Hint: For n moles of an ideal gas, p = nRT/V and the change in internal energy is $dU = C_v dT$ with heat capacity C_v independent of V (this is called the caloric condition, U(T, V) = U(T) is independent of volume). Assume that the gas is calorically perfect (C_v independent of T, usually a reasonable first approximation).
- 2. $\langle 5 \rangle$ Consider Euler's equation (in the absence of body forces) for inviscid incompressible flow with density that is not necessarily constant. Find a Poisson-type equation for the pressure. Rewrite this equation for pressure after eliminating all time derivatives.