Thermal Physics, Autumn 2019 CMI

Problem set 3 Due by the beginning of lecture on Tuesday, Sep 10, 2019 First law, Adiabatic model for atmospheric temperature and pressure profile

1. $\langle 5 \rangle$ Use the first law to show that the difference in heat capacities is given by

$$C_p - C_V = \left(\left(\frac{\partial U}{\partial V} \right)_T + p \right) \left(\frac{\partial V}{\partial T} \right)_p.$$
(1)

- 2. $\langle 2 \rangle$ Now suppose a gas satisfies the ideal equation of state pV = nRT and the 'Caloric condition'. Use the above to evaluate the difference $C_p C_V$ for such an ideal gas.
- 3. $\langle 20 \rangle$ It is known that temperature, density and pressure all decrease with height z in the atmosphere. We wish to find the temperature and pressure gradients in a simple model for the atmosphere. We assume that the air is an ideal gas satisfying the ideal gas law pV = nRT. Since air is a poor conductor we will assume that parcels of air move without much heat exchange with surroundings (i.e. adiabatically), so we may assume that any two among p, V, T satisfy the adiabatic relation. We will assume a steady state where layers of air in the atmosphere are in equilibrium due to a balance of their weight by the upward pressure gradient.
 - (a) $\langle \mathbf{3} \rangle$ Find the differential condition for mechanical equilibrium of a thin layer of air of surface area A at height z and thickness dz. Denote the pressure and density by p(z) and $\rho(z)$.
 - (b) $\langle \mathbf{3} \rangle$ Show that the variation of pressure satisfies the equation (μ is average molar mass for air and g the acceleration due to gravity)

$$\frac{dp}{p} = -\frac{\mu g}{RT} dz \tag{2}$$

- (c) $\langle \mathbf{5} \rangle$ Show that the temperature gradient dT/dz is a constant κ (assuming g is constant). Find an analytic formula for κ in terms of the adiabatic index γ .
- (d) $\langle 3 \rangle$ Find the numerical value of the temperature gradient by taking reasonable values for the constants.
- (e) $\langle \mathbf{3} \rangle$ Find a differential equation for the variation of pressure with height in the form dp/dz = f(p, z), assuming temperature on the Earth's surface (z = 0) is T_0 .
- (f) $\langle \mathbf{3} \rangle$ Find a formula for p(z), assuming the pressure at z = 0 is p_0