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1 Introduction to mechanics of deformable media

Continuum mechanics begins by dealing with the nonrelativistic classical dynam-
ics of continuous deformable media. Examples are oscillations of stretched strings,
heat conduction in rods, elastic motion of solids (rods/beams), motion of fluids1 (air,
water) and plasmas (ionized gases), in roughly increasing order of complexity. All
of these systems involve a very large number of molecules (or degrees of freedom)
and we will treat them as continuous mass/charge distributions with an infinite num-
ber of degrees of freedom. Thus, unlike particle mechanics, continuum mechanics
deals with fields. Examples of fields include the height of a stretched string, temper-
ature, elastic displacement, mass density, velocity, pressure, internal energy, specific
entropy, charge density, current density, electric and magnetic fields. While a classical
point particle is somewhere at any given time, a classical field is everywhere at any
given instant! Thus, continuum mechanics is a collection of (primarily nonrelativistic,
classical) field theories. Electromagnetism and gravitation are other examples of field
theories, though they often involve relativistic and/or quantum effects.

Due to the larger number of degrees of freedom, the dynamics of deformable bod-
ies is generally more complicated than that of point particles or rigid bodies. In fact,
we can imagine a rigid body becoming deformable by relaxing the constraints that fix
the distances between its constituents.

1Collectively, sand grains sometimes flow like a fluid, though individual grains display properties nor-
mally associated with a solid.
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There are two principal formalisms for treating mechanics of continuous media,
the so-called Lagrangian and Eulerian descriptions. The former is closer to our treat-
ment of systems of particles: we follow the motion of each molecule or fluid element
(to be defined in Sect. 3) or bit of string. For example, if a fluid element occupied the
location a at t = 0, then we seek the trajectory r(a, t) of this fluid element, which
should be determined by Lagrange’s equations (ironically, this treatment was orig-
inally attempted by Euler). The Lagrangian description is particularly useful if we
have some way of keeping track of which material element is where. This is usually
not possible in a flowing liquid or gas, but is possible in a vibrating string since the bits
of string are ordered and may be labeled by their location along the string or by their
horizontal coordinate x for small vertical vibrations of a string that does not ‘bend
over’. For an elastic solid, the corresponding variable is the local displacement field
s(r, t) or ξ(r, t) which represents the departure from the equilibrium location of the
element that was originally at r. In a fluid like air or water, it is difficult to follow the
motion of individual fluid elements due to the tendency to mix.

So Euler developed the so-called Eulerian description, which attempts to under-
stand the dynamics of quantities (Eulerian variables) such as density ρ(r, t), pressure
p(r, t), velocity v(r, t) and temperature T (r, t) in a fluid at a specified observation
point r at time t. However, it must be emphasized that the laws of mechanics (New-
ton’s laws) apply to material particles or fluid elements, not to points of observation,
so one must reformulate the equations of motion so that they apply to the Eulerian
variables. The equations of motion in continuum mechanics are invariably expressed
as partial differential equations for fields (such as the density of a fluid or height of
a string at a given location and time). Thus, we are dealing with the classical dy-
namics of fields. We will now discuss the flow of fluids, primarily from an Eulerian
perspective.

2 Introduction to fluid mechanics

Fluid flows are all around us: the air through our nostrils, tea stirred in a cup,
water down a river and charged particles in the ionosphere. The flow of fluids can
be fascinating to watch. It is also an interesting branch of physics to which many of
the best scientists from the early days of Leonardo da Vinci, Isaac Newton, Daniel
Bernoulli and Leonhard Euler have contributed. Fluid dynamics finds application in
numerous areas: flight of airplanes and birds, weather prediction, blood flow in the
heart and blood vessels, waves on the beach, ocean currents and tsunamis, flows in the
molten metallic core of the Earth, controlled nuclear fusion in a tokamak, jet engines
in rockets, motion of charged particles in the solar corona and astrophysical jets, ac-
cretion disks around active galactic nuclei, formation of clouds, melting of glaciers,
climate change, sea level rise, traffic flow, building pumps and dams, etc. Fluid flows
can range from regular and predictable (laminar) to seemingly disorganized and un-
predictable (turbulent) while displaying remarkable patterns.

We believe2 we know the macroscopic physical laws governing fluid motion. In

2Unlike in the application of Newton’s laws to a pair of point particles or a rigid body, there are signif-
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the absence of dissipation, they are the local conservation laws of mass, momentum
and energy along with a thermodynamic equation of state. The resulting equation
for the flow velocity in ‘ideal’ (dissipationless) flow goes back to the work of Eu-
ler (1757). In the presence of dissipation (viscosity, thermal conductivity, etc.), lo-
cal conservation of mass continues to hold although the ideal momentum and energy
equations are modified (in the simplest possible way) using empirical macroscopic
laws of Newton and Fourier governing diffusion of momentum and heat to arrive at
the equations for viscous flow. The corresponding equation for the flow velocity was
introduced by Claude-Louis Navier (1822) and George Gabriel Stokes (1845). It is
important to bear in mind that these equations of macroscopic fluid mechanics were
postulated based on empirical observations, macroscopic conservation laws and the
principles of minimality and simplicity rather than by a direct application of New-
ton’s second law to individual molecules. In fact, these equations were proposed well
before the molecular structure of matter was established. What is more, although
we now know the laws of molecular dynamics accurately, it has not been possible to
rigorously deduce the equations of fluid mechanics from them3. In this framework,
the equations of fluid mechanics have to be validated by comparing their predictions4

with macroscopic experimental measurements and observations. Fortunately, in many
cases where such comparisons have been possible, there is evidence in favor of the
fluid equations. However, there are situations where one needs to modify them (e.g., to
account for a nonlinear stress-strain relation or the polymeric structure of constituent
molecules) or abandon them (e.g., when one is interested in phenomena on molecular
length scales).

3 Fluid element, local thermal equilibrium and dynamical fields

In a fluid description, we do not follow the microscopic positions and velocities
of individual molecules. We focus instead on macroscopic fluid variables such as
velocity, pressure, density, energy and temperature that we assign to a fluid element by
averaging over it. By a fluid element (sometimes called a material element), we mean a
sufficiently large collection of molecules so that concepts such as ‘volume occupied’
make sense and yet small in extent compared to the macroscopic length scales of
phenomena we wish to describe. Thus, quantities such as the density and velocity
will be assumed not to vary appreciably over a fluid element. For example, we could
divide a bucket with about 1023 molecules into 103 fluid elements, each containing

icant approximations, imprecise notions of averaging and plausible assumptions involved in arriving at the
equations governing macroscopic fluid motion.

3Well after their formulation, some of these macroscopic fluid equations (especially for dilute gases, but
not for liquids) have been shown (by L Boltzmann, S Chapman, D Enskog and others) to follow from the
molecular kinetic theory of gases through a coarse-graining procedure based on some plausible assumptions
and approximations. In this chapter, we will introduce the equations of fluid mechanics from a macroscopic
viewpoint and make no attempt to derive them from kinetic theory.

4As in the rest of continuum mechanics, the evolution equations of fluid dynamics are partial differential
equations. However, these equations are nonlinear and despite much progress since the time of Euler, Navier
and Stokes, it is still a challenge to calculate (even with the best of computers) many features of commonly
occurring flows.
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1020 molecules. Thus, we model a fluid as a continuum system with an infinite number
of degrees of freedom5. The fluid description applies to phenomena on length scales
large compared to the typical mean free path between collisions of molecules. On
shorter length scales, the fluid description breaks down6, though Boltzmann’s kinetic
theory of molecules applies.

A flowing fluid is generally not in global thermal equilibrium. What this means is
that it may not be possible to assign a common temperature to all parts of a fluid, and
heat could be transported between parts of a fluid. Nevertheless, collisions between
molecules typically establish local thermodynamic equilibrium so that we may assign
a local absolute temperature T , pressure p and density ρ to fluid elements, satisfying
an equation of state (such as that of an ideal gas7 p = ρRT/µ). Sometimes, it is con-
venient to replace some of these thermodynamic state variables with specific entropy
s (entropy S per unit mass) or specific internal energy ε (energy per unit mass) or spe-
cific volume v = 1/ρ. Each of these quantities could vary from one fluid element to
another and also with time. From an Eulerian standpoint, at each location r in a fluid
at time t, we have the dynamical fields of density ρ(r, t), pressure p(r, t), specific
entropy s(r, t), temperature T (r, t), etc. In addition to these scalar fields, we have the
velocity vector field v(r, t) that is instantaneously tangent to the flow at each point r.

4 Fluid statics: aero- or hydrostatics

Before considering fluid flows in more detail, we briefly remark upon the special
situation that prevails when the fluid is not in motion in the frame considered. This is
usually called hydrostatics or sometimes aerostatics (if one wishes to emphasize that
the density is inhomogeneous). In fluid static equilibrium, each fluid element is at rest
due to a balance between surface and body forces. Surface forces are those that act
on the element across its boundary due to material just outside the surface. The most
common body force is gravity, which acts over the whole volume of the fluid element.
To obtain the equations of hydrostatic equilibrium, we consider a small fluid element
of mass δm = ρ δV occupying a volume δV . The external body force such as gravity
acting on the fluid element is fδV where f is the body force per unit volume (f = ρg
for gravity, where g is the acceleration vector due to gravity). In addition, we have the
surface force due to the pressure exerted on the fluid element by the fluid surrounding
the element. To calculate this, assume the fluid element is an infinitesimal cuboid with
sides of length dx, dy and dz.

As shown in Fig. 1, the net pressure force in the x̂ direction is the product of the
area dydz and pressure difference between the left and right faces: δFx ≈ − ∂p

∂xdx ×
dydz. The negative sign is because pressure tends to compress the element and the

5To specify the pattern of a flow we must, among other things, specify the fluid velocity at each of the
infinitely many points in the container.

6In going from a molecular description to a fluid description, we replace sums over individual molecules
by integrals over the region occupied by the fluid, with fluid elements roughly playing the role of infinitesi-
mal integration elements. A system with a very large but finite number of molecular degrees of freedom is
approximated by a continuum system with infinitely many degrees of freedom.

7Here R = 8.314 Joules per Kelvin per mole is the universal gas constant and µ the molar mass, 12
grams per mole for Carbon-12
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Figure 1: Horizontal force on a fluid element due to material to the left and right.

net force is leftward if p on the right face is larger than on the left face. Thus, the total
pressure force on the fluid element is

δFpressure = δFxx̂+ δFy ŷ + δFz ẑ = −(∇p) δV. (1)

For the element to be in static equilibrium, we must have

f −∇p = 0 or ∇p = ρg. (2)

where f and g are the body forces per unit volume and mass respectively. This is one
equation for two unknown functions, the pressure and density. It is usually supple-
mented by an ‘equation of state’ relating pressure to density. For an incompressible
liquid, ρ can often be assumed to be a constant. For an ideal gas at a fixed temper-
ature T , the equation of state is p = ρRT/µ where µ is the molar mass and R the
universal gas constant. This is usually written as Boyle’s law (p/po) = (ρ/ρo) where
po is the pressure at a reference density ρo. If the pressure and density variations are
at constant entropy (reversible adiabatic process) rather than constant temperature, the
corresponding formula is (p/po) = (ρ/ρo)

γ where the adiabatic index γ = Cp/Cv is
the ratio of heat capacities at constant pressure and volume. �

Example: Atmospheric pressure. For example, let us find the density and pressure
as a function of height z in the atmosphere, assuming it is in aerostatic equilibrium
and treating the temperature and acceleration due to gravity as independent of height.
The force balance equation reduces to

∂p

∂z
= −gρ(z) or

dp

p
= −gρo

po
⇒ p(z) = p(0)e−ρogz/po . (3)

Thus, the pressure and density decrease exponentially with height if we ignore the
temperature and gravity variations. Prob. ?? treats this aerostatic situation with the
isentropic equation of state p ∝ ργ , which is more realistic. �

A frequently encountered circumstance is one where the body force field per unit
mass is the (negative) gradient of a potential g = −∇ϕ. Such a force is called
conservative. Then ∇p = −ρ∇ϕ. If, moreover, the density is a constant, we have
∇(pρ +ϕ) = 0. So p/ρ+ϕ must be a constant. In particular, an equipotential surface
must also be a surface of constant pressure (an isobar). For example, the free surface
of a liquid is an isobar (pressure equal to atmospheric pressure), and hence must also
be an equipotential surface within these approximations.
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Figure 2: Parabolic free surface of a uniformly rotating liquid.

Example: Free surface of rotating liquid. Let us apply (2) to determine the shape of
the free surface of a liquid that is rotated at a constant angular velocity ωẑ in a bucket
(cf. Fig. 2). After some time, the surface of the liquid is found to reach an equilibrium
shape. In a corotating frame, the body forces per unit mass are gravity −gẑ and the
centrifugal force rω2r̂ where we use cylindrical coordinates r, θ, z. Thus, the body
force per unit mass is the negative gradient of the effective potential ϕ = gz− 1

2r
2ω2.

Once the liquid settles into equilibrium, p/ρ+ gz − 1
2ω

2r2 is a constant. On the free
surface, the pressure is constant, equal to atmospheric pressure. So the equation for
the free surface gz − 1

2ω
2r2 = constant, describes a paraboloid obtained by rotating

the parabola gz − 1
2ω

2x2 = constant, about the z axis. �

5 Flow visualization: streamlines, pathlines and streaklines

In fluid mechanics, when we speak of the velocity of a flow, we are referring not to
the random thermal motions of individual molecules, but to the velocity of the overall
flow. The latter is smoother since an average over molecules in each fluid element has
been performed to arrive at the flow velocity field.

If the velocity vector field at every point of observation is independent of time,
we say the velocity field is steady, v(r, t) = v(r). More generally, we will say that
a fluid flow is steady if the velocity, density, pressure, temperature, specific entropy,
etc., are independent of time at every point of observation. To aid in the visualization
of a flow we define the concepts of streamlines, streaklines and pathlines. All three
coincide for a steady flow, though not in general. For steady flow, they are the ‘field
lines’ or integral curves of the velocity vector field, i.e., curves that are everywhere
tangent to v(r) (see Fig. 3a). They are the trajectories of test particles moving in the
steady flow, i.e., solutions of the ODEs and initial conditions

dr

ds
= v(r(s)) and r(so) = ro. (4)

Here, s is the parameter along the integral curve, it is the time that parametrizes the
trajectory of the test particle moving in the steady flow. If we write these in Cartesian
components r(s) = (x(s), y(s), z(s)) and v(r) = (vx(r), vy(r), vz(r)), then the
ODEs for field lines become

dx

ds
= vx,

dy

ds
= vy and

dz

ds
= vz or

dx

vx
=
dy

vy
=
dz

vz
= ds. (5)
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Streamlines. More generally, consider a possibly nonsteady flow. Streamlines at the
observation time to are defined as the integral curves of the velocity field v(r, to).
The streamline through any point of observation P with position vector r(P ) at a
given time to is tangent to the velocity vector v(r(P ), to). At a given instant of time,
streamlines cannot intersect. Since the flow may not be steady, the streamlines will
in general change with time. Streamlines of the velocity field are analogous to the
field lines of a (generally time-dependent) electric or magnetic field. In particular, for
a divergence-free (∇ · v = 0) flow, streamlines cannot emerge or spread out from a
point or region, just as magnetic field lines cannot. A flow that is spatio-temporally
regular is called laminar. An example is the slow, steady flow of water through a pipe,
where streamlines are parallel as in Fig. 3a.

Streamline tangent to 
instantaneous velocity vectors

Streamlines for steady 
flow through a pipe

v(r1,t)
v(r2,t)r2

r1

I think the figure is fine. I 
have added a file with 3 
figures side by side. This is 
the first one. Yes, pathlines is 
2nd. Yes, the streakline is 
somewhat random, but it has 
some structure. It needs to 
be roughly vertical initially 
and then start oscillating and 
then more complicated. I 
want at least one self 
intersection. It does not have 
to be exactly as I have drawn 
it. You could try a first 
approximation before 
improving it. Ok, and it is not 
urgent if you have other 
course work today. All right, 
have fun with it.

(a)

v(p,t2)
p

Particle A
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t0
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t2
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Pathlines in steady flow

Pathline in unsteady flow

t4

t3
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(b)

P

Streakline from a lamp

(c)
Figure 3: (a) Streamlines encode the instantaneous flow pattern. (b) Pathline of a
speck of sawdust as it is carried by a flow. (c) Caricature of a streakline in the air
above a lamp’s burning wick at the point P . The burning wick introduces particles of
soot into the air, which are carried by the air flow. The curve along which the soot lies
at a given time is the instantaneous streakline. A burning incense stick also produces
a streakline if we ignore the slow movement of the point of injection (reduction in
length of the stick as it burns).

Streamlines have information on the current flow. For example, we could draw the
streamlines of the monsoon winds over the Indian peninsula at the onset of the South-
West monsoon on June 5, 2012. These streamlines changed with time and partly
reversed direction during the ‘receding’ North-East monsoon in November 2012.

Pathlines are the trajectories of individual fluid particles. For example, if we intro-
duced a small speck of saw dust8 (which reflects light) into the fluid and took a movie
of its trajectory, we would get its pathline (see Fig. 3b). At any point P along a path-
line, it is tangent to the velocity vector at P at the time the particle passed through P .
Pathlines can intersect themselves or even retrace themselves, for instance if a fluid
particle goes round and round in a container. Two pathlines can intersect if the point
of intersection corresponds to a different time on each of the two trajectories. For

8Leonardo da Vinci (1452-1519) suspended fine sawdust in water and observed the motion of the saw
dust as it was carried by the flow. By contrast, pollen grains were used by Robert Brown (1827) to indirectly
reveal the random thermal motion of molecules under a microscope.
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example, two different dust particles may pass through the same point in a room on
two different days.

Streaklines. Suppose a small quantity of dye is continuously injected into a fluid
flow at a fixed point of injection P . The dye is so chosen that the dye particles do
not diffuse in the fluid. Rather, a dye particle tends to stick to the first fluid particle
it encounters and flows along with it. So the dye released at time t sticks to the
fluid particle that passes through P at time t and is then carried by that particle. The
resulting highlighted curve is the streakline through P as illustrated in Fig. 3c. So at
a given time of observation tobs, a streakline is the locus of all current locations of
particles that passed through P at some time t ≤ tobs in the past. Unlike streamlines,
streaklines provide information on the history of the flow. Streaklines for a given flow
are governed by three quantities: the point of injection P , the time of observation tobs

and the time when the injection of dye began ti. Such a streakline always begins at P
and extends to a point determined by ti when injection began. In practice, streaklines
get blurred by diffusion of the dye in the fluid, however they are reasonably sharp for
a time short compared to the diffusion time scale. A streakline cannot self-intersect.

6 Material derivative

In the Eulerian description of fluid motion, we are interested in the time devel-
opment of various fluid dynamical variables such as velocity, pressure, density and
temperature at a given point of observation r = (x, y, z) in the container. This is
reasonable if we are interested in predicting the weather changes at the point of obser-
vation over the course of time. For instance, the change in density at a fixed location
is ∂ρ(r)

∂t . However, different fluid particles will arrive at the point r as time passes. It
is also of interest to know how the corresponding dynamical variables evolve, not at a
fixed location but for a fixed small fluid element, as in a Lagrangian description. This
is especially important since the dynamical laws of mechanics apply directly to the
fluid particles, not to the point of observation. So, we may ask how a variable changes
along the flow, so that the observer is always attached to a fixed fluid element (or ‘ma-
terial element’) and travels along its pathline. For instance, the change in density of a
fluid element in a small time dt as it moves from location r to r + dr is

dρ = ρ(r + dr, t+ dt)− ρ(r, t) ≈ dr ·∇ρ+
∂ρ

∂t
dt. (6)

We divide by dt, take the limit dt → 0 and observe that v = dr
dt is the velocity of the

fluid at the point r at time t. Thus, the instantaneous rate of change of density of a
fluid element that is located at r at time t is

Dρ

Dt
≡ dρ

dt
=
∂ρ

∂t
+ v ·∇ρ = (∂t + vx∂x + vy∂y + vz∂z) ρ. (7)

D
Dt = d

dt ≡
∂
∂t + v · ∇ is called the material9 (also total, substantial, convective)

derivative. It can be used to express the rate of change of a physical quantity (velocity,
9The adjectives material or substantial are meant to convey that D/Dt is a rate of change computed

while moving with the material or substance.
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pressure, temperature, etc.) associated to a fixed fluid element, i.e., along the flow
specified by the velocity field v. This formula for the material derivative bears a
resemblance to the rigid body formula relating the time derivatives of a vector relative
to the lab and corotating frames:

(
dA
dt

)
lab

=
(
dA
dt

)
rot

+ Ω×A. A quantity f (could
be a scalar or a vector) is said to be conserved along the flow or dragged by the flow
if its material derivative vanishes Df

Dt = 0.
Since D

Dt is a first order partial differential operator, Leibniz’s product rule of
differentiation holds for scalar functions f, g: D(fg)

Dt = f DgDt + Df
Dt g. Similarly, for a

scalar f and vector field w, we check that the Leibniz rule holds

D(fw)

Dt
=
Df

Dt
w + f

Dw

Dt
. (8)

7 Compressibility, incompressibility and divergence of velocity field

We define a flow to be incompressible if the volume occupied by any fixed fluid
element10 (not necessarily small) remains constant in time although its shape may
change. This is approximately true for water flowing in a hose pipe. Generally, liq-
uids tend to be incompressible, they offer a large opposing force to attempts to change
volume. Gases are more compressible, and high speed flows in gases tend to be com-
pressible. However, the same material (like air) under different conditions may behave
differently, depending on the speed of the flow in comparison to the speed of sound,
as we will explain later in this section.

n̂

v

dS(t)

dS(t+dt)

     ^v . n dt

v dt

              ^ dV = v . n dt dS  

Volume swept by surface element  dS

Figure 4: Surface element dS = n̂ dS is carried by a flow v over a time dt sweeping
out a volume dV = v · n̂ dt dS. The figure shows a side view of the volume.

To clarify the idea of incompressibility, we ask how the volume V of a region Ω
occupied by a fluid changes with time11, i.e., we seek an expression for dVdt . Suppose
Ω is bounded by a surface S = ∂Ω with outward area element dS and outward unit
normal n̂ such that dS = n̂ dS. In a small time dt, the region Ω changes by a

10By a fixed fluid element we mean a fixed collection of molecules. One can think of them as being
surrounded by an imaginary impermeable membrane that instantaneously assumes the shape of the region
they occupy.

11Here, dV
dt

is not the material derivative in the strict sense of Sect. 6, since V is not a local field.
However, it is similar in spirit as it is the rate of change of volume following the flow.
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movement of its bounding surface12 in the direction of v. At a point r on ∂Ω, the
surface element dS moves out a perpendicular distance v · n̂ dt where v is the fluid
velocity at the point r (see Fig. 4). Thus, the change in volume dV (dS) due to the
area element dS moving out a bit is v · n̂ dt dS. To include the contributions of all
area elements, we integrate over the entire bounding surface to arrive at

dV

dt
=

∫
S

v · n̂ dS =

∫
Ω

∇ · v dr. (9)

The last equality uses Gauss’ divergence theorem to transform the surface integral into
a volume integral. Since this is true for a fluid parcel of any volume (above molecular
sizes), let us specialize to a small fluid element Ω (so that ∇ · v is roughly constant
over its extent) at location r having volume δV . Then,

dδV

dt
=
D δV

Dt
≈ (∇ · v) (δV ) or ∇ · v = lim

V→0

1

V

dV

dt
= lim
V→0

d log V

dt
. (10)

So the divergence of the velocity field is the fractional rate of change of volume of a
small fluid element.

A flow is incompressible if each fluid element maintains its volume during the
flow, i.e., dVdt = 0 for all V (above molecular scales). It follows that a flow is incom-
pressible iff the velocity field is divergence-free: ∇ · v = 0.

Examples. A simple example of an incompressible flow is one where the density of
the fluid is the same everywhere and at all times. In fact, if the density ρ is a constant,
then the volume of an element is a fixed multiple (1/ρ) of its mass. However, the
mass of a material element is conserved, so its volume must remain constant. A
more general example of an incompressible flow is one where the density of a given
fluid element is constant in time, though different fluid elements may have different
densities. This happens for horizontal flows in the atmosphere, where the density is
stratified by height though the flow is horizontal. Note that the same fluid (e.g., air)
under different conditions may exhibit incompressible and compressible flows. The
study of compressible flows is usually termed gas dynamics or aerodynamics, while
the study of incompressible flows is often termed hydrodynamics.

Compressibility and bulk modulus. Incompressibility means the volume of a fluid
element does not change irrespective of the pressure applied across its surface. A
measure of the compressibility13 of a flow is the compressibility κ = − 1

V
∂V
∂p . The

negative sign ensures that κ ≥ 0, since pressure tends to decrease volume in most
materials. Thus, κ→ 0 in an incompressible flow.

The reciprocal of compressibility is called the bulk modulus K. Since the mass of
a fluid element is conserved, incompressibility may be taken to mean that the density

12We neglect the infinitesimal change in the area dS of the surface element due to the flow. The change
in volume due to such a change is of second order in infinitesimals. The surface area of a material element
can change even in incompressible flow.

13Intuitively, compressibility measures how much the volume of a fluid element decreases in response to
a unit increase in applied pressure. To obtain a nontrivial limit as V → 0, we divide by the volume V of
the fluid element to arrive at the local (intensive) variable κ.
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does not change with applied pressure. Indeed, since ρ ∝ 1/V , we may write the
compressibility14 also as κ = 1

ρ
∂ρ
∂p . �

Relation to speed of sound. Intuitively, a sound wave is a wave of compression and
expansion. As we will learn in Sect. ??, a sound wave propagates changes in density
and travels at the speed cs where c2s =

(
∂p
∂ρ

)
s

(for flow with constant specific entropy
s). Evidently, cs grows as the compressibility κ decreases. Solids tend to be less
compressible than gases. As a consequence, sound propagates faster in steel than in
air and we can hear an approaching train on a railway track earlier than it is heard
through the air. If the flow velocity |v| is small compared to the speed of sound cs,
then the flow can usually be approximated as incompressible15. In fact, we may regard
a strictly incompressible flow as one where the speed of sound is infinite. Crudely, any
attempt by the flow to alter the density of a fluid element is immediately wiped out
since sound travels much faster than the flow and irons out the change. �

Incompressibility in 2d: stream function. The condition for a vector field on the x-y
plane to be incompressible can be solved in terms of a scalar stream function ψ(x, y).
Indeed, suppose v = (u(x, y), v(x, y), 0), then ∇ · v = 0 becomes the condition
ux + vy = 0, where subscripts denote partial derivatives. Now, if

u = ψy and v = −ψx, (11)

then the incompressibility condition is identically satisfied. In 3d vector notation,
we can regard ψ(x, y)ẑ as a vector potential for the incompressible velocity field:
v = ∇ × (ψẑ), which is then automatically divergence-free. This is similar to how
the solenoidal magnetic field is expressed in terms of a vector potential B = ∇×A
in electrodynamics. �

To sum up, we introduced the idea of incompressibility via the divergence of v
and then discussed the physical meaning of compressibility in terms of the density ρ.
Pleasantly, the divergence-free condition ∇ · v = 0 may be expressed in terms of the
material derivative of ρ via the continuity equation, as we will see in Sect. 8.

8 Local conservation of mass: continuity equation

The total mass of fluid in a given fluid element remains constant in time, since
material does not enter or leave the element. Consider a small fluid element of volume
δV in the vicinity of the point r where the fluid density is ρ(r) at time t. Then the
mass of the fluid element is δm = ρ δV . The material derivative of δm must vanish.
Using the Leibniz rule (8) and (10) we get for any small δV ,

0 =
D δm

Dt
=
D(ρ δV )

Dt
=
Dρ

Dt
δV + ρ

D δV

Dt
=

(
Dρ

Dt
+ ρ∇ · v

)
δV. (12)

14In evaluating this partial derivative using the thermodynamic equation of state (see Sect. 10), a third
variable such as temperature or entropy is held fixed. So one has slightly different notions of compressibility
depending on what is held fixed.

15The Mach number M = |v|/cs (which could depend on location and time) is a way of quantifying
this. The Mach number is zero in incompressible flow. Flow in regions where M < 1 is called subsonic
while it is supersonic where M > 1.
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Thus, we arrive at the continuity equation expressing conservation of mass

Dρ

Dt
+ ρ∇ · v = 0. (13)

We immediately see that if the density is constant along the flow (DρDt = 0), then
the flow is divergence-free (∇ · v = 0) and incompressible. Expanding the material
derivative, we get

∂ρ

∂t
+ v ·∇ρ+ ρ∇ · v = 0. (14)

In particular, if ρ = ρ0 is constant in both time and space, then the flow must be
incompressible. On the other hand, if the flow is incompressible, i.e., ∇ · v = 0, then
the density must be constant along the flow, DρDt = ∂ρ

∂t + (v ·∇)ρ = 0. We say the
density is advected or transported by an incompressible flow.

Combining the last two terms in (14), the continuity equation can be written in
local conservation form:

∂ρ

∂t
+ ∇ · (ρv) = 0. (15)

We say that ρ is the locally conserved mass density and ρv is the corresponding mass
current density. The continuity equation says that the rate of change of density at a
point is balanced by the divergence of the mass current density. We may also write
(15) in integral form, by integrating over a region Ω that is fixed in space (does not
move with the flow) and applying Gauss’ divergence theorem:∫

Ω

∂ρ

∂t
dr +

∫
Ω

∇ · (ρv) dr = 0 or
d

dt

∫
Ω

ρ dr +

∫
S=∂Ω

ρv · dS = 0. (16)

The 1st term is the rate of increase of mass inside a fixed volume Ω. The 2nd gives the
outward flux of mass across the boundary S. So mass is neither created nor destroyed:
it can only move around continuously, hence the name ‘continuity’ equation. If Ω is
the entire flow domain, then the first term is the rate of increase of mass of the fluid as
a whole, which must vanish provided the mass flux across the boundary is zero.

9 Euler equation for inviscid flow

An inviscid (sometimes called ideal) fluid flow is one where no resistance is of-
fered to changes in shape that are not accompanied by a change in volume. We will
elaborate on this shortly. In particular, ideal fluids assume the shape of the container;
they lack a rigidity of form. This means that in an ideal flow, the force acting on a
material element (anywhere in the fluid) across its surface, due to the material outside,
is everywhere normal to the surface. Tangential surface forces tend to shear the ele-
ment and change its shape without affecting its volume. On the other hand, normal
surface forces tend to compress or expand16 the element and thereby change its vol-
ume. The inward directed normal surface force per unit area is called pressure p. So in

16Normal surface forces that tend to expand an element are called tensile stresses, as is the case in an
elastic rod that is being stretched. Tensile stresses correspond to a negative pressure.
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an inviscid flow, tangential or shearing stresses vanish irrespective of the location and
orientation of the surface. In viscous flows, tangential forces typically arise between
layers of fluid in relative motion. Thus, tangential forces are absent in hydrostatics.

Stress tensor17. In general, forces need not be either normal or tangential to sur-
faces18 in the fluid, and they could vary in magnitude and direction with location. The
stress tensor is a quantity that encodes the force per unit area acting across an element
of surface. Let n̂ δS be a small surface element of area δS, with unit normal n̂, cen-
tered at r. Let F (n̂ δS, r) be the force that acts across the surface, its magnitude must
be proportional to the area δS. Precisely, it is the force on the material on the side to
which n̂ points, due to the material on the other side, as shown in Fig. 5. In general,
F and n̂ point in different directions and are related by a linear transformation, the
transformation of stress. If we choose to write all vectors in some basis, e.g., resolve
them according to Cartesian components, then this linear relation may be written as

Fi(n̂ δS, r) =
∑

j
Tij(r)nj δS. (17)

The 3×3 matrix Tij(r) is called the stress tensor field. It depends only on the location
r and not on the surface or n̂. By choosing a surface whose normal n̂ points in the
jth direction, we see that Tij is then the ith component of the force acting on the
material towards the jth direction of a surface of unit area whose normal points in
the jth direction. Alternatively, suppose δS is a small surface with normal n̂, then∑
j Tijnj(δS) is the ith component of the force acting on the material on the side to

which the normal n̂ points.

x

z

y

Components of the stress tensor

𝛿S

n̂

B

A

T12
-T32

T22

Figure 5: Components of the force due to fluid A on fluid B across a small surface
with unit normal n̂ which here points along ŷ. T32 is the third component of the force
on the material located on the second direction of the surface.

Example: stress tensor in hydrostatics and inviscid flow. By definition, hydrostatic
pressure acts normal to any surface. So consider a small cuboid with axes along
Cartesian axes. It follows that Tij = 0 for i 6= j, as there are no tangential stresses.
Moreover, T33 = p since the force across the top surface (whose normal points along

17Here, we introduce the stress tensor in general, not necessarily for inviscid flow.
18These may be external or, more frequently, hypothetical internal surfaces in the fluid.
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ẑ) due to the fluid below, is pẑ. We get the same answer by considering the bottom
surface. Proceeding in this way, Tij = pδij . This formula for the stress tensor due to
hydrostatic pressure is independent of basis: multiples of the identity matrix have the
same components in any basis.

More generally, the absence of tangential stresses in an inviscid flow irrespective
of orientation of surfaces implies that the stress tensor is diagonal in every basis, and
must therefore be proportional to the identity: Tij = pδij . �

Euler equation. To derive the equation of motion for an inviscid flow, consider a
small fluid element of mass δm = ρ δV occupying a volume δV and having instanta-
neous velocity v. Let us write Newton’s 2nd law for this fluid element. The change in
its velocity in a time dt as it is displaced from r to r + dr is

dv = v(r + dr, t+ dt)− v(r, t) ≈ ∂v

∂t
dt+ (dr ·∇)v. (18)

Dividing by dt, letting dt→ 0 and noting that dr/dt = v, we obtain its acceleration:
Dv/Dt ≡ ∂v/∂t+ (v ·∇)v. The material derivative Dv/Dt differs from the partial
derivative by the quadratically nonlinear ‘advection’ term (v ·∇)v. By Newton’s 2nd

law, the force acting on the element must equal ρ δV Dv
Dt .

We consider two sorts of forces acting on the fluid element. There can be an
external force field such as gravity (called a body force) acting on the fluid. It may be
expressed as fδV where f(r) is the body force per unit volume (e.g., f = ρg where
g is the acceleration due to gravity). In addition, we have the surface force due to the
pressure exerted on the element by the fluid surrounding the element. To calculate
this, assume the fluid element is a cuboid with sides dx, dy, dz. The net pressure force
in the x̂ direction is the product of the area dy dz and pressure differential between
the two faces: δFx = − ∂p

∂xdx × dy dz. The − sign arises because if p is greater on
the right face of the element compared to the left face, then the net force would be
leftward. Thus, the total surface force19 on the fluid element is δF = −(∇p)δV .
Thus, Newton’s 2nd law for the fluid element reads

ρ δV
Dv

Dt
= −(∇p) δV + f δV. (20)

Dividing by δV , we get Euler’s celebrated equation of motion20 for an inviscid fluid.
19More generally, the force due to pressure across the surface ∂(δV ) of the element is

δFsurface = −
∫
∂(δV )

pn̂ dS = −
∫
δV

∇p dV ≈ −∇p δV. (19)

We have used a corollary of Gauss’ divergence theorem to convert the surface integral to a volume integral
and taken ∇p to be constant over the small volume δV . The minus sign is because n̂ is the outward-
pointing normal.

20The Euler equation can be written in terms of the stress tensor Tij = pδij

∂tvi + vj∂jvi = −
1

ρ
∂jTij +

1

ρ
fi in Cartesian components. (21)

The equation may be generalized to viscous flows by including tangential stresses in Tij (see Sect. ??).
Here, repeated indices are summed and no distinction is made between upper and lower indices.
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It must be considered in conjunction with the continuity equation (13)

∂v

∂t
+ v ·∇v = −1

ρ
∇p+

f

ρ
and

Dρ

Dt
+ ρ∇ · v = 0. (22)

Notice that the Euler equation is quadratically nonlinear in v due to the v ·∇v advec-
tion term. This makes it difficult to solve but also allows it to describe a wide variety
of ideal flows.

A vector identity allows us to write the advection term in terms of the vorticity
w = ∇× v and a gradient term:

∂v

∂t
+w × v = −1

ρ
∇p− 1

2
∇v2 +

f

ρ
(23)

Here w × v is called the vortex force per unit mass or Lamb vector. We will have
more to say about vorticity in Sect. ??.

The Euler and continuity equations are first order in time derivatives of v and
ρ. So we need to specify the initial values ρ(r, 0) and v(r, 0), to be able to evolve
them forward in time21. However, these are still only four evolution equations for five
unknown functions (density, pressure and three components of the velocity field). In
particular, we have not specified how the pressure evolves in time. We will address
this question for adiabatic flow in Sect. 10. Here, we deal with the slightly simpler
case of incompressible constant density flow.

Pressure for constant density flow. If ρ(r, t) = ρ̄ is a constant in space and time,
then the continuity equation (14) implies ∇ · v = 0. Taking the divergence of the
Euler equation (22) (in the absence of external body forces), the time derivative term
is eliminated leaving us with a nondynamical ‘constraint’ equation

∇2p = −ρ̄∇ · (v ·∇v). (24)

If we view the RHS as a source, this is Poisson’s equation22 for p. It can be solved with
suitable boundary conditions, say using Green’s function for the Laplace operator. For
decaying BCs, we have

p(r, t) =
ρ̄

4π

∫ ∇ · (v ·∇v)(r′)

|r − r′|
dr′. (25)

Thus, for constant density, we have been able to eliminate the pressure from the Euler
equation, which becomes an evolution equation for v alone. We say that in constant

21In addition, we need to impose suitable boundary conditions. The Euler and continuity equations are
first order in space derivatives, and we may impose conditions on the boundary values of v and ρ. On fixed
impenetrable boundaries, the normal component v·n̂ must vanish. In the absence of viscosity, the tangential
component of v is unconstrained on boundaries. In unbounded regions, we typically have decaying BCs:
v → 0 and ρ→ ρ0 as |r| → ∞.

22 In electrostatics, when the electric field is expressed in terms of an electrostatic potential (E = −∇φ),
Gauss’ law ∇ ·E = ρ/ε0 leads to Poisson’s equation ∇2φ = −ρ/ε0, where ρ(r) is the electric charge
density. The solution involves the Coulomb potential, which is essentially the Green function of the Laplace

operator: φ = 1
4πε0

∫ ρ(r′)
|r−r′|dr

′.

15



density flow, the pressure is not dynamical. It does not obey an independent evolution
equation but is determined by the instantaneous velocity distribution. See Prob. ?? for
the case of incompressible flow with variable density. �

10 Ideal adiabatic flow: entropy advection and equation of state

As pointed out below Eq. (22), the Euler and continuity equations (22) are gen-
erally an underdetermined system: they do not tell us how the pressure evolves. To
understand how the pressure evolves, we need to broaden our physical perspective.
Recall from Sect. 3 that a fluid can usually be considered to be in local thermal equi-
librium. This means there is a local temperature field T (r, t) that, along with the
pressure and density, satisfies an equation of state (p = ρkbT/m for an ideal gas with
molecular mass m.). To find the remaining dynamical equation, it is fruitful to ask
how the conjugate variable to T , i.e., the entropy evolves. For a dissipationless flow,
it is physically reasonable to suppose that the entropy of a fluid element remains con-
stant in time, just as its mass does. In other words, there is no entropy production or
heat exchanged between fluid elements. Such a flow is called adiabatic.

Dynamics of specific entropy. Now consider a small fluid element of volume δV and
let s denote the specific entropy field (entropy per unit mass). Then the entropy of the
fluid element is ρ s δV . If this is conserved as the element moves around, then its
material derivative must vanish.

Using the Leibniz rule and (10), we get

D(ρsδV )

Dt
= ρs(∇ · v)δV + δV

D(ρs)

Dt
= 0 or ∂t(ρs) + ∇ · (ρsv) = 0. (26)

In other words, the entropy per unit volume ρs is locally conserved23 with the cor-
responding entropy current given by ρsv. Using the continuity equation (14), the
adiabaticity of the flow implies that s is advected by v:

∂ts+ v ·∇s = 0. (27)

This is our third evolution equation. The pressure is then determined by the equation
of state, which may be regarded as a relation among s, p and ρ. For instance, for an
ideal gas with constant specific heat ratio γ = cp/cv , the equation of state is

s = cv log

(
p/p̄

(ρ/ρ̄)γ

)
(28)

for some reference values p̄ and ρ̄ (see Prob. ??).

Internal energy or pressure equation. We may also combine this equation of state
(28), the entropy advection equation (27) and the continuity equation (14) to derive an
evolution equation for pressure (see Prob. ??):(

p

γ − 1

)
t

+ p∇ · v + ∇ ·
(

pv

γ − 1

)
= 0. (29)

23Integrating over the flow domain and assuming the entropy flux across the boundary vanishes, we arrive
at the global conservation of entropy d

dt

∫
ρ s dr = 0.
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This is called the internal energy equation since p/(γ − 1) will be interpreted as the
internal energy density of an ideal gas (see Sect. ??).

Homentropic and barotropic flow. Homentropic flow is a situation where the en-
tropy advection equation (27) can be eliminated. Here, the specific entropy s = s0

is independent of both space and time and (27) is identically satisfied. Moreover,
the equation of state then becomes a relation between ρ and p. In general, a rela-
tion between ρ and p is called a barotropic relation. For example24, for homentropic
flow of an ideal gas with adiabatic index γ, the barotropic relation can be written as
(p/p0) = (ρ/ρ0)γ for some reference values p0 and ρ0. For barotropic flow, pres-
sure p(r, t) is determined by the instantaneous density ρ(r, t) and we do not need to
supplement the continuity and Euler equations by a third evolution equation.

Remark. Note that for γ = 1, the barotropic relation for homentropic flow of an ideal gas
becomes p = (p0/ρ0)ρ where p0/ρ0 is a constant. Comparing with the ideal gas law p =

(kbT/m)ρ, we infer that the temperature in such a flow, T = mp0/kbρ0, is spatially constant
and independent of time. Thus, such a flow must be isothermal. However, not all isothermal
flows arise this way. A gas with γ = cp/cv 6= 1 can display an isothermal flow. �

An important consequence of a barotropic relation expressing ρ = ρ(p) is that the
pressure term on the RHS of the Euler equation (23) can be expressed as a gradient:

∇p

ρ
= ∇h where h(p) =

∫ p

p0

dp′

ρ(p′)
so ∇h = h′(p)∇p =

1

ρ
∇p. (30)

For barotropic (homentropic) flow of an ideal gas,

∇p

ρ
= γ

p0

ρ0

(
ρ

ρ0

)γ−1 ∇ρ

ρ
=

γ

γ − 1
∇
(
p

ρ

)
⇒ h =

γ

γ − 1

(
p

ρ

)
. (31)

Here, h(ρ) is called the specific enthalpy or enthalpy per unit mass25. If, in addition,
the body force per unit mass can be expressed as a gradient, f/ρ = −∇ϕ [i.e., body
force is conservative], then the RHS of Euler’s equation (22) becomes a gradient:

Dv

Dt
= ∂tv + v ·∇v = −∇(h+ ϕ). (32)

What is more, using the identity (??) to write the advection term in terms of the vortex
force, the Euler equation becomes

∂tv +w × v = −∇(σ + ϕ) where σ = h+
1

2
v2. (33)

Here, σ is called the stagnation enthalpy, it reduces to the enthalpy at a stagnation
point (i.e., one where v = 0).

24Another example of barotropic flow is the isothermal inviscid compressible flow of an ideal gas.
The barotropic relation is p = ρkbT/m where T is the constant temperature and m the mass of
a molecule. In this case, the role of specific enthalpy is played by the specific Gibbs free energy
g(ρ) = (kbT/m) log(ρ/ρ0) which is determined up to a constant by ∇g = (∇p)/ρ.

25The first law of thermodynamics dU = TdS−pdV , when written in terms of enthalpyH = U +pV
instead of internal energy U , becomes dH = TdS + V dp. For an isentropic process dS = 0, so dh =
dp/ρ. Here V = M/ρ is the volume, M the mass of fluid, h = H/M the enthalpy per unit mass, T
absolute temperature and S the entropy.
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11 Bernoulli’s equation

Bernoulli’s principle for steady flow. Recall from Sect. 5, that a fluid flow is steady
if v, ρ, p, etc., are not explicitly dependent on time. In its simplest form, Bernoulli’s
principle concerns a drop in pressure along a streamline in places where a steady
constant density flow speeds up. Euler’s equation (33) for a steady homentropic flow
with specific enthalpy h(ρ) and body force potential ϕ is

v ×w = ∇
(

1

2
v2 + h+ ϕ

)
where w = ∇× v. (34)

For example, ϕ = gz for the gravitational body force, where z is the vertical height
and g the magnitude of the acceleration due to gravity. The left member is orthog-
onal to v, so upon taking the dot product with the velocity field, we get Bernoulli’s
equation:

v ·∇B = 0 where B =
1

2
v2 + h+ ϕ. (35)

Thus, the component of the gradient of the Bernoulli specific energy B along the ve-
locity vector field is zero. If r(s) is a streamline26, then Bernoulli’s equation becomes

dr

ds
·∇B = 0 or

dB(r(s))

ds
= 0. (36)

So in steady flow, B = 1
2v

2 + h + ϕ is constant along streamlines. Note that B will,
in general, take different values for different streamlines. Now recall that the enthalpy
per unit mass is h = ε+ p

ρ where ε is the internal energy per unit mass, p the pressure
and ρ the density. Thus, for steady homentropic inviscid flow subject to a conservative
body force, Bernoulli’s equation says that along streamlines,

B =
1

2
v2 + ε+

p

ρ
+ ϕ is conserved. (37)

If the flow is incompressible, then ρ is constant along the flow and, in particular, along
streamlines of the steady flow. Suppose the internal energy density of the fluid is also
constant along the flow. Then we find that 1

2ρv
2+p+ρϕ is constant along streamlines.

If in addition, the body force potential ϕ does not vary along the streamline (as for
horizontal streamlines in a vertical gravitational field), then 1

2ρv
2 +p is constant along

streamlines. In other words, in regions of high pressure along a streamline, the fluid
speed must be low and vice-versa. Such a situation is approximately encountered
in laminar flow through a cylindrical pipe of varying cross section. On account of
mass conservation, the water speeds up in regions where there is a constriction in the
pipe. At such constrictions, the pressure drops, as can be demonstrated by comparing
the pressure with atmospheric pressure (a lower pressure supports a shorter vertical
column of water against atmospheric pressure).

26A streamline r(s) is an integral curve of the velocity vector field: dr
ds

= v(r(s)). Here, s is a
parameter along the streamline.
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Bernoulli equation for unsteady flow. There is a version of the Bernoulli equation
(35) that applies to unsteady flows, though in the restricted context of barotropic po-
tential flow (v = ∇φ). Potential flow is irrotational w = ∇ × v = 0, so the vortex
force vanishes and the Euler equation (33) for barotropic flow subject to a body force
derived from a potential (f/ρ = −∇ϕ) becomes

∂v

∂t
= −∇h−∇

(
1

2
v2

)
−∇ϕ or ∇

(
h+

∂φ

∂t
+

1

2
v2 + ϕ

)
= 0. (38)

The quantity in parentheses must be independent of location but could depend on time.
Thus, we arrive at the unsteady Bernoulli equation for barotropic potential flow:

∂φ

∂t
+ h+

1

2
(∇φ)2 + ϕ = B(t). (39)

The simplest case is that of constant density, were h = p/ρ. Unlike Bernoulli’s
equation (35) for steady flow, (39) holds throughout the fluid and is not associated with
streamlines. The unsteady Bernoulli equation may also be interpreted as an evolution
equation for the velocity potential φ. It can also be used to eliminate the pressure p in
favor of the velocity potential when computing the force due to pressure27 on a body
immersed in a fluid.

27If S is a surface with fluid to one side of it, then the force on the surface due to fluid pressure is given
by

∫
S p n̂ dA where dA is the area element and n̂ is the unit normal pointing away from the fluid.
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