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Some Koszul Rings from Geometry

Krishna Hanumanthu

Abstract

We give examples of Koszul rings that arise naturally in algebraic geometry. In the
first part, we prove a general result on Koszul property associated to an ample line
bundle on a projective variety. Specifically, we show how Koszul property of multiples
of a base point free ample line bundle depends on its Castelnuovo-Mumford regularity.
In the second part, we give examples of Koszul rings that come from adjoint line bundles
on minimal irregular surfaces of general type.

Introduction

Let k be a field. A standard graded k-algebra R = k
⊕

R1

⊕

R2... is said to be Koszul if k
has a linear minimal resolution as an R-algebra.

Let

...→ Ep → Ep−1 → ...→ E1 → E0 → k → 0

be a minimal resolution of k over R. Then R is Koszul if and only if E0 = R and Ep =

R(−p)⊕r(p) for p ≥ 1. Equivalently, TorRi (k, k) has pure degree i for all i.

Koszul algebras were introduced by Stewart Priddy [20] and they have applications in
many areas of mathematics, such as algebraic geometry, commutative algebra and represen-
tation theory to name a few. For a sample of these applications, see [11], [1], [3], [4]. See
[17] for a general introduction to Koszul property with historical notes. [4] also has a general
treatment of Koszul property.

Part of the algebraic geometer’s interest in Koszul rings stems from the following obser-
vation:

Let L be a very ample line bundle on a projective variety X over k. Let IX be the ideal
defining X under the embedding in a projective space defined by L. Define

R(L) =
∞

⊕

n=0

H0(X,L⊗n).
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2 Some Koszul Rings from Geometry

If R(L) is Koszul then X is projectively normal and IX is generated by quadrics. In the
notation of Np property, this means that L satisfies the property N1. (See [13], 1.8.D for
details on Np property.) If R(L) is Koszul we say that L has Koszul property.

There are several results establishing Koszul property for line bundles on curves. For
instance, see [5], [18], [16] and [23]. Koszul property for line bundles on elliptic ruled surfaces
is studied in [7]. Koszul property for adjoint line bundles on regular surfaces is studied in
[8]. Some general results on Koszul property for adjunction bundles is discussed in [15].

Quite generally, high enough powers of ample line bundles have Koszul property ([2]). The
relation between the precise powers that achieve Koszul property and Castelnuovo-Mumford
regularity of the bundle is of general interest. In the first part of this paper (Section 3),
we prove a general result (Theorem 3.3) establishing such a relation. If B is a base point
free ample line bundle on a projective variety X and if reg(B) is r (cf. Definition 3.1), we
show that B⊗n has Koszul property for n ≥ r + 1. This result is also proved in a preprint
([10]) invoking the notion of multigraded regularity. The proof in [10] and our proof are both
motivated by Theorem 1.3 in [8] and essentially follow the methods developed there.

A similar result is proved in [2] and [6]1. Let R be a polynomial ring and let I ⊂ R
be a homogeneous ideal. Set A = R/I. In these papers, authors develop useful criteria to
determine if the d-th Veronese subring A(d) of A is Koszul. One of their results says that if
d ≥ reg(I)/2, then A(d) is Koszul. In our situation, this means the following: let B be a base
point free, ample line bundle that defines a map whose image is projectively normal in the
projective space. Then B⊗d has Koszul property for d ≥ reg(B)/2.

In the second part of the paper (Section 4) we give examples of Koszul rings associated to
certain adjoint line bundles on a minimal irregular surface of general type. This extends an
analogous result for regular surfaces in [8]. As mentioned above, the Koszul property implies
N1, but the converse is, in general, not true ([21]). Our theorem establishes the converse in
this case. Our method is similar to [19].

Establishing N1 property involves proving that a certain multiplication map of global
sections of vector bundles is surjective. Koszul property is equivalent to the surjectivity
of infinitely many multiplication maps of global sections of certain vector bundles, first of
which is the multiplication map that appears in the N1 property. In most examples of Koszul
rings arising in algebraic geometry, the surjectivity required for Koszul property is proved
by methods very similar to those used in establishing the N1 property, after an appropriate
inductive framework is set up. However, in the case of adjoint line bundles on irregular
surfaces that we study, the methods used in establishing the N1 property ([19]) do not work
for the subsequent surjections required for Koszul property. This suggests a potential example
where N1 property does not imply Koszul property. In this paper, we establish the Koszul
property under a stronger assumption than was made in [19], namely the canonical bundle
is base point free.

Many of the results cited here are directly connected to the cases we study. They represent

1I sincerely thank Burt Totaro for bringing this result to my notice.
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only a sliver of the research on Koszul property in algebraic geometry. There are many results
of a similar flavor that we do not mention here, but that are interesting nevertheless.

Acknowledgement: B.P. Purnaprajna introduced me to this subject, taught me the key
concepts and guided me throughout this work. I thank him for this and for his continued
encouragement.

1. Preliminaries

Let k be a field and let X be a projective variety over k.

Notation: For a coherent sheaf F on X, we write H i(F ) to denote the ith sheaf coho-
mology group H i(X,F ).

Let L be a line bundle on X. As before consider the ring:

R(L) =

∞
⊕

n=0

H0(L⊗n).

The question of whether R(L) is Koszul has a nice cohomological interpretation due to
Lazarsfeld.

Given any vector bundle F on X that is generated by its global sections, we have a canon-
ical surjective map

H0(F ) ⊗OX → F (1)

Let MF be the kernel of this map. We have then the natural exact sequence

0 → MF → H0(F ) ⊗OX → F → 0 (2)

Now set M (0),L := L.

If L is globally generated, define

M (1),L := ML ⊗ L = MM (0),L ⊗ L.

If M (1),L is generated by its global sections, define

M (2),L := MM (1),L ⊗ L.

Inductively, define M (h),L := MM (h−1),L ⊗ L, provided that MM (h−1),L is generated by its
global sections.

Then we have the following proposition that characterizes the Koszul property of L in
terms of certain cohomology groups.
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Proposition 1.1 [[15], Lemma 1] Let X be a projective variety over a field k. Assume that L
is a base-point-free line bundle on X such that the vector bundles M (h),L are globally generated
for every h ≥ 0. If H1(M (h),L ⊗ Ls) = 0 for every h ≥ 0 and every s ≥ 0, then R(L) is
Koszul.

2. Preparatory lemmas

In this section we will list and prove some well known results that will be used repeatedly in
what follows. k is any field and X is a projective variety over k.

Lemma 2.1 Let E and L1, L2, ..., Lr be coherent sheaves on X. Consider the multiplication
maps

ψ : H0(E) ⊗H0(L1 ⊗ ...⊗ Lr) → H0(E ⊗ L1 ⊗ ...⊗ Lr),

α1 : H0(E) ⊗H0(L1) → H0(E ⊗ L1),

α2 : H0(E ⊗ L1) ⊗H0(L2) → H0(E ⊗ L1 ⊗ L2),

...,

αr : H0(E ⊗ L1 ⊗ ...⊗ Lr−1) ⊗H0(Lr) → H0(E ⊗ L1 ⊗ ...⊗ Lr).

If α1,...,αr−1 are surjective then so is ψ.

Proof We have the following commutative diagram where id denotes the identity morphism:

H0(E) ⊗H0(L1) ⊗ ...⊗H0(Lr)
α1⊗id //

φ

��

H0(E ⊗ L1) ⊗H0(L2) ⊗ ...⊗H0(Lr)

α2⊗id

��
H0(E) ⊗H0(L1 ⊗ ...⊗ Lr)

ψ

��

H0(E ⊗ L1 ⊗ L2) ⊗H0(L3) ⊗ ...⊗H0(Lr)

α3⊗id

��...

αr−1⊗id
��

H0(E ⊗ L1 ⊗ ...⊗ Lr) H0(E ⊗ L1 ⊗ ...⊗ Lr−1) ⊗H0(Lr)
αroo

Since α1, α2, ..., αr are surjective and this diagram is commutative, a simple diagram chase
shows that ψ is surjective. 2

Lemma 2.2 Let F be a locally free sheaf and A an ample line bundle on X. If the multipli-
cation map H0(F ⊗ A⊗n) ⊗H0(A) → H0(F ⊗ A⊗n+1) is surjective for every n ≥ 0, then F
is generated by its global sections.
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Proof Since A is ample, there exists m ≥ 0 such that F ⊗ A⊗m is generated by global
sections. In other words, the morphism of sheaves ν : H0(F ⊗ A⊗m) ⊗ OX → F ⊗ A⊗m is
surjective.

The hypothesis implies, by Lemma 2.1, that ψ : H0(F ) ⊗ H0(A⊗m) → H0(F ⊗ A⊗m) is
surjective.

Consider now the commutative diagram:

H0(F ⊗ A⊗m) ⊗OX

ν

**UUUUUUUUUUUUUUUUU

H0(F ) ⊗H0(A⊗m) ⊗OX

ψ⊗id

OO

id⊗φ

��

F ⊗ A⊗m

H0(F ) ⊗ A⊗m

µ
44iiiiiiiiiiiiiiiii

Since ψ⊗id and ν are surjective, a diagram chase shows that µ : H0(F )⊗A⊗m → F⊗A⊗m

is surjective.

As A⊗m is an invertible sheaf, the surjectivity of µ shows that F is generated by global
sections. 2

Lemma 2.3 [CM Lemma, [14]] Let E be a base-point free line bundle on X and let F be a
coherent sheaf on X. If H i(F ⊗E−i) = 0 for i ≥ 1, then the multiplication map

H i(F ⊗E⊗i) ⊗H0(E) → H i(F ⊗E⊗i+1)

is surjective for all i ≥ 0.

Let N be a globally generated vector bundle and let A be a line bundle on X.

We have a short exact sequence

0 →MN → H0(N) ⊗OX → N → 0 (3)

Remark 2.4 H1(MN ⊗ A) = 0 if the following two conditions hold.

• The multiplication map H0(N) ⊗H0(A) → H0(N ⊗A) is surjective.

• H1(A) = 0.

This is easy to see: tensor the sequence (3) by A and take global sections:

..→ H0(N) ⊗H0(A) → H0(N ⊗ A) → H1(MN ⊗A) → H0(N) ⊗H1(A) → ...
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Remark 2.5 H2(MN ⊗ A) = 0 if the following two conditions hold.

• H1(N ⊗ A) = 0.

• H2(A) = 0.

This is easy to see: tensor the sequence (3) by A and take global sections:

..→ H1(N ⊗ A) → H2(MN ⊗A) → H0(N) ⊗H2(A) → ...

3. Koszul ring associated to an ample line bundle

on a projective variety

In this section X denotes an arbitrary projective variety over a field k.

Let B be a base point free ample line bundle on X.

Definition 3.1 [[13], Definition 1.8.4.] Let m ≥ 0. We say that B is m−regular (with respect
to B) if

H i(B⊗m+1−i) = 0, for i > 0.

If B is m-regular, then it is (m + 1)-regular ([13], Theorem 1.8.5.(iii)). We define the
regularity of B to be m if B is m-regular, but not (m− 1)-regular.

This notion of regularity is related to the classical notion of Castelnuovo-Mumford regu-
larity as follows:

Let f : X → PNk be the morphism to a projective space defined by B. Note that such a
morphism exists because B is base point free. Let L = f⋆(B).

In the classical setting, we say L is m-regular if H i
(

PNk , L(m− i)
)

= 0 for i ≥ 0.

Since f ⋆(O
P

N
k
(1)) = B, by the projection formula we get

f⋆(B
⊗2) = f⋆(B ⊗ f ⋆(O

P
N
k
(1))) = f⋆(B) ⊗O

P
N
k
(1) = L(1).

By induction, we obtain for any r ≥ 1,

f⋆(B
⊗r) = L(r − 1) (4)

Since the morphism f is finite, we have H i(X,A) ∼= H i(PNk , f⋆(A)) for any sheaf A on X.

Hence, by (4), B is m-regular in the sense of Definition 3.1 if and only if f⋆(B) is m-regular
in the sense of Castelnuovo-Mumford.
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Suppose now that B is (r − 1)-regular (in the sense of Definition 3.1). Then since B is
(n− 1)-regular for all n ≥ r, we have

H i(B⊗n−i) = 0 for all i ≥ 1 and n ≥ r (5)

Set L = B⊗r. We prove that R(L) is a Koszul ring. Our methods will closely mirror those
of [8].

Proposition 3.2 We have

(A) M (h),L is globally generated for each h ≥ 0, and

(B) H i(M (h),L ⊗ B⊗s−i) = 0, for all h ≥ 0, s ≥ 0, and i ≥ 1.

Proof We prove both assertions simultaneously by induction on h.

First suppose that h = 0. M (0),L = L is globally generated because B is.

Further, for any s ≥ 0 and i ≥ 1, H i(M (0),L⊗B⊗s−i) = H i(L⊗B⊗s−i) = H i(B⊗r+s−i) = 0,
by (5).

Now fix some h1 > 0 and suppose that the statements (A) and (B) hold for all h < h1.

So M (h1−1),L is globally generated and M (h1),L is defined.

We claim that the multiplication map

H0(M (h1),L ⊗ B⊗n) ⊗H0(B) → H0(M (h1),L ⊗ B⊗n+1) (6)

is surjective for all n ≥ 0.

By Lemma 2.3, this follows if

H i(M (h1),L ⊗ B−i) = 0 for all i ≥ 1. (7)

We will first prove (7) for i = 1.

Tensor the sequence (2) corresponding to F = M (h1−1),L by B⊗r−1. We obtain

0 →MM (h1−1),L ⊗ B⊗r−1 → H0(M (h1−1),L) ⊗B⊗r−1 → M (h1−1),L ⊗B⊗r−1 → 0

Taking global sections, we get

0 // H0(MM (h1−1),L ⊗ B⊗r−1) // H0(M (h1−1),L) ⊗H0(B⊗r−1)
γ // H0(M (h1−1),L ⊗B⊗r−1)

// H1(MM (h1−1),L ⊗ B⊗r−1) // H0(M (h1−1),L) ⊗H1(B⊗r−1) // ...
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By (5), H1(B⊗r−1) = 0. So H1(MM (h1−1),L ⊗B⊗r−1) = 0 if and only if γ is surjective.

Now, by Lemmas 2.1 and 2.3, γ is surjective if H i(M (h1−1),L ⊗B−i) = 0 for all i ≥ 1.

But this follows from induction hypothesis applied to h1 − 1 and s = 0.

Thus H1(MM (h1−1),L ⊗ B⊗r−1) = H1(M (h1),L ⊗ B−1) = 0, which is the statement (7) for
i = 1.

Now suppose that i ≥ 2.

Tensor the sequence (2) corresponding to F = M (h1−1),L by B⊗r−i. We obtain

0 → MM (h1−1),L ⊗ B⊗r−i → H0(M (h1−1),L) ⊗B⊗r−i →M (h1−1),L ⊗ B⊗r−i → 0

Taking global sections, we get

.... // H0(M (h1−1),L) ⊗H i−1(B⊗r−i) // H i−1(M (h1−1),L ⊗ B⊗r−i)

// H i(MM (h1−1),L ⊗B⊗r−i) // H0(M (h1−1),L) ⊗H i(B⊗r−i) // ....

H i(B⊗r−i) = 0 by (5).

H i−1(M (h1−1),L ⊗ B⊗r−i) = 0, by induction hypothesis (more precisely, statement B for
h1 − 1).

Hence H i(MM (h1−1),L ⊗ B⊗r−i) = H i(M (h1),L ⊗ B−i) = 0 for all i ≥ 2.

This proves (7) and hence (6) for all i ≥ 1. So we have (A) by Lemma 2.2.

Next, we prove (B) for h1, i = 1 and any s ≥ 0.

Tensor the sequence (2) corresponding to F = M (h1−1),L by B⊗r+s−1. We obtain

0 →MM (h1−1),L ⊗ B⊗r+s−1 → H0(M (h1−1),L) ⊗ B⊗r+s−1 → M (h1−1),L ⊗B⊗r+s−1 → 0

Taking global sections, we get

0 // H0(MM (h1−1),L ⊗ B⊗r+s−1) // H0(M (h1−1),L) ⊗H0(B⊗r+s−1)
γ // H0(M (h1−1),L ⊗ B⊗r+s−1)

// H1(MM (h1−1),L ⊗ B⊗r+s−1) // H0(M (h1−1),L) ⊗H1(B⊗r+s−1) // ....

By (5), H1(B⊗r+s−1) = 0. So H1(MM (h1−1),L ⊗ B⊗r+s−1) = 0 if and only if γ is surjective.

Now, again by Lemmas 2.1 and 2.3, γ is surjective if H i(M (h1−1),L⊗B−i) = 0 for all i ≥ 1.

But this follows from induction hypothesis applied to h1 − 1 and s = 0.

Thus H1(MM (h1−1),L ⊗B⊗r+s−1) = H1(M (h1),L ⊗B⊗s−1) = 0.
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This proves (A) for h1 and i = 1.

Now suppose that i ≥ 2 and s ≥ 0.

Tensor the sequence (2) corresponding to F = M (h−1),L by B⊗r+s−i. We obtain

0 →MM (h−1),L ⊗ B⊗r+s−i → H0(M (h−1),L) ⊗ B⊗r+s−i →M (h−1),L ⊗B⊗r+s−i → 0

Taking global sections, we get

... // H0(M (h1−1),L) ⊗H i−1(B⊗r+s−i) // H i−1(M (h1−1),L ⊗ B⊗r+s−i)

// H i(MM (h1−1),L ⊗ B⊗r+s−i) // H0(M (h1−1),L) ⊗H i(B⊗r+s−i)//

H i(B⊗r+s−i) = 0, by (5).

H i−1(M (h1−1),L⊗B⊗r+s−i) = H i−1(M (h1−1),L⊗B⊗r+s−1−(i−1)) = 0, by induction hypothesis
because r + s− 1 ≥ s ≥ 0.

So H i(MM (h1−1),L ⊗ B⊗r+s−i) = H i(M (h1),L ⊗ B⊗s−i) = 0, as required. 2

Theorem 3.3 Let X be a projective variety over a field k. Let B a base point free ample
bundle on X with reg(B) = r − 1. Let L = B⊗n with n ≥ r. Then R(L) is a Koszul ring.

Proof Since B is (n− 1)-regular, Proposition 3.2 implies that, H1(M (h),L ⊗B⊗s−1) = 0 for
all s ≥ 0 and h ≥ 0.

So for s ≥ 0 and h ≥ 0, H1(M (h),L ⊗ Ls) = H1(M (h),L ⊗ B⊗rs) = 0.

By Proposition 1.1, it follows that R(L) is a Koszul ring. 2

4. Minimal irregular surfaces of general type

Let X be a nonsingular projective minimal2 irregular3 surface of general type4 over the
complex number field C. Let KX be the canonical line bundle on X. Suppose that KX is
base point free.

Notation: We write L ≡ L′ if the line bundles L and L′ are numerically equivalent. We
write L · L′ to denote the intersection number of L and L′.

Let B be a base point free and ample divisor on X such that B′ is base point free for all
B′ ≡ B and H1(B′) = 0. Assume that B2 > B ·KX .

2A surface X is minimal if every birational morphism X → Y is an isomorphism.
3The irregularity q of a surface X over a field k is defined to be q = dimk H1(OX). We say that X is

irregular if q > 0.
4A surface X is of general type if its Kodaira dimension κ(X) = 2.
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Let L = KX ⊗B⊗n, where n ≥ 2.

Set R(L) =

∞
⊕

n=0

H0(L⊗n). Our goal is to prove that R(L) is Koszul. Our proof is similar

to proofs in [19]. Theorem 5.14 in [8] proves an analogous result for regular surfaces.

4.1. Required lemmas

In this subsection we will prove some lemmas that will be used later in the proof of the main
theorem.

A divisor D on X is nef if D · C ≥ 0 for every irreducible curve C in X. D is said to be
big if a multiple mD, m ∈ N. defines a birational map of X to a projective space.

As X is a minimal surface of general type, KX is nef and big. In fact, a surface is minimal
of general type if and only if KX is nef and big.

Lemma 4.1 (Kawamata - Viehweg vanishing) Let X be a nonsingular projective variety
over the complex number field C. Let D be a nef and big divisor on X. Then

H i(KX ⊗D) = 0, for i > 0.

For a proof, see [12] or [22]. We will refer to this result simply as K-V vanishing.

Recall that Pic0(X) denotes the group of divisors on X which are algebraically equivalent
to zero modulo linear equivalence.

Lemma 4.2 There exists a divisor E ∈ Pic0(X) such that E⊗2 6= OX .

Proof We have the exponential sequence

0 → Z → OXh
→ O⋆

Xh
→ 0,

where Xh is the complex analytic space associated to X.

Consider the resulting long exact sequence in cohomologies. Applying Serre’s GAGA and
identifying the Pic(X) with H1(X,O⋆

X), we obtain an exact sequence

0 → H1(Xh,Z) → H1(X,OX) → Pic(X) → H2(Xh,Z) → H2(X,OX) → ...

This gives Pic0(X) ∼= H1(X,OX)/H1(Xh,Z). This is an abelian variety.

For more details on this see the discussion in Appendix B.5 in [9].

Since X is irregular H1(OX) 6= 0. So Pic0(X) is a nontrivial abelian variety and hence
contains 2-torsion elements. 2
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Lemma 4.3 H1(B1 ⊗ B2 ⊗ ⊗... ⊗ Bn) = 0, for line bundles B1 ≡ B2 ≡ ... ≡ Bn ≡ B and
n ≥ 1.

Proof Let C ∈ |B| be a smooth curve. We have for every i,

deg(Bi ⊗OC) = Bi · C = B2

If n > 3, deg(B1 ⊗ ...⊗ Bn ⊗OC) = nB2 > 2B2 = B2 + B2 ≥ B2 + B ·KX = 2g(C) − 2,
where g(C) is the genus of C. So H1(B1 ⊗ ...⊗ Bn ⊗OC) = 0.

We have the short exact sequence:

0 → B−1 → OX → OC → 0 (8)

Tensoring with B1 ⊗ B2 ⊗ B3, we get

0 → B1 ⊗ B2 ⊗ B3 ⊗B−1 → B1 ⊗ B2 ⊗B3 → B1 ⊗B2 ⊗ B3 ⊗OC → 0.

Note that B3⊗B
−1 ≡ OB, so we can write B1⊗B2 ⊗B3 = B1⊗B2

′, where B′

2 ≡ B2 ≡ B.

Taking the long exact sequence in cohomology of the above short exact sequence we obtain,

H1(B1 ⊗B′

2) → H1(B1 ⊗ B2 ⊗ B3) → H1(B1 ⊗ B2 ⊗ B3 ⊗OC).

Since H1(B1 ⊗B2 ⊗ B3 ⊗OC) = 0, it is enough to prove the theorem for n = 2.

Exactly as above, we have the following exact sequence

H1(B1) → H1(B1 ⊗B2) → H1(B1 ⊗ B2 ⊗OC).

H1(B1) = 0 by hypothesis. It is enough to prove that H1(B1 ⊗ B2 ⊗OC) = 0.

As before, deg(B1 ⊗ B2 ⊗OC) = 2B2 ≥ B2 +B.KX = 2g(C) − 2.

If deg(B1 ⊗ B2 ⊗OC) > 2g(C) − 2, then we are done.

Suppose that deg(B1 ⊗ B2 ⊗OC) = 2g(C) − 2. Note that this implies that B2 = B.KX .

If B1 ⊗ B2 ⊗OC 6= KC , then H1(B1 ⊗ B2 ⊗OC) = 0 and we are done. Here KC denotes
the canonical divisor of C.

Assume that B1 ⊗ B2 ⊗ OC = KC . By adjunction, we have KC = KX ⊗ B ⊗ OC . So
B1 ⊗ B2 ⊗OC = KX ⊗ B ⊗OC . This gives B1 ⊗ B2 ⊗K−1

X ⊗B−1 ⊗OC = OC .

Tensoring (8) with B1 ⊗ B2 ⊗K−1
X ⊗B−1, we obtain

0 → B1 ⊗ B2 ⊗K−1
X ⊗ B−2 → B1 ⊗B2 ⊗K−1

X ⊗ B−1 → B1 ⊗ B2 ⊗K−1
X ⊗B−1 ⊗OC → 0.
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Taking cohomology long exact sequence, we have

H0(B1 ⊗ B2 ⊗K−1
X ⊗ B⊗−2) // H0(B1 ⊗B2 ⊗K−1

X ⊗ B−1) //

H0(B1 ⊗B2 ⊗K−1
X ⊗ B−1 ⊗OC) // H1(B1 ⊗ B2 ⊗K−1

X ⊗ B⊗−2)

Now H0(B1 ⊗B2 ⊗K−1
X ⊗B⊗−2) = H2(K⊗2

X ⊗B1
−1 ⊗B2

−1 ⊗B⊗2), by Serre duality. Since
B1

−1 ⊗ B2
−1 ⊗ B⊗2 ≡ OX and KX is nef and big (X is minimal of general type), it follows

that H2(K⊗2
X ⊗B1

−1 ⊗ B2
−1 ⊗B⊗2) = 0 by K-V vanishing.

Similarly, H1(B1 ⊗B2 ⊗K−1
X ⊗ B⊗−2) = H1(K⊗2

X ⊗ B1
−1 ⊗B2

−1 ⊗ B⊗2) = 0.

Thus we obtain

H0(B1 ⊗ B2 ⊗K−1
X ⊗B−1) ∼= H0(B1 ⊗ B2 ⊗K−1

X ⊗B−1 ⊗OC) ∼= H0(OC) ∼= k.

So H0(B1 ⊗B2 ⊗K−1
X ⊗ B−1) 6= 0 and B1 ⊗ B2 ⊗K−1

X ⊗B−1 is effective. But

B · (B1 ⊗B2 ⊗K−1
X ⊗ B−1) = B ·B1 +B · B2 − B ·KX − B2 = B2 − B ·KX = 0

So B1 ⊗ B2 ⊗ K−1
X ⊗ B−1 = OX ⇒ B1 ⊗ B2 = KX ⊗ B. Finally, H1(B1 ⊗ B2) =

H1(KX ⊗ B) = 0, by K-V vanishing, thus concluding the proof. 2

Lemma 4.4 H2(B⊗n ⊗ δ) = 0 for n ≥ 1 and any numerically trivial line bundle δ.

Proof H2(B⊗n ⊗ δ) = H0(KX ⊗B−n ⊗ δ−1), by Serre duality.

If H0(KX ⊗B−n⊗ δ−1) 6= 0, then there is an effective divisor D that is linearly equivalent
to KX − nB − δ. (By abuse of notation, we denote the divisor associated to a line bundle
by the same letter.) So we have B · D = B · (KX − nB − δ) ≥ 0, because B is ample. So
B ·KX ≥ nB2. But this contradicts the hypothesis that B2 > B ·KX . 2

Lemma 4.5 H2(K−1
X ⊗ B⊗n ⊗ δ) = 0, for n ≥ 2.

Proof By Serre duality, H2(K−1
X ⊗ B⊗n ⊗ δ) = H0(K⊗2

X ⊗ B−n ⊗ δ−1).

If H0(K⊗2
X ⊗B−n⊗δ−1) 6= 0, then there is an effective divisor D that is linearly equivalent

to 2KX − nB − δ. So we have B · D = B · (2KX − nB − δ) ≥ 0, because B is ample. So
2B ·KX ≥ nB2. But this contradicts the hypothesis that B2 > B ·KX . 2

4.2. Main theorem

In this subsection we will prove our main theorem: R(L) is a Koszul ring.
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By Lemma 4.2, there exists E ∈ Pic0(X) such that E⊗2 6= OX . Note that E is numerically
trivial.

Set B1 = B ⊗ E−1 and B2 = B ⊗E. Then L = B1 ⊗B2 ⊗KX .

Let δ be a numerically trivial line bundle such that

δ⊗2 6= E⊗2.

Let m, r, t be non-negative integers such that m+ r + t > 0.

Recall the definition of H1(M (h),L) from Section 1. H1(M (h−1),L) has to be globally gen-
erated to define H1(M (h),L). The discussion below will establish that H1(M (h),L) is globally
generated for all h ≥ 0.

Consider the following statements for a non-negative integer h.

(Vh) H1(M (h),L ⊗ B1
⊗mB2

⊗r ⊗K⊗t ⊗ δ) = 0

(Sh)







The multiplication map
H0(M (h),L) ⊗H0(B1

⊗m ⊗ B2
⊗r ⊗K⊗t ⊗ δ) → H0(M (h),L ⊗ B1

⊗m ⊗ B2
⊗r ⊗K⊗t ⊗ δ)

is surjective

Our goal is to prove that (Sh) and (Vh) hold for all h ≥ 0.

Lemma 4.6 The statements (S0) and (V0) hold.

Proof (V0): H
1(L⊗ B1

⊗mB2
⊗r ⊗K⊗t ⊗ δ) = 0 holds by K-V vanishing.

To prove (S0), we will use Lemma 2.1 iteratively. First, let us observe that the following
map is surjective for m ≥ 0:

H0(L⊗ B1
⊗m) ⊗H0(B1 ⊗ δ) → H0(L⊗B1

⊗m+1 ⊗ δ). (9)

By Lemma 2.3, we need H1(L⊗B1
⊗m−1 ⊗ δ−1) = 0 and H2(L⊗ B1

⊗m−2 ⊗ δ−2) = 0.

H1(L⊗B1
⊗m−1 ⊗ δ−1) = H1(KX ⊗ B1

⊗m ⊗ B2 ⊗ δ−1) = 0, by K-V vanishing.

H2(L⊗B1
⊗m−2 ⊗ δ−2) = H2(KX ⊗ B1

⊗m−1 ⊗ B2 ⊗ δ−2).

If m = 0, then H2(KX ⊗B1
−1 ⊗B2 ⊗ δ−2) = H2(KX ⊗E⊗2 ⊗ δ−2) = H0(E−2 ⊗ δ⊗2) = 0

because E−2 ⊗ δ⊗2 6= OX is numerically trivial.

If m > 0, then H2(KX⊗B1
⊗m−1⊗B2⊗δ

−2) = H2(KX⊗B⊗m⊗δ1) = 0 by K-V vanishing
(δ1 is a numerically trivial line bundle).
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Second, let us show that the following map is surjective for m, r ≥ 0:

H0(L⊗ B1
⊗m ⊗B2

⊗r) ⊗H0(B2 ⊗ δ) → H0(L⊗ B1
⊗m ⊗B2

⊗r+1 ⊗ δ). (10)

By Lemma 2.3, we need H1(L⊗B1
⊗m⊗B2

⊗r−1⊗δ−1) = 0 and H2(L⊗B1
⊗m⊗B2

⊗r−2⊗δ−2) =
0.

H1(L⊗B1
⊗m⊗B2

⊗r−1 ⊗ δ−1) = H1(KX ⊗B1
⊗m+1 ⊗B2

⊗r ⊗ δ−1) = 0, by K-V vanishing.

H2(L⊗ B1
⊗m ⊗B2

⊗r−2 ⊗ δ−2) = H2(KX ⊗B1
⊗m+1 ⊗B2

⊗r−1 ⊗ δ−2).

If m = r = 0, then H2(KX ⊗B1
⊗m+1 ⊗B2

−1 ⊗ δ−2) = H2(KX ⊗E⊗2 ⊗ δ−2) = H0(E−2 ⊗
δ⊗2) = 0 because as above E−2 ⊗ δ⊗2 6= OX is numerically trivial.

If m + r > 0, then H2(KX ⊗ B1
⊗m+1 ⊗ B2

⊗r−1 ⊗ δ−2) = H2(KX ⊗ B⊗m+r ⊗ δ1) = 0 by
K-V vanishing (δ1 is a numerically trivial line bundle).

Finally, we will prove the following map is surjective:

H0(L⊗ B1
⊗m ⊗B2

⊗r ⊗KX
⊗t) ⊗H0(KX ⊗ δ) → H0(L⊗ B1

⊗m ⊗ B2
⊗r ⊗KX

⊗t+1 ⊗ δ). (11)

By Lemma 2.3, we need H1(L⊗B1
⊗m ⊗B2

⊗r ⊗KX
⊗t−1 ⊗ δ−1) = 0 and H2(L⊗B1

⊗m ⊗
B2

⊗r ⊗KX
⊗t−2 ⊗ δ−2) = 0.

H1(L⊗ B1
⊗m ⊗ B2

⊗r ⊗KX
⊗t−1 ⊗ δ−1) = H1(KX

⊗t ⊗ B1
⊗m+1 ⊗ B2

⊗r+1 ⊗ δ−1). If t = 0,
this is zero by Lemma 4.3. If t > 0, it is zero by K-V vanishing.

H2(L⊗ B1
⊗m ⊗B2

⊗r ⊗KX
⊗t−2 ⊗ δ−2) = H2(KX

⊗t−1 ⊗ B1
⊗m+1 ⊗ B2

⊗r+1 ⊗ δ−2).

If t = 0, then this H2 is zero by Lemma 4.5. If t = 1 it is zero by Lemma 4.3. If t > 0, it
is zero by K-V vanishing.

The proof is now complete by the surjectivity of (9), (10) and (11), and Lemma 2.1. 2

Note that (9) shows that L is globally generated (taking δ = OX and applying Lemma
2.2). So we can define M (1),L.

Theorem 4.7 The statements (Vh) and (Sh) hold all h ≥ 0.

Proof The proof is by induction on h. Both statements hold when h = 0 by Lemma 4.6.

Suppose that the statements hold for all nonnegative integers ≤ h− 1 for some h ≥ 1.

Proving that (Vh) holds is easy: by Remark 2.4, (Vh) follows if

(i) H0(M (h−1),L)⊗H0(L⊗B1
⊗m⊗B2

⊗r⊗K⊗t⊗ δ) → H0(M (h−1),L⊗L⊗B1
⊗m⊗B2

⊗r⊗
K⊗t ⊗ δ) is surjective, and

(ii) H1(B1
⊗m ⊗B2

⊗r ⊗K⊗t ⊗ δ) = 0.



Some Koszul Rings from Geometry 15

(ii) follows by K-V vanishing. (i) is simply the statement (Sh−1).

To prove (Sh), we will need to do some work. We are going to use Lemma 2.1 iteratively.
Lemma 2.1 allows us to prove the surjectivity separately for B1, B2 and KX , as in Lemma
4.6. We will deal with these three cases in the three lemmas that follow.

First, we prove the following

Lemma 4.8 The multiplication map

H0(M (h),L ⊗ B1
⊗m) ⊗H0(B1 ⊗ δ) → H0(M (h),L ⊗ B1

⊗m+1 ⊗ δ)

is surjective for m ≥ 0.

Proof We use Lemma 2.3. We need the following two statements for m ≥ 0:

H1(M (h),L ⊗ B1
⊗m−1 ⊗ δ−1) = H1(MM (h−1),L ⊗ L⊗ B1

⊗m−1 ⊗ δ−1) = 0 (12)

H2((M (h),L ⊗ B1
⊗m−2 ⊗ δ−2) = H2(MM (h−1),L ⊗ L⊗ B1

⊗m−2 ⊗ δ−2) = 0 (13)

By Remark 2.4, (12) follows if H1(L⊗B1
⊗m−1) = 0 and if the following map is surjective:

H0(M (h−1),L) ⊗H0(L⊗ B1
⊗m−1) → H0(M (h−1),L ⊗ L⊗ B1

⊗m−1).

The H1 is zero by K-V vanishing and the surjectivity is simply (Sh−1).

By Remark 2.5, (13) follows if H1(M (h−1),L ⊗ L⊗ B1
⊗m−2 ⊗ δ−2) = 0 and

H2(L⊗B1
⊗m−2 ⊗ δ−2) = 0

The H1 vanishes by (Vh−1). If m = 0, H2(KX⊗E⊗2⊗δ−2) = 0, as in the proof of Lemma
4.6. H2 is zero by K-V vanishing. If m > 0, then H2 is zero by K-V vanishing. 2

Lemma 4.8 implies that M (h),L is globally generated (by Lemma 2.2) for all h ≥ 0.

Now to the next step:

Lemma 4.9 The multiplication map

H0(M (h),L ⊗ B1
⊗m ⊗ B2

⊗r) ⊗H0(B2 ⊗ δ) → H0(M (h),L ⊗ B1
⊗m ⊗B2

⊗r+1 ⊗ δ)

is surjective for m, r ≥ 0.

Proof According to Lemma 2.3, we need the following two statements for m, r ≥ 0:

H1(MM (h−1),L ⊗ L⊗B1
⊗m ⊗ B2

⊗r−1 ⊗ δ−1) = 0 (14)

H2(MM (h−1),L ⊗ L⊗B1
⊗m ⊗ B2

⊗r−2 ⊗ δ−2) = 0 (15)
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By Remark 2.4, (14) follows if H1(L⊗B1
⊗m ⊗B2

r−1 ⊗ δ−1) = 0 and if the following map
is surjective:

H0(M (h−1),L) ⊗H0(L⊗ B1
⊗m ⊗B2

r−1 ⊗ δ−1) → H0(M (h−1),L ⊗ L⊗ B1
⊗m ⊗ B2

r−1 ⊗ δ−1).

The H1 is zero by K-V vanishing and the surjectivity is simply (Sh−1).

By Remark 2.5, (15) follows if H1(M (h−1),L ⊗ L⊗ B1
⊗m ⊗ B2

⊗r−2 ⊗ δ−2) = 0 and

H2(L⊗ B1
⊗m ⊗B2

⊗r−2 ⊗ δ−2) = 0

The H1 vanishes by (Vh−1). If m = r = 0, then H2 is zero as in Lemma 4.9. If m+r > 0,
then H2 is zero by K-V vanishing. 2

Finally we have the following

Lemma 4.10 The multiplication map

H0(M (h),L ⊗B1
⊗m ⊗B2

⊗r ⊗K⊗t) ⊗H0(K ⊗ δ) → H0(M (h),L ⊗ B1
⊗m ⊗ B2

⊗r ⊗K⊗t+1 ⊗ δ)

is surjective for m, r, t ≥ 0.

Proof According to Lemma 2.3, we need the following two statements for m, r, t ≥ 0:

H1(MM (h−1),L ⊗ L⊗B1
⊗m ⊗ B2

⊗r ⊗K⊗t−1 ⊗ δ−1) = 0 (16)

H2(MM (h−1),L ⊗ L⊗B1
⊗m ⊗ B2

⊗r ⊗K⊗t−2 ⊗ δ−2) = 0 (17)

By Remark 2.4, (16) follows if H1(L⊗B1
⊗m⊗B2

⊗r⊗K⊗t−1⊗δ−1) = 0 and if the following
map is surjective:

H0(M (h−1),L)⊗H0(L⊗B1
⊗m⊗B2

⊗r⊗K⊗t−1⊗δ−1) → H0(M (h−1),L⊗L⊗B1
⊗m⊗B2

r−1⊗δ−1).

The surjectivity is simply (Sh−1). For t ≥ 1, the H1 is zero by K-V vanishing. For t = 0,
the vanishing follows from Lemma 4.4.

By Remark 2.5, (17) follows if H1(M (h−1),L ⊗ L⊗ B1
⊗m ⊗ B2

⊗r ⊗K⊗t−1 ⊗ δ−2) = 0 and

H2(L⊗ B1
⊗m ⊗B2

⊗r ⊗K⊗t−1 ⊗ δ−2) = 0

The H1 vanishes by (Vh−1). For t ≥ 2, H2 is zero by K-V vanishing; for t = 1, H2

vanishes by Lemma 4.4; for t = 0, it vanishes by Lemma 4.5. 2

(Sh) now from Lemma 2.1 and Lemmas 4.8, 4.9, 4.10. 2



Some Koszul Rings from Geometry 17

Theorem 4.11 Let X be an nonsingular projective minimal irregular surface of general type
over C. Suppose that the canonical divisor KX of X is base point free. Let B be a base point
free ample divisor on X such that B′ is base point free for all B′ ≡ B and H1(B′) = 0.
Assume that B2 > B ·KX . Let L = KX ⊗B⊗n, where n ≥ 2. Then R(L) is a Koszul ring.

Proof By Theorem 4.7, (Vh) and (Sh) hold for all h ≥ 0.

If s > 0, then taking s = m = r = t and δ = OX , (Vh) gives us H1(M (h),L ⊗ L⊗s) = 0.

If s = 0, we need to prove that H1(M (h),L) = 0 for h ≥ 0. If h = 0 this follows by K-V
vanishing. Suppose that h > 0. We need to prove that H1(M (h),L) = H1(MM (h−1),L ⊗L) = 0.
By Remark 2.4, this follows if the multiplication map

H0(M (h−1),L) ⊗H0(L) → H0(M (h−1),L ⊗ L)

is surjective and if H1(L) = 0. Surjectivity is simply the statement (Sh−1) and H1(L) = 0
by K-V vanishing.

This implies H1(M (h),L ⊗ L⊗s) = 0 for h ≥ 0 and s ≥ 0, thereby proving that R(L) is
Koszul, by Proposition 1.1. 2

References

[1] Avramov, L.L., and Eisenbud, D., Regularity of modules over a Koszul algebra, J. Alge-
bra 153, 85-90 (1992).

[2] Backelin, J., On the rates of growth of the homologies of Veronese subrings, Algebra,
algebraic topology and their interactions (Stockholm, 1983), Vol 1183, Lecture Notes in
Mathematics, 79-100, Springer-Verlag, 1986.

[3] Beilinson, A.A., Ginsburg V.A., and Schechtman V.V., Koszul duality, J. Geom. Phys.
5 (1988), 317-350

[4] Beilinson, A.A., Ginzburg V.A., and Soergel, W., Koszul duality patterns in representa-
tion theory, J. Amer. Math. Soc. 9 (1996), 473-527.

[5] Butler, David, Normal generation of vector bundles over a curve, J. Differential Geom.,
39, 1-34, 1994.

[6] Eisenbud, D., Reeves, A., and Totaro, B., Initial ideals, Veronese subrings, and rates of
algebras, Adv. Math., 109, 168-187, 1994.

[7] Gallego, Francisco Javier and Purnaprajna, B. P., Normal presentation on elliptic ruled
surfaces, J. Algebra 186 (1996), no. 2, 597-625.

[8] Gallego, F. J. and Purnaprajna, B. P., Projective normality and syzygies of algebraic
surfaces, J. Reine Angew. Math. 506 (1999), 145-180



18 Some Koszul Rings from Geometry

[9] Hartshorne, Robin, Algebraic Geometry, Graduate Texts in Mathematics, 52, Springer-
Verlag, 1977.

[10] Hering Milena, Multigraded regularity and Koszul property, Preprint, arXiv:0712.2251v1.

[11] Herzog, J. and and Iyengar, S., Koszul modules, J. Pure Appl. Algebra 201 (2005),
154-188.

[12] Kawamata, Yujiro, A generalization of Kodaira-Ramanujam’s vanishing theorem, Math.
Ann. 261 (1982), no. 1, 43-46.

[13] Lazarsfeld, Robert, Positivity in Algebraic Geometry I, Springer-Verlag, 2004.

[14] Mumford, David, Varieties defined by quadratic equations, Corso CIME in Questions
on Algebraic Varieties, Rome (1970), 30-100.

[15] Pareschi, G., Koszul algebras associated to adjunction bundles, J. of Algebra 157 (1993)
161-169.

[16] Pareschi, G. and Purnaprajna, B.P., Canonical ring of a curve is Koszul: a simple proof,
Illinois J. Math., 41 (1997), 266-271.

[17] Polishchuk, A. and Positselski, L., Quadratic algebras, University Lecture Series, Vol 37,
American Mathematical Society, Providence, RI, 2005.

[18] Polishchuk A., On the Koszul property of the homogeneous coordinate ring of a curve,
J. Algebra, 178 (1995), 122-135.

[19] Purnaprajna, B.P., Some results on surfaces of general type, Canad. J. Math. 57 (2005),
4, 724-749.

[20] Priddy, Stewart, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970), 39-60.

[21] Sturmfels, B., Four counterexamples in combinatorial algebraic geometry, J. Algebra,
230 (2000), 282-294.

[22] Viehweg, Eckart, Vanishing theorems, J. Reine Angew. Math. 335 (1982), 1-8.

[23] Vishik, A. and Finkelberg, M., The coordinate ring of general curve of genus g ≥ 5 is
Koszul , J. Algebra 162 (1993), 535-539.

Department of Mathematics, University of Kansas, Lawrence, KS 66049
Email address: khanuma@math.ku.edu


	Preliminaries
	Preparatory lemmas
	Koszul ring associated to an ample line bundle on a projective variety
	Minimal irregular surfaces of general type
	Required lemmas
	Main theorem


