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Abstract. In this note, we continue the study of Seshadri constants on blow-ups of Hirze-
bruch surfaces initiated in [6]. Now we consider blow-ups of ruled surfaces more generally.
We propose a conjecture for classifying all the negative self-intersection curves on the blow-
up of a ruled surface at very general points, analogous to the (−1)-curves conjecture in P2.
Assuming this conjecture is true, we exhibit an ample line bundle with an irrational Seshadri
constant at a very general point on such a surface.

1. Introduction

Seshadri constants measure local positivity of line bundles on projective varieties and a lot
of research has focussed on questions related to Seshadri constants. One of the fundamental
open questions about Seshadri constants is whether they can be irrational. Some recent work
on this question can be found in [1, 5, 3]. In these works, irrational Seshadri constants are
exhibited on general blow-ups of the complex projective plane P2 assuming certain conjectures
are true.

In this note, we prove analogous results for general blow-ups of ruled surfaces, assuming
certain conjectures are true. In the special case of Hirzebruch surfaces, results in this note
give an answer to [6, Question 4.11].

For a detailed literature and introduction to the problem, see Introduction of [6].
In Section 2, we list some conjectures on ruled surfaces which are natural generalizations

of well-known conjectures on P2 and Hirzebruch surfaces. Conjecture 2.1 and Conjecture 2.3
are new and are equivalent to each other. In Proposition 2.7 we relate these conjectures to
the well-known Nagata-Biran-Szemberg Conjecture (Conjecture 2.5).

In Section 3, we study Seshadri constants. After proving some preliminary results about
them, we prove our main result on irrational Seshadri constants which is stated below. Our
argument is inspired by that of [5]. To generalize that proof, we introduce a notion called
good form for divisors (Definition 3.2) on blow-ups of ruled surfaces which is analogous to
standard form for divisors on blow-ups of P2.

Theorem (Theorem 3.6). Let X be a ruled surface and let Xr be the blow-up of X at r very
general points. Suppose that Conjecture 2.1 is true. Then there exists a pair (r, L) where r
is a positive integer and L is an ample line bundle on Xr such that ε(Xr, L, x) is irrational
for a very general point x ∈ Xr.

In fact, such a pair exists for infinitely many r.

We work over the field of complex numbers. We follow the notation of [6]. For preliminaries
and notation on ruled surfaces, refer to [7, Section V.2].
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2. Some Conjectures

Throughout this note X denotes a ruled surface over a complex non-singular projective
curve Γ with invariant e. Denote the genus of Γ by g.

We fix r very general points p1, . . . , pr ∈ X and consider the blow-up π : Xr → X of X at
p1, . . . , pr. The normalized section Γe and the fiber f form a basis of the free abelian group
Num(X), the Picard group of X modulo numerical equivalence. Their pullbacks in Xr are
denoted by He and Fe, respectively. By abuse of notation, we will use He and Fe to denote
divisor classes as well as specific curves linearly equivalent to these divisor classes.

The canonical divisor classes on X and Xr are denoted by KX and KXr respectively. If

D ⊂ X is a curve then D̃ denotes the strict transform of D on Xr.
We emphasize that by equality of divisors we always mean equality in Num(X).
We now state two conjectures on ruled surfaces. The first one characterizes curves on Xr

which have negative self-intersection. The second gives a lower bound on the self-intersection
of a reduced and irreducible curve in terms of its multiplicities at very general points. We
later show that the two conjectures are equivalent.

Conjecture 2.1. Let X be a ruled surface and let Xr → X be a blow up of X at r very
general points. Let C be a reduced irreducible curve in Xr with C2 < 0. Then one of the
following holds:

(i) C is a (−1)-curve,

(ii) C = C̃, where C is a curve on X with C2 ≤ 0, or

(iii) C = Γ̃e.

Remark 2.2. When X is a Hirzebruch surface, the above conjecture is equivalent to [6,
Conjecture 4.8].

Conjecture 2.3. Let X be a ruled surface and let p1, . . . , pr ∈ X be very general points. Let
C be a reduced irreducible curve in X and define mi = multpiC for 1 ≤ i ≤ r. Assume that

mi > 0 for some i. Then C2 ≥
r∑
i=1

m2
i − 1. Further, for equality, we have the following:

(i) If e 6= 0, the equality holds only if C̃ is a (−1)-curve or C̃ = Γ̃e, where C̃ is the strict
transform of C in Xr.

(ii) If e = 0, the equality holds only if C̃ is a (−1)-curve or C̃ = α̃Γe, where α ≥ 1.

Proposition 2.4. Conjectures 2.1 and 2.3 are equivalent.

Proof. Suppose that Conjecture 2.1 is true. Let C be as mentioned in Conjecture 2.3. Suppose
that

C2 <
r∑
i=1

m2
i − 1. (2.1)

Then C̃2 = C2 −
r∑
i=1

m2
i < −1. This implies that C̃ is a negative self-intersection curve in Xr.

So, by Conjecture 2.1, we have

(i) C2 ≤ 0 or

(ii) C̃ = Γ̃e.

Now, as C passes through at least one pi, by [2],

C2 ≥ 0. (2.2)

We now consider both the cases separately.
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Case (i): C2 ≤ 0.
This, along with (2.2) implies that C2 = 0. So, again by [2], mi ≤ 1 for each i. We also

have

C2 ≥
r∑
i=1

m2
i −m, (2.3)

where m = min{mi | mi 6= 0} (see [2] and [10, Lemma 1]). Note that m = 1. This gives

C2 ≥
r∑
i=1

m2
i − 1,

which contradicts (2.1).

Case (ii): C̃ = Γ̃e. As Γe is smooth, by (2.3), C2 ≥
r∑
i=1

m2
i − 1, which contradicts (2.1).

So we conclude that

C2 ≥
r∑
i=1

m2
i − 1. (2.4)

Now, suppose that the equality holds in (2.4). That is, C2 =
r∑
i=1

m2
i − 1. This means that

C̃2 = −1. So, by Conjecture 2.1, C̃ could be of the types (i), (ii) or (iii). If C̃ is a (−1)-curve

or C̃ = Γ̃e, we are done with the proof, irrespective of the value of e. Suppose that C̃ is
the strict transform of a curve C such that C2 ≤ 0. In this case, by (2.2), C2 = 0. Hence
r∑
i=1

m2
i = 1. So there exists i such that mi = 1 and mj = 0 for j 6= i.

Now, let C = αΓe + βf . Then C2 = 0 implies that

2αβ − α2e = 0

=⇒ α(2β − αe) = 0

=⇒ α = 0 or 2β − αe = 0

=⇒ α = 0 or β = e = 0 or α 6= 0, e 6= 0, 2β = αe.

If α = 0, then C = f , and in this case C̃ is a (−1)-curve irrespective of e. So we are done.
If β = e = 0, then C = αΓe, and we are done. Finally, if α 6= 0, β 6= 0 and 2β = αe, then
C = αΓe + 1

2
αef . Now, by [8, Remark, p122], for such a curve C, | C |= {C}. So such curves

C form a countable collection. As the points p1, . . . , pr are very general, they can be chosen
to be outside all those curves C. This means that we do not have to consider such curves.
This completes the proof of Conjecture 2.3 assuming Conjecture 2.1.

Conversely, suppose that Conjecture 2.3 is true. Let C ⊂ Xr be a reduced irreducible
curve with C2 < 0. We consider different cases separately.

Case (i): If C is an exceptional divisor, then it is a (−1)-curve. So we are done.

Case (ii): If π(C) = C and C does not pass through any of the points p1, . . . , pr, then

0 > C2 = C2. This means that C = C̃ with C2 < 0. So we are done.
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Case (iii): Suppose that π(C) = C passes through at least one pi and that mi = multpiC.
Then, by Conjecture 2.3,

C2 ≥
r∑
i=1

m2
i − 1.

This implies that

C2 = C2 −
r∑
i=1

m2
i ≥ −1.

As C2 < 0, this means C2 = −1. Therefore C2 =
r∑
i=1

m2
i − 1. So, again by Conjecture 2.3, if

e 6= 0, C = C̃ is a (−1)-curve or C = Γe, and if e = 0, C = C̃ is a (−1)-curve or C = αΓe,
where α ≥ 1. In the former case, this implies that C is of types (i) or (iii) as in Conjecture
2.1. In the latter case, C is of type (ii) if C = αΓe where α > 1, and of types (i) and (iii)
otherwise. This completes the proof. �

We now prove that Conjecture 2.1 for any ruled surface implies a statement similar to
the Nagata-Biran-Szemberg conjecture, which is a more general statement for any smooth
projective surface. We first state the Nagata-Biran-Szemberg Conjecture in its original form
(see [9, Section 4.1]).

Conjecture 2.5 (Nagata-Biran-Szemberg Conjecture). Let Y be a smooth projective surface
and q1, . . . , qr be r very general points on Y . Let L be an ample line bundle on Y . Then

ε(Y,L, r) =

√
L2

r
, ∀ r ≥ k20L2, (2.5)

where ε(Y,L, r) is the multi-point Seshadri constant of L at q1, . . . , qr and k0 is the least
positive integer such that | k0L | has a non-rational non-singular curve.

Remark 2.6. By definition of Seshadri constants, (2.5) is equivalent to the inequality

L · C ≥

(
r∑
i=1

ni

)√
L2

r
, ∀ r ≥ k20L2,

where C is any reduced irreducible curve in Y with ni = multqiC.

Proposition 2.7. Let X be a ruled surface and let p1, . . . , pr ∈ X be very general points.
Let L = aΓe + bf be a fixed ample line bundle on X. Suppose that Conjecture 2.1 is true.
Then the equality (2.5) holds for sufficiently large r.

More precisely, for a sufficiently large r, depending only on L, the following holds: for any
reduced irreducible curve C ⊂ X, we have

L · C ≥

(
r∑
i=1

multpiC

)√
L2

r
. (2.6)

Proof. Suppose that Conjecture 2.1 is true and that there exists a curve C = αΓe + βf on X
passing through some pi such that for every positive integer r

L · C <

(
r∑
i=1

ni

)√
L2

r
, (2.7)

where ni = multpiC for 1 ≤ i ≤ r. Since L is ample, we must have ni > 0 for some i.
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By squaring the inequality (2.7) on both sides, then using Cauchy-Schwarz inequality and

the fact that (L · C)2 ≥ L2C2 (Hodge index theorem), we get C2 <
r∑
i=1

n2
i . Now, if C̃ denotes

the strict transform of C in Xr, then since C̃2 = C2 −
r∑
i=1

n2
i , we can conclude that C̃2 < 0 in

Xr. So, by Conjecture 2.1, we have

(i) C̃ is a (−1)-curve, or
(ii) C2 ≤ 0, or

(iii) C = Γe.

We consider each case separately.

Case (i) : Suppose that C̃ is a (−1)-curve. So −KXr · C̃ = 1. This implies the following:

(2He + (e+ 2− 2g)Fe −
r∑
i=1

Ei) · (αHe + βFe −
r∑
i=1

niEi) = 1

=⇒ 2α + 2β − αe− 2αg − 1 =
r∑
i=1

ni

>

√
r

L2
(L · C) by (2.7)

=

√
r

L2
(aΓe + bf) · (αΓe + βf)

=

√
r

L2
(−aαe+ βa+ bα).

From the above inequalities, we conclude that if there is a curve violating (2.6), we must
have the following:√

r

L2
(−aαe+ βa+ bα) < 2α + 2β − αe− 2αg − 1. (2.8)

We now show that if r is chosen to be sufficiently large, (2.8) does not hold. We consider
various sub-cases depending on e.

Sub-Case (a): Suppose that e > 0. Since b > ae, the inequality (2.8) implies√
r

L2
aβ < 2α + 2β − αe− 2αg − 1. (2.9)

Now if β = 0, then by [7, Proposition 2.20, Chapter V], C = Γe, which we handle separately
in Case (iii). So, again by [7, Proposition 2.20, Chapter V], we can assume β > 0. As a > 0,
multiplying both sides of the inequality (2.9) by 1

aβ
, we have√

r

L2
<

2α

aβ
+

2

a
− αe

aβ
− 2αg

aβ
− 1

aβ

< 2 +
α

aβ
(2− e− 2g)

≤ 2 +
1

ae
(2− e− 2g) as β ≥ αe, and so

α

β
≤ 1

e

< 2 + (2− e− 2g)

= 4− e− 2g.
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Hence r < (4 − e − 2g)2L2. So we can conclude that for all r ≥ (4 − e − 2g)2L2 and for all
reduced irreducible curves C, the inequality (2.6) holds.

Sub-Case (b): Suppose that e < 0. As b > ae
2

, the inequality (2.8) implies√
r

L2
(a(β − αe

2
)) < 2α + (2β − αe)− 2αg − 1. (2.10)

Again, if β = 0, then for α = 1, we have C = Γe, which we handle in Case (iii). If β = 0
and α > 1, then the inequality (2.10) reduces to√

r

L2
(−aαe

2
) < 2α− αe− 2αg

=⇒
√

r

L2
<

4

−ae
+ 2

≤ 6.

This implies that for all r ≥ 36L2, we have the desired inequality.
Now suppose that β 6= 0. If α = 0, then C = f . In this case, the inequality (2.10) implies√
r
L2 < 1

a
≤ 1. Therefore, for all r ≥ L2, the inequality (2.6) is true in this case.

Now, if α = 1 and β > 0, (2.10) gives√
r

L2
(a(β − e

2
)) < 2 + (2β − e)− 2g − 1

=⇒
√

r

L2
<

(2− 2g − 1)

a(β − e
2
)

+
2

a
.

As β − e
2
≥ 1, the above inequality gives√

r

L2
<

1

a
+

2

a
≤ 3.

This implies, for all r ≥ 9L2, the inequality (2.6) holds in this case.
If α ≥ 2 and β > αe

2
, we multiply both sides of the inequality (2.10) by 1

a(β−αe
2
)

to get√
r

L2
<

2

a
· 2α

2β − αe
+

2

a
.

Now, if β ≥ 0 and e < −1, we can conclude that 2α
2β−αe ≤ 1. Also, if β ≥ 0 and e = −1, we

can conclude that 2α
2β−αe ≤ 2. Therefore we have√

r

L2
<

4

a
≤ 4, if e < −1

and √
r

L2
<

6

a
≤ 6, if e = −1.

This implies that if e < −1, then for all r ≥ 16L2, the inequality (2.6) holds and if e = −1,
for all r ≥ 36L2, the inequality (2.6) holds.
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Finally, if β < 0, using the fact that β ≥ αe
2

, the inequality (2.8) implies√
r

L2
(α(b− ae

2
)) < (2− e)α

=⇒
√

r

L2
<

2− e
b− ae

2

≤ 4− 2e, (as b− ae

2
≥ 1

2
).

Therefore, for all r ≥ (4− 2e)2L2, we get the inequality (2.6).

Sub-Case (c): Suppose that e = 0. The inequality (2.8) then implies√
r

L2
(aβ + bα) < 2α + 2β − 2αg − 1.

We know α ≥ 0, β ≥ 0. First, assume both α and β are positive. Multiplying the above
inequality by 1

aβ+bα
and excluding the negative terms on the right hand side, we have√

r

L2
<

2α

aβ + bα
+

2β

aβ + bα

<
2α

bα
+

2β

aβ
≤ 4.

This implies that if α 6= 0, β 6= 0, then for all r ≥ 16L2, the inequality (2.6) holds.
If α = 0, then β = 1. In this case, the inequality (2.8) reduces to

√
r
L2 <

1
a
≤ 1. So, in

this case, for all r ≥ L2, we get the desired result. And finally, if β = 0, then√
r

L2
(bα) < 2α− 2αg − 1 < 2α

=⇒
√

r

L2
<

2

b
≤ 2.

So, for all r ≥ 4L2, we get the desired result.

Case (ii): Suppose that C2 ≤ 0. By [2], C2 ≥ m(m− 1), where m is the multiplicity of C at
a very general point. Now since pi are very general, it follows that C2 ≥ 0. So C2 = 0, which
further implies α(2β − αe) = 0. This means α = 0 or 2β − αe = 0.

If α = 0, then C = f , and so C̃ = f̃ is a (−1)-curve, which is handled in Case (i). If
2β − αe = 0, this could mean β = e = 0, in which case C = αΓe, or, this could also mean
β 6= 0, but β = αe

2
.

Now, suppose that β = e = 0 and C = αΓe. Then C2 = α2Γ2
e = 0. So, by (2.3)

r∑
i=1

n2
i − n = 0,
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where n = min{ni | ni 6= 0}. This implies that
r∑
i=1

n2
i = n, which further implies that ni = 1

for some i and nj = 0 for j 6= i. As

L · C = L · αΓe = αb, L2 = 2ab and
r∑
i=1

ni = 1,

the inequality (2.7) becomes αb <
√

2ab
r

. This is equivalent to r < 2ab
α2b2
≤ 2a

b
. So, if we choose

r ≥ 2a
b

, the inequality (2.6) holds.
Suppose that β 6= 0 and β = αe

2
. Now, if e > 0, then β ≥ αe. So β = αe

2
can happen only

when e < 0. But then C = αΓe + (αe
2

)f . So, by the arguments as in Case (ii) of Proposition
2.4, C cannot pass through a very general point.

Case (iii): Suppose that C = Γe. In this case, if e > 0, we have Γ2
e < 0. So the linear system

|C| is equal to {C}. So C will not pass through a very general point pi.
If e = 0, then C2 = Γ2

e = 0. So, by (2.3),
r∑
i=1

n2
i − n = 0,

where n = min{ni | ni 6= 0}. This implies that
r∑
i=1

n2
i = n, which further implies that there

exists exactly one i such that ni 6= 0. In fact, for that particular i, ni = 1 as Γe is smooth.

As L · C = L · Γe = b, L2 = 2ab and
r∑
i=1

ni = 1, the inequality (2.7) becomes b <
√

2ab
r

. This

is equivalent to r < 2ab
b2

= 2a
b

. So if we choose r ≥ 2a
b

, the inequality (2.6) holds.

Finally, if e < 0, by (2.3), we have −e = C2 ≥
r∑
i=1

n2
i − 1. So 1− e ≥

r∑
i=1

n2
i =

r∑
i=1

ni as each

ni ≤ 1. Therefore
L · C
r∑
i=1

ni

=
b− ae
r∑
i=1

ni

≥ b− ae
1− e

.

If we choose r such that b−ae
1−e ≥

√
L2
r

, then the desired inequality holds. In other words, for

all r ≥ ( 1−e
b−ae)

2L2, the inequality (2.6) is true. �

Remark 2.8. Suppose that Conjecture 2.1 is true and let L be an ample line bundle on
X. By Proposition 2.7, there exists r0 such that (2.6) holds for all r ≥ r0. Then for every
positive integer s and r ≥ r0, the inequality (2.6) also holds for sL.

3. Seshadri constants

In this section, we exhibit irrational Seshadri constants on general blow-ups of ruled sur-
faces assuming that Conjecture 2.1 is true.

We start with a preliminary result giving a characterization of ampleness for uniform line
bundles (see the statement of Theorem 3.1 below) on general blow-ups of arbitrary surfaces,
assuming that Conjecture 2.5 is true. For a smooth projective surface, we know by Nakai-
Moishezon criterion that a line bundle L is ample if and only if L2 > 0 and L · C > 0 for
every reduced irreducible curve C. However, the following theorem says that in some specific
cases, the first condition mentioned in the above criterion is itself equivalent to the ampleness
of the line bundle.
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Theorem 3.1. Let Y be a smooth projective surface and q1, . . . , qr be very general points
on Y . Let π : Yr → Y be the blow-up of Y at q1, . . . , qr. Suppose that L is an ample line

bundle on Y such that L·C
r∑
i=1

ni

≥
√
L2
r

, for all reduced irreducible curves C with ni = multqiC

and ni > 0 for at least one i. Then for L̃ = π∗L−m(E1 + · · ·+Er) with m > 0, L̃ is ample

if and only if L̃2 > 0.

Proof. If L̃ is ample, then obviously L̃2 > 0. Conversely, suppose that L̃2 > 0. It suffices to

prove that L̃·C > 0 for all reduced irreducible curves C in Yr. Again, we consider case by case.

Case (i): Suppose that C = Ei for some i. Then L̃ · C = m > 0.

Case (ii): Suppose that π(C) does not pass through any qi. Then L̃ · C = L · π(C) > 0, as
L is ample.

Case (iii): Suppose that C := π(C) passes through some qi. Then C = π∗C−
r∑
i=1

niEi, where

ni = multqiC. Therefore

L̃ · C = L · C −m
r∑
i=1

ni. (3.1)

As L̃2 > 0, we have L2 − rm2 > 0. Therefore√
L2

r
> m. (3.2)

By hypothesis, we have L·C
r∑
i=1

ni

≥
√
L2
r

. This, along with (3.2), implies that

L · C
r∑
i=1

ni

> m or L · C > m
r∑
i=1

ni. (3.3)

Using (3.3) in (3.1), we get L̃ · C > 0. So L̃ is ample. �

As before, let X → Γ be a ruled surface and let Xr be a blow-up of X at r very general
points. Recall that g denotes the genus of Γ.

Suppose that L = aHe + bFe −
r∑
i=1

niEi is a line bundle on Xr. For 1 ≤ i ≤ r, let

H ′i = 2He + (e+ 2− 2g)Fe −
i∑

j=1

Ej.

Then L can be re-written in the form

L = (a− 2n1)He + (b− (e+ 2− 2g)n1)Fe + (n1 − n2)H
′
1 + · · ·+

(nr−1 − nr)H ′r−1 + nrH
′
r.

Definition 3.2. We say a line bundle L = aHe + bFe−
r∑
i=1

niEi on Xr is in good form if the

following conditions hold:

(i) n1 ≥ · · · ≥ nr ≥ 0,
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(ii) a ≥ 2n1,
(iii) b ≥ (e+ 2− 2g)n1 and
(iv) b ≥ ae+ n1, if X = Γ× P1 and b ≥ ae, otherwise.

Proposition 3.3. Suppose that L = aHe + bFe −
r∑
i=1

niEi is a line bundle on Xr such that

it is in good form. Then for any curve C ⊂ Xr such that C is a (−1)-curve or C = Γ̃e,
L · C ≥ 0.

Proof. Suppose that C = Ei for some i. Then L · C = ni ≥ 0. So we assume that C is the

strict transform of some curve C ⊂ X. Let C = αΓe +βf , so that C = αHe +βFe−
r∑
i=1

miEi,

where mi = multpiC. We again consider both the possibilities for C separately.

Case (i): Suppose that C is a (−1)-curve in Xr. In order to show that L · C ≥ 0, it is
sufficient to show that the intersection products of C with He, Fe and all the H ′i are non-
negative (for, since L is in good form, the coefficients of He, Fe and all the H ′i are already
non-negative, by definition). As each mj ≥ 0 and

(H ′i +KXr) · C = (Ei+1 + · · ·+ Er) · C = mi+1 + · · ·+mr ≥ 0,

we have H ′i · C ≥ −KXr · C = 1, as C is a (−1)-curve. Also, Fe · C = α ≥ 0. Finally,
He · C = β − αe. We will now show that β − αe ≥ 0 irrespective of the value of e.

Suppose that e < 0. Then it is easy to see that β ≥ αe
2

. So β − αe ≥ −αe
2
≥ 0.

Suppose that e ≥ 0. If C 6= Γ̃e, f̃ , then β − αe ≥ 0 as C is an irreducible curve. If C = f̃ ,

then β − αe = 1 > 0. We handle the C = Γ̃e in Case (ii).

Case (ii): Suppose that C = Γ̃e. In this case, if e > 0, then since Γ2
e = −e < 0, we have

|Γe| = {Γe}. Now, since the points pi are very general, we can choose them to be outside Γe,
and therefore, L · C = b− ae ≥ 0, by condition (iv) in the definition of good form.

By [4, Lemma 17], h0(OX(Γe)) = 2, if X = Γ × P1 and h0(OX(Γe)) = 1, otherwise. If
e ≤ 0 and X 6= Γ× P1, then since h0(OX(Γe)) = 1, we again have |Γe| = {Γe}, which can be

handled as above. Finally, if X = Γ× P1, then since 0 = Γ2
e ≥

r∑
i=1

m2
i −m, we can conclude

that exactly one mi = 1, all other mj are zero and m = 1. This means, Γe passes through
exactly one pi. So, in this case, L · C = b − ae − ni ≥ 0 by conditions (i) and (iv) in the
definition of a good form. �

Suppose now that x ∈ Xr is a very general point and πx : Blx(Xr) → Xr is the blow-up
of Xr at x with Ex as the exceptional divisor. In this setting, we have the following theorem
which gives a condition for an ample line bundle to have maximal Seshadri constant at a
very general point.

Theorem 3.4. Let X be a ruled surface and Xr be the blow-up of X at r very general points.
Let x ∈ Xr be a very general point and πx : Blx(Xr)→ Xr the blow-up of Xr at x with Ex as

the exceptional divisor. Suppose that L is an ample line bundle on Xr such that π∗xL−
√
L2Ex

is in good form. If Conjecture 2.1 is true, then ε(Xr, L, x) =
√
L2.
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Proof. Suppose that ε = ε(Xr, L, x) <
√
L2. This implies that there exists a reduced irre-

ducible curve C ⊂ Xr such that ε(Xr, L, x) = L·C
multxC

. So we have

0 = (π∗xL− εEx) · C̃ > (π∗xL−
√
L2Ex) · C̃, (3.4)

where C̃ is the strict transform of C. By the Hodge index theorem, C̃2 < 0. So, by Conjecture

2.1, C̃ has three possibilities, namely

(i) C̃ is a (−1)-curve,

(ii) C̃ is such that C2 ≤ 0, where C = π ◦ πx(C̃) = π(C), or

(iii) C̃ = H̃e, which is the strict transform of He on Blx(Xr).

If C̃ is of type (i) or (iii), then since π∗xL −
√
L2Ex is in good form, Proposition 3.3 will

contradict the inequality (3.4), thereby completing the proof. So we are left with proving the

result for the case when C̃ is of type (ii).

We claim that C2 ≥ 0. This is clear if pi ∈ C for some i, since p1, . . . , pr are very general
points. Otherwise, C2 = C2 ≥ 0 since C ⊂ Xr passes through a very general point x ∈ Xr.

Suppose that C2 ≤ 0. So C2 = 0. If C = αΓe + βf , we have α(2β − αe) = 0.

If α = 0, then C = f , and so C̃ will be a (−1)-curve, which falls under type (i).
Now assume that α 6= 0. If β = e = 0, we have C = αΓe. Then we get the required

contradiction since α ≥ 1 and (π∗xL−
√
L2Ex) · H̃e ≥ 0.

If β 6= 0 and β = αe
2

, then such curves form a countable collection. As the points that are
being blown-up are very general, we can choose them outside this countable collection. This
completes the proof. �

Now we show that Conjecture 2.1 guarantees the existence of an ample line bundle satis-
fying the conditions of Theorem 3.4.

Theorem 3.5. Let X be a ruled surface and Xr be the blow-up of X at r very general points.
Let x ∈ Xr be a very general point and πx : Blx(Xr)→ Xr the blow-up of Xr at x with Ex as
the exceptional divisor. Suppose that Conjecture 2.1 is true. Then there exists an ample line
bundle L on Xr such that π∗xL−

√
L2Ex is in good form.

Proof. Let L be any ample line bundle on X. By Remark 2.8 and Theorem 3.1 it is clear

that for large enough r, π∗sL −
r∑
i=1

Ei is ample if s2L2 > r.

Case (1): Suppose that e ≥ 0. In this case, we know that L := Γe + (e + 1)f is an ample
line bundle of X. So, by Proposition 2.7, for each r >> 0, the inequality (2.6) is true. Fix an
r such that the inequality (2.6) is true for all line bundles sL, where s ∈ N (this is possible

by Remark 2.8). Now consider the line bundle L = π∗sL −
r∑
i=1

Ei on Xr. Our goal is to find

a suitable s such that L is ample and π∗xL−
√
L2Ex is in good form.

Observe that L2 = e+ 2. Now, for all s ∈ N such that

(sL)2 = s2(e+ 2) > r, (3.5)

L = π∗sL −
r∑
i=1

Ei is ample.

For the line bundle π∗xL−
√
L2Ex, the conditions (i) to (iv) in the definition of good form

translate to
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(i)
√
L2 ≥ 1,

(ii) s ≥ 2
√
L2,

(iii) se+ s ≥ (e+ 2− 2g)
√
L2, and

(iv) s ≥
√
L2, if X = Γ× P1 and s ≥ 0, otherwise.

Clearly, the conditions (i) and (ii) imply (iii) and (iv). Therefore, it is enough to exhibit L
satisfying conditions (i) and (ii). By definition of L, the condition (i) takes the form

2s(se+ s)− s2e− r ≥ 1

=⇒ s2(e+ 2)− 1 ≥ r. (3.6)

Similarly, condition (ii) takes the form

s2 ≥ 4(s2(e+ 2)− r)
=⇒ 4r ≥ 4s2(e+ 2)− s2. (3.7)

Now, multiplying the inequality (3.6) by 4, we get

4s2(e+ 2)− 4 ≥ 4r. (3.8)

Combining inequalities (3.8) and (3.7), we get

4s2(e+ 2)− 4 ≥ 4r ≥ 4s2(e+ 2)− s2. (3.9)

If r, s satisfy the above inequalities, then they also satisfy (3.5). It is not hard to see that for

all r ≥ (15+8e)2(e+2)− (15+8e)2

4
, we can find an s such that the inequalities (3.9) are satisfied.

Case (2): Suppose that e < 0. In this case, we consider L = Γe + f , which is clearly an
ample line bundle on X. We then proceed similar to Case (1) and get the inequalities

4s2(2− e)− 4 ≥ 4r ≥ 4s2(2− e)− s2. (3.10)

Now, similar to Case (1), for all r ≥ (15− 8e)2(2− e)− (15−8e)2
4

, we can find an s such that

the inequalities (3.10) are satisfied. For such a choice of r, s, the line bundle L = π∗sL−
r∑
i=1

Ei

on Xr is ample and π∗xL−
√
L2Ex is in good form. �

Finally, putting together Theorem 3.4 and Theorem 3.5, we prove the main theorem of
this note.

Theorem 3.6. Let X be a ruled surface and let π : Xr → X be the blow-up of X at r very
general points. Suppose that Conjecture 2.1 is true. Then there exists a pair (r, L) where r
is a positive integer and L is an ample line bundle on Xr such that ε(Xr, L, x) is irrational
for a very general point x ∈ Xr.

In fact, such a pair exists for infinitely many r.

Proof. We first assume e ≥ 0. Let r, s be positive integers for which the inequalities (3.9) are

satisfied. Let L = Γe + (e+ 1)f and L = π∗sL −
r∑
i=1

Ei. Then we have

1 ≤ L2 = s2(e+ 2)− r ≤ s2

4
.

By Theorem 3.4 and Theorem 3.5, ε(Xr, L, x) =
√
L2 for a very general point x ∈ Xr. Now,

it is not hard to find r such that
√
L2 is irrational (in fact, we can find infinitely many such

r). For example, take s ≥ 3 and r = s2(e+ 2)− 2. In this case L2 = 2.
The argument for e < 0 is similar. �
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