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BOUNDING THE FIRST HILBERT COEFFICIENT

KRISHNA HANUMANTHU AND CRAIG HUNEKE

Abstract. This paper gives new bounds on the first Hilbert coefficient of an
ideal of finite colength in a Cohen-Macaulay local ring. The bound given is
quadratic in the multiplicity of the ideal. We compare our bound to previously
known bounds, and give examples to show that at least in some cases it is sharp.
The techniques come largely from work of Elias, Rossi, Valla, and Vasconcelos.

1. Introduction

Throughout this paper we study a commutative Noetherian Cohen-Macaulay
local ring R with maximal ideal m and infinite residue field k. Let I be an m-
primary ideal. We let d be the dimension ofR, we use µ( ) to denote the minimal
number of generators, and use λ( ) to denote the length of an R-module. We
can write

λ(R/In+1) = e0(I)

(

n+ d

d

)

− e1(I)

(

n+ d− 1

d− 1

)

+ ...+ (−1)ded(I)

where the ej(I) are integers called the Hilbert coefficients (of I), and the equation
is valid for all large values of n. There are many studies of relationships between
the various Hilbert coefficients, and bounds for them. Such bounds are neces-
sary, for example, to prove finiteness of Hilbert functions of ideals with fixed
multiplicity. The work of Srinivas and Trivedi [ST] does exactly this. North-
cott [N] gave one of the first such bounds. He proved that if R and I are as
above, then e1(I) ≥ e0(I) − λ(R/I). This bound can be improved by adding
another term involving the reduction number of I. An ideal J ⊂ I is a reduction
of I if In+1 = JIn for all large n. Let J be a reduction of I. The reduction

number of I with respect to J , denoted rJ(I), is the least integer r such that
Ir+1 = JIr. The least reduction number of I with respect to all reductions is
called the reduction number of I, denoted r(I). Rossi [Ro] proved if d ≤ 2, then
e1(I) ≥ e0(I)− λ(R/I) + r(I)− 1.
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In this paper we give an upper bound on e1(I), as opposed to the lower bound
given by Northcott. Several upper bounds exist in the literature. In [RV1, Prop.

2.10], the bound e1(I) ≤
(

e0(I)−k+1
2

)

is given for filtrations; in our context, their

assumption is that I ⊂ m
k. Elias [E1, Proposition 2.5] generalized this bound

by proving that e1(I) ≤
(

e0(I)−k
2

)

if I ⊂ m
k and the integral closure of I is not

the integral closure of mk. Our main result gives another bound in dimension
one which can then be extended to higher dimension, and which in general is
stronger than the previously known bounds. As a corollary, our main result can
be used to recover, and slightly extend, the result of Elias stated above. He also
gives other bounds which we compare ours to in Section 3. Our methods come
from those in [RVV], but with one additional twist. We also show our results are
sharp by giving a sequence of examples.

2. Dimension One

It is well-known that e1(I) and e0(I) can be preserved after going modulo
general elements of I until one reaches dimension one. Thus the one-dimensional
case is crucial. But one must also possibly preserve other assumptions, and this
makes some difficulties in obtaining optimal results. Our first theorem handles
the case of dimension one.

Theorem 2.1. Let (R,m) be a Cohen-Macaulay local ring of dimension one,

and let I ⊂ R be an m−primary ideal. Suppose that there exist distinct integrally

closed ideals J1, ..., Jk−1 such that m ) Jk−1 ⊇ Jk−2 ⊇ .... ⊇ J1 ) Ī, where Ī
is the integral closure of I. Then e1(I) ≤

(

e0(I)−k
2

)

. If I is not integrally closed,

e1(I) <
(

e0(I)−k
2

)

.

Proof. For simplicity we write ej(I) = ej .

We have λ(R/m) = 1, λ(m/Jk−1) ≥ 1, λ(Ji+1/Ji) ≥ 1 for i = 1, .., k − 2, and
finally λ(J1/I) ≥ 1. Thus λ(R/I) ≥ k + 1.

Let r be the reduction number of I.

By the Eakin-Sathaye theorem [ES], we see that for n ≤ r, In can not be
generated by fewer than n + 1 elements. So λ(In/mIn) ≥ n + 1. Consider
λ(mIn/In+1). We claim this length is at least k. To see this, consider the chain
of ideals,

mIn ⊃ Jk−1I
n ⊃ Jk−2I

n ⊃ . . . ⊃ J1I
n ⊃ ĪIn.

None of the ideals in this chain are equal; if for example Jl+1I
n = JlI

n, then
the determinantal trick (see [SH, 1.1.8]) shows that Jl+1 is integral over Jl, a
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contradiction. Combing the above two inequalities, we obtain that λ(In/In+1) ≥
n+ k + 1 for n ≤ r.

We have e0n − e1 = λ(R/In) for n >> 0. In fact, this equality holds for
n = r + 1 and e1 = (r + 1)e0 − λ(R/Ir+1). We rewrite this equality in the
following way:

e1 = (e0 − λ(R/I)) +

r
∑

n=1

(e0 − λ(In/In+1)).

Using the inequalities above, we obtain that

e1 ≤ e0 − (k + 1) + re0 −
r

∑

n=1

(n + k + 1).

We claim that

e0 − (k + 1) + re0 −

r
∑

n=1

(n+ k + 1) ≤

(

e0 − k

2

)

,

which will finish the proof.

To simplify this, we set α = r
e0
. Note that

r
∑

n=1

(n + k + 1) =
(r + k + 1)(r + k + 2)

2
−

(k + 1)(k + 2)

2
.

Now a simple calculation shows that
(

e0 − k

2

)

−
(

e0 − (k + 1) + re0 −

r
∑

n=1

(n+ k + 1)
)

= (e0(1− α))2 − e0(1− α)(2k + 3) + (k + 1)(k + 2).

Setting x = e0(1− α), our claim becomes

x2 − (2k + 3)x+ (k + 1)(k + 2) = (x− (k + 1))(x− (k + 2)) ≥ 0.

This is clear since x = e0 − r is an integer and both terms are therefore both
positive or negative. �

We let K be an infinite field for the following examples.

Example 2.2. Let R = K[[x, y]]/(xy2) and let I = (x2, y). R is a Cohen-
Macaulay local ring of dimension 1 and I is m−primary. Moreover, I is an
integrally closed ideal and I 6= m. So we can apply Theorem 2.1 with k = 1.

We have that In = (x2n, x2n−2y, yn). Since xy2 = 0 in R, a product of n
elements of {x2, y} is zero if y is taken at least twice and x2 is taken at least once.

A K-basis of R/In is {1, x, . . . , x2n−1, y, . . . , yn−1, xy, . . . , x2n−3y}.
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Hence λ(R/In) = 5n− 4, which implies that e0(I) = 5 and e1(I) = 4. So the

conclusion of Theorem 2.1 holds. Notice also that e1(I) ≮
(

e0(I)−2
2

)

.

Example 2.3. R = K[[x, y]]/(xy(x− y)) and Ik = (xk+1, y), k ≥ 1.

We claim that the reduction number of I is 1. It suffices to prove that I2 = zI
with z = y + xk+1. To prove this we can lift back to K[[x, y]] and prove that
(xk+1, y)2 ⊂ (zy, zxk+1, x2y − yx2). In fact it is clear that it suffices to see that
y2 ∈ (zy, zxk+1, x2y − yx2). But y2(1 + xk) = zy − xk−1(x2y − xy2). As 1 + xk is
a unit, our claim is proved. It is well-known that having reduction number equal
to 1 implies that e0(I) = λ(I/I2). This latter can be easily to be k+ 3. Further,
λ(R/I2) = 2e0(I)− e1(I). A simple calculation shows that λ(R/I2) = 2k+4. So
e1(I) = 2. Observe that the ideals Ik are integrally closed for every k. This can
be seen, e.g., by going modulo y. Therefore we have a chain of distinct integrally
closed ideals,

m ⊃ I1 ⊃ I2 ⊃ ... ⊃ Ik+1.

Applying Theorem 2.1 yields e1(I) <
(

e0(I)−k
2

)

, but e1(I) ≮
(

e0(I)−k−1
2

)

.

In these examples, e1(I) has the smallest possible value, namely e0(I)−λ(R/I).

Example 2.4. R = K[[x, y]]/(x2y2) and let I = (x2, y). Then eo(I) = e1(I) = 6
and λ(R/I) = 2. Here we may apply Theorem 2.1 with k = 1. However, it is

true also that e1(I) ≤
(

e0(I)−2
2

)

.

Theorem 2.1 shows that the maximum length of a chain of integrally closed
ideals in R which contain a given m-primary ideal I is important to understand.
The next result gives a good lower bound on this number which depends on the
number of maximal ideals in the integral closure of R. We apply this in higher
dimensions in Theorem 3.4.

Theorem 2.5. Let (R,m, k) be a one-dimensional analytically unramified local

domain with infinite residue field k. Set S equal to the integral closure of R. Then

S is a semilocal domain; set t = dimk(S/Jac(S)), where Jac(S) is the Jacobson

radical of S. Let I be an integrally closed ideal of R. Then there exists a chain

of distinct integrally closed ideals, m ⊃ Jn−1 ⊃ ... ⊃ J0 = I where n = ⌊λ(R/I)−1
t

⌋.

Proof. Since R is analytically unramified, S is a module-finite extension of R [SH,
Theorem 9.2.2]. Thus S is a Noetherian semi-local one-dimensional integrally
closed domain, and is therefore a PID. Since k is infinite, we may choose a
minimal reduction x of I. In this case xS = IS (note that every ideal of S is
integrally closed, and IS is certainly in the integral closure of xS, and is thus
equal to xS).



BOUNDING THE FIRST HILBERT COEFFICIENT 5

Choose J 6= I to be an integrally closed ideal containing I such that λ(J/I)
is minimal. To prove the theorem, it suffices to prove that λ(J/I) ≤ t. To see
this, set J1 = J , and define Ji inductively by repeating this step by replacing I
by Ji−1. Note that λ(Ji/I) ≤ it. Provided Ji 6= m (i.e., it < λ(R/I) − 1), we
can continue this chain. It follows that a chain m ⊃ Jn−1 ⊃ ... ⊃ J0 = I exists if

n ≤ λ(R/I)−1
t

.

Let y ∈ R be a minimal reduction of J . We have then that yS = JS. By way
of contradiction, suppose that λ(J/I) ≥ t+1, and choose elements y, z1, ..., zt ∈ J
such that I ⊂ (I, y) ⊂ (I, y, z1) = I1 ⊂ ... ⊂ (I, y, z1, ..., zt) = It is a chain of
distinct ideals. Since all the elements zj are in the integral closure of (I, y), it
follows that yS = I1S = ... = ItS. Write zj = ysj for some sj ∈ S, 1 ≤ j ≤ t. Let
n1, ..., nl be the maximal ideals of S, so that Jac(S) = n1∩ ...∩nl. By assumption,
T = S/(n1∩ ...∩nl) ∼= kt. Let αj be the image of sj in T . As T is a t-dimensional
vector space over k, there is a k-linear relation β + γ1α1 + . . .+ γtαt = 0, where
not all of β, γ1, ..., γt are zero.

Choose r, r1, ..., rt ∈ R such that ri ≡ γi modulo m, and r ≡ β modulo m. If
any γi or β is is 0, we choose the corresponding lift to be 0 as well. Note that
not all of r, r1, ..., rt are in m, so at least one is a unit. By multiplying by y, we
obtain that u = ry + r1z1 + . . .+ rtzt ∈ (n1 ∩ · · · ∩ nl)y ∩R. Therefore uS ( yS.

We claim that (I, u)S ( yS as well. Clearly (I, u)S is contained in yS. To
see they are not equal it suffices to prove they are not equal in some localization
Sni

for some 1 ≤ i ≤ l. But since u ∈ (n1 ∩ · · · ∩ nl)y, we get equality in
every localization if and only if ISni

= ySni
for all i. This forces IS = yS, a

contradiction. Hence (I, u)S ( yS. This shows that the integral closure of (I, u)
is strictly inside J .

We also claim that u /∈ I. This then contradicts the choice of J . We may write
u = ry + r1z1 + . . .+ rjzj where rj 6= 0. By the choice of liftings, it follows that
rj /∈ m and is therefore a unit. If u ∈ I, we obtain that zj ∈ (I, y, z1, ..., zj−1), a
contradiction. �

Definition 2.6. Let (R,m, k) be a one-dimensional analytically unramified local
domain with infinite residue field k. Set S equal to the integral closure of R.
We define the essential rank of R to be t = dimk(S/Jac(S)), where Jac(S) is the
Jacobson radical of S.

We think of the essential rank as the possible number of maximal ideals of S,
even after some finite extension.

We will now use the chain constructed in the above theorem to bound the first
Hilbert coefficient.
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Corollary 2.7. Let (R,m, k) be a one-dimensional analytically unramified Cohen-

Macaulay local domain with infinite residue field k. Let I be an m-primary ideal of

R with integral closure Ī. Let t be the essential rank of R. Then e1(I) ≤
(

e0(I)−n
2

)

where n = ⌊λ(R/Ī)−1
t

⌋.

Proof. By Theorem 2.5, we have a chain of distinct integrally closed ideals, m ⊃

Jn−1 ⊃ ... ⊃ J0 = Ī where n = ⌊λ(R/Ī)−1
t

⌋. Moreover, e0(I) = e0(Ī) [SH, Theorem
11.3.1]. It is then easy to see that e1(I) ≤ e1(Ī). The conclusion now follows
from Theorem 2.1 �

Corollary 2.8. Let (R,m, k) be a one-dimensional analytically unramified Cohen-

Macaulay local domain with algebraically closed residue field k. Let I be an m-

primary ideal of R with integral closure Ī. Let t be the number of distinct maximal

ideals of the integral closure of R. Then e1(I) ≤
(

e0(I)−n
2

)

where n = ⌊λ(R/Ī)−1
t

⌋.

Proof. This follows immediately from Corollary 2.7 by observing that since k is
algebraically closed, the essential rank of R is exactly t. �

Corollary 2.9. Let (R,m, k) be a one-dimensional analytically irreducible Cohen-

Macaulay local domain with algebraically closed residue field k. Let I be an m-

primary ideal of R with integral closure Ī. Then e1(I) ≤
(

e0(I)−λ(R/Ī)+1
2

)

Proof. The completion R̂ of R (with respect to m) is a domain and hence the

number of minimal prime ideals of R̂ is 1. This shows that the number of max-
imal ideals of the integral closure of R is 1 [SH, Proposition 4.3.2]. The desired
inequality follows from Corollary 2.8. �

3. Higher Dimension

In order to extend the above results on bounding the first Hilbert coefficient to
higher dimensions, we use a construction to reduce to the one-dimensional case.
We set up this construction below.

Let (R,m, k) be an analytically unramified Cohen-Macaulay local domain with
an infinite residue field k. Let I be an m-primary ideal of R, with integral closure
Ī. Let d be the dimension of R. Choose a minimal reduction y, x2, ..., xd of I. This
sequence is a regular sequence since R is Cohen-Macaulay. Set T = R[x2

y
, ..., xd

y
].

By [SH, Corollary 5.5.9], T ∼= R[T2, ..., Td]/(yT2−x2, ..., yTd−xd). It follows that
the extension of m to T is a height one prime ideal; set A = TmT . Observe that A
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is a one-dimensional analytically unramified domain with an infinite residue field.
We let S be the integral closure of T . Note that S is also the integral closure of
R[ I

y
]. Set B = W−1S, where W = T \mT . Clearly B is the integral closure of A.

Lemma 3.1. Let (R,m, k) be an analytically unramified Cohen-Macaulay local

domain and assume that dimension of R is at least 2. Let I be an integrally

closed m-primary ideal of R with a minimal reduction (y, x2, ..., xd). Let T ∼=
R[T2, ..., Td]/(yT2−x2, ..., yTd−xd) and A = TmT be as in the above construction.

Set J = IA. Then J is integrally closed, e0(I) = e0(J), e1(I) = e1(J) and

λ(R/I) = λ(A/J).

Proof. We may assume that y, x2, . . . , xd is a superficial sequence for I. The
fact that e0(I) = e0(J) is proved in [K, Theorem 1.1]. We note that e0(I) =
e0((y, x2, ..., xd)). It also follows from the proof of Theorem 1.1 in [K], as on
page 1022, that the sequence yT2 − x2, ..., yTd − xd ∈ R[T2, ..., Td]mR[T2,...,Td] is a
superficial sequence of length d − 1 for IR[T2, ..., Td]mR[T2,...,Td]. It is well-known
that moding out by a superficial sequence of length d − 1 preserves both e0 and
e1, for example see [Ro, pg 1330].

To see that J is integrally closed, let C = R[x2

y
]
m[

x2
y
]. It follows from [I, Lemma

7] that (y, x2, ..., xd)C = (y, x2, ..., xd)C. Since (y, x2, ..., xd) = I, we conclude
IC = IC. Thus IC is integrally closed. Clearly dim C = d− 1 and y, x3, ..., xd is
a system of parameters of C. Moreover, they form a regular sequence. Hence C
is Cohen-Macaulay. It is also clear that C is analytically unramified. If d−1 ≥ 2,
we may apply [I, Lemma 7] to C and the ideal (y, x3, ..., xd)C and conclude as
above that IR[x1

y
, x2

y
]
m[

x1
y
,
x2
y
] is integrally closed. Proceeding this way, we obtain

that J is integrally closed.

Let I ′ = (y, x2, ..., xd) ⊂ R. I ′T = yT . It remains to prove that λ(R/I) =
λ(A/J). However, by [SH, Prop. 8.4.2 (6)], it follows that λ(R/I) = λ(B/IB),
where B = R[T2, . . . , Td]mR[T2,...,Td]. Since the ideal (yT2 − x2, ..., yTd − xd)B is
contained in IB, it follows that λ(B/IB) = λ(A/J). �

Definition 3.2. Let (R,m, k) be an analytically unramified Cohen-Macaulay
local domain with an infinite residue field k. Let y, x1, ..., xd be a regular sequence
in R. We define the essential rank of (y, x2, ..., xd) to be the essential rank of the
one-dimensional ring A constructed above. Let I be an m-primary ideal of R.
Define the essential rank of I to be the minimum of essential ranks of minimal
reductions of I.

Discussion 3.3. It is well-known that the number of maximal ideals in the
integral closure of the ring A in the above definition is exactly the number of
Rees valuations of the ideal I. Suppose that n is one of the these maximal ideals
in the integral closure B of A. Then Bn is a DVR. If for all such n the residue
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field B/n is purely transcendental over the residue field k of R, then the essential
rank of I is exactly the number of Rees valuations of I. However, this property
of being purely transcendental will rarely happen. If I is a simple integrally
closed ideal in a two-dimensional regular local ring, then it has exactly one Rees
valuation, and the residue field of the valuation is purely transcendental over the
residue field of R, provided this latter residue field is algebraically closed. See
[H, Cor. 4.4] for details. Dale Cutkosky has pointed out to us that at least in
dimension three or higher, or in dimension two for non rational singularities, the
residue fields of the Rees valuations are seldom purely transcendental over the
residue field of the base ring. The essential rank is closely related to the degree
function introduced by David Rees [Re].

Theorem 3.4. Let (R,m, k) be an analytically unramified Cohen-Macaulay local

domain with infinite residue field k. Let I be an m-primary ideal of R, with

integral closure Ī. Let t denote the essential rank of I. Then e1(I) ≤
(

e0(I)−n
2

)

where n = ⌊λ(R/Ī)−1
t

⌋.

Proof. If d = dim(R) = 1, then the essential rank of I is the same as the essential
rank of R. So the result follows from Corollary 2.7. Assume that d ≥ 2.

Choose a minimal reduction y, x2, ..., xd of I such that essential rank of I is
equal to the essential rank of (y, x2, .., xd). Let T = R[x2

y
, ..., xd

y
] ∼= R[T2, ..., Td]/(yT2−

x2, ..., yTd − xd) and A = TmT as in Lemma 3.1. Let B be the integral closure of
A. By hypothesis, t = dimk(B/Jac(B)), where Jac(B) is the Jacobson radical of
B.

By Corollary 2.7 applied to IA ⊂ A, we have e1(IA) ≤
(

e0(IA)−n
2

)

where

n = ⌊λ(A/IA)−1
t

⌋. By Lemma 3.1, e0(I) = e0(IA) and e1(I) = e1(IA). Moreover,

IA = ĪA and hence λ(R/Ī) = λ(A/IA). The conclusion follows. �

Corollary 3.5. Let (R,m, k) be an analytically unramified Cohen-Macaulay local

domain with infinite residue field k. Let I be an m-primary ideal of R, with

integral closure Ī. Let t denote the essential rank of I. Suppose that e1(I) >
(

e0(I)−k
2

)

for some integer k. Then t ≥ λ(R/Ī)−1
k

.

Proof. By Theorem 3.4, we have
(

e0(I)−k
2

)

<
(

e0(I)−n
2

)

with n = ⌊λ(R/Ī)−1
t

⌋. Hence

k > n. So k ≥ λ(R/Ī)−1
t

. �

Remark 3.6. Corollary 3.5 can be rephrased to give a lower bound on the essen-
tial rank of an m-primary ideal I in an analytically unramified Cohen-Macaulay
local domain (R,m) with algebraically closed residue field k. Namely, the con-

dition that e1(I) ≥
(

e0(I)−k
2

)

in this Corollary gives the smallest such value of k
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as a root of a quadratic equation in k with coefficients functions of e0(I), e1(I).
Solving this equation gives the following: if t is the essential rank of I, then

t ≥
2(λ(R/Ī)− 1)

2e0(I)− 1−
√

8e1(I) + 1
.

Note that in general, e0(I) is larger than λ(R/Ī), but we are subtracting
√

8e1(I) + 1
in the denominator.

As mentioned in the introduction, Elias [E1] gives several bounds on e1(I).

One of his bounds states that that e1(I) ≤
(

e0(I)−k
2

)

if I ⊂ m
k and the integral

closure of I is not the integral closure of mk. The next corollary recovers this
result, and removes the condition that the integral closure of I is not the integral
closure of mk.

Corollary 3.7. Let (R,m) be a Cohen-Macaulay local ring and let I ⊂ R be an

m−primary ideal. Suppose that I ⊂ m
k for some k ≥ 2. Then e1(I) ≤

(

e0(I)−k
2

)

.

Proof. We proceed by induction on d = dim(R).

If d = 1, the result follows from the Theorem 2.1 provided m
k is not contained

in the integral closure of I as we have the sequence

m ⊃ m
2 ⊃ . . . ⊃ m

k ⊃ Ī

in which every term is distinct.

Suppose that mk ⊂ Ī. Then e0(I) = ke0(m). Since In ⊂ m
nk, we see that

e0(m)(nk)− e1(m) ≤ e0(I)n− e1(I)

for all large n. Cancelling the first terms, it follows that e1(I) ≤ e1(m). If R is
regular, then e1(m) = 0, and therefore e1(I) = 0. Since e0(I) = k in this case, we
are done by the convention that

(

0
l

)

= 1.

Henceforth we assume that e0(m) > 1. By [KM, Cor. 3.3] we know that

e1(m) ≤
(

e0(m)
2

)

. Also note that
(

ke0(m)−k
2

)

=
(

e0(I)−k
2

)

. But
(

e0(m)
2

)

≤
(

ke0(m)−k
2

)

is
equivalent to the inequality e0(m) ≤ k2e0(m) − k2 − k, which holds since k ≥ 2
and e0(m) ≥ 2.

Now let d > 1. Let a ∈ I be a superficial element for I. That is, there exists
an integer c ≥ 0 with (In+1 : a) ∩ Ic = In for all n ≥ c. Since depth(R) = d > 0
and I is m−primary, a is a nonzero divisor of R.

Then e0(I) = e0(I/aR) and e1(I) = e1(I/aR). Further, dim(R/aR) = d − 1.

Clearly, I/aR ⊂ (m/aR)k. We are done by induction. �
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Discussion 3.8. In [RV1] and [RV2], the authors give other bounds on e1. No-
table among these is the bound [RV2, Theorem 3.2] which states that

e1(I) ≤

(

e0(I)

2

)

−

(

b

2

)

− λ(R/I) + 1,

where I is an m-primary ideal in a Cohen-Macaulay local ring of dimension d,
and b = µ(I)− d. See also [E1] for different versions of this bound.

It is a little hard to compare our bound with the above bound in general.
Just to give one example, consider the ring R = k[[t7, t8, t9, t10]] and the ideal
I = (t9, t10, t14, t15). Then I is integrally closed since all the powers of t in R
larger than 9 are in I. A few calculations show that e0(I) = e1(I) = 9, b = 3
and λ(R/I) = 3. So our bound in Theorem 3.4 gives e1(I) ≤ 21, while the
above bound is e1(I) ≤ 31. The above bound might be better when I has many
generators. In the example given, our bound is good simply because the essential
rank is 1.

We thank the referee for a careful reading of the paper and for providing new
references.
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