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Abstract. We prove new results on single point Seshadri constants for ample line bundles
on hyperelliptic surfaces, motivated by the results in [10]. Given a hyperelliptic surface X
and an ample line bundle L on X, we show that the least Seshadri constant ε(L) of L is a
rational number when X is not of type 6. We also prove new lower bounds for the Seshadri
constant ε(L, 1) of L at a very general point.

1. Introduction

Let X be a smooth complex projective variety and let L be a line bundle on X. The
Seshadri criterion [13, Theorem 7.1] for ampleness says that L is ample if and only if there
exists a real number ε > 0 such that L · C ≥ ε ·multxC, where x ∈ X is an arbitrary point
and C ⊂ X is any irreducible and reduced curve containing x (here multxC denotes the
multiplicity of the curve C at x). In other words, L is ample if and only if the infimum of
the ratios L·C

multxC
, over all points x and all irreducible and reduced curves C passing through

x, is positive. Using this idea Demailly [8] defined the notion of Seshadri constants. Given
X,L as above, the Seshadri constant of L at x ∈ X is defined as:

ε(X,L, x) := inf
x∈C

L · C
multxC

,

where the infimum is taken over all irreducible and reduced curves passing through x. The
Seshadri criterion for ampleness can now be stated simply as follows: L is ample if and only
if ε(X,L, x) > 0 for all x ∈ X.

There are several interesting directions in which Seshadri constants are being studied. See
[5] for a comprehensive survey. One of the important problems in the study of Seshadri
constants is computing them or bounding them. In the present article we focus on this
problem for hyperelliptic surfaces. In general, Seshadri constants are difficult to compute
precisely and a lot of research has focussed on finding good lower and upper bounds.

Let X be a smooth complex projective surface and let L be an ample line bundle on X.
It is easy to see that ε(X,L, x) ≤

√
L2 for all x. One then defines

ε(X,L, 1) := sup
x∈X

ε(X,L, x).
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It is known that ε(X,L, 1) is attained at a very general point x ∈ X; see [17]. This means
that ε(X,L, 1) = ε(X,L, x) for all x outside a countable union of proper Zariski closed sets
in X.

It is also known that if ε(X,L, x) <
√
L2, then ε(X,L, x) = L·C

multxC
for some curve C ([6,

Proposition 1.1]). If ε(X,L, x) <
√
L2, then we say that it is sub-maximal. So sub-maximal

Seshadri constants are always rational, while a maximal Seshadri constant is irrational if L2

is not a square. However, no example is known of a triple (X,L, x) for which ε(X,L, x) /∈ Q.

At the other end of the interval, one defines

ε(X,L) := inf
x∈X

ε(X,L, x).

It is easy to see that ε(X,L) > 0 for ample L. In fact, ε(X,L) ≥ 1
n
, if nL is very

ample. Just like ε(X,L, 1), it is known that ε(X,L) = ε(X,L, x) for some x ∈ X (see [17]).
But unlike ε(X,L, 1), which is attained at very general points, ε(X,L) is attained at special
points. In general, one has the following inequalities for any point x ∈ X:

0 < ε(X,L) ≤ ε(X,L, x) ≤ ε(X,L, 1) ≤
√
L2.

Further, it follows from the previous paragraph that ε(X,L) ∈ Q, except when L2 is not a
square and ε(X,L, x) = ε(X,L) = ε(X,L, 1) =

√
L2 for all x ∈ X.

The above discussion leads to an interesting dynamic in the study of bounds on Seshadri
constants. In many situations, the Seshadri constants of L at very general points may be
expected to be maximal, i.e., equal to

√
L2. On the other hand, the Seshadri constants

at special points (and ε(X,L)) are expected to be sub-maximal and hence rational. This
leads to two contrasting problems. On the one hand, the focus has been to find good lower
bounds for ε(X,L, 1) which are very close to the maximal value

√
L2. The second problem

is to calculate the Seshadri constants at special points and try to prove that ε(X,L) ∈ Q,
for instance. These are very different problems because the first one uses information about
curves passing through very general points on the surface, while the second problem requires
knowledge of specific curves passing through special points on the surface. See also Discussion
3.5.

For a sampling of the many results in this area, see [9, 3, 4, 15, 6, 10]. For a detailed
account, see [5].

In this article, we address both the problems discussed above in the case of hyperelliptic
surfaces. Our primary motivation is [10], where several results on Seshadri constants on
hyperelliptic surfaces are proved.

Hyperelliptic surfaces are minimal surfaces of Kodaira dimension 0 and irregularity 1.
They are realized as finite group quotients of products of two elliptic curves. These surfaces
have been classified and are known to belong to one of seven different types. They all have
Picard rank 2 and the free group Num(X) of divisors modulo numerical equivalence is well-
understood. See Section 2 for more details.

Let X be a hyperelliptic surface and L be an ample line bundle on X. We first consider
the problem of computing ε(X,L) in subsection 3.1. In our main result Theorem 3.3 in this
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subsection, we show that ε(X,L) ∈ Q provided X is not of type 6. This partially answers [19,
Question 1.6], which asks if ε(X,L) is always rational for any pair (X,L). Some affirmative
answers to this question are known ([3, 4, 22, 20, 12]), but it is open in general. In other
results in this subsection, we also explicitly compute ε(X,L) in some cases.

In subsection 3.2, we study the Seshadri constant of L at a very general point x. One
of our main results, Theorem 3.11, says that ε(X,L, 1) ≥ (0.93)

√
L2, or ε(X,L, 1) is equal

to one of two easily computable natural numbers. Let L be of numerical type (a, b). Then
depending on how a and b are related to each other, we either explicitly compute ε(X,L, 1)

or show that ε(X,L, 1) ≥ (0.93)
√
L2. We have such a result for each of the seven types

of hyperelliptic surfaces. There are several results in the literature giving lower bounds for
ε(X,L, 1) when X is an arbitrary surface and L is any ample line bundle. In Remark 3.19,
we compare our bound (0.93)

√
L2 with some existing bounds and note that it is often better.

We work over C, the field of complex numbers. A surface is a two-dimensional smooth
complex projective variety. When the surface X is clear from the context, we denote Seshadri
constants simply by ε(L, x), ε(L), or ε(L, 1).

2. Preliminaries

Definition 2.1. A hyperelliptic surface X is a minimal smooth surface with Kodaira dimen-
sion κ(X) = 0 satisfying h1(X,OX) = 1 and h2(X,OX) = 0.

Hyperelliptic surfaces are also known as bielliptic surfaces (cf. [7, 18]). We recall below
some key properties of hyperelliptic surfaces that we use repeatedly. More details can be
found in [7, 18]. We follow the notation in [18, 10].

There is an alternate characterization of hyperelliptic surfaces. A smooth surface X is
hyperelliptic if and only if X ∼= (A × B)/G, where A and B are elliptic curves and G is a
finite group of translation of A acting on B in such a way that B/G ∼= P1.

We have the following diagram:

X ∼= (A×B)/G

Ψ
��

Φ // A/G

B/G ∼= P1

In the above diagram Φ and Ψ are natural projections. The fibres of Φ are all smooth
and isomorphic to B. The fibres of Ψ are all multiples of smooth elliptic curves, and all but
finitely many of them are smooth and isomorphic to A.

Hyperelliptic surfaces were classified more than hundred years ago by G. Bagnera and
M. de Franchis by analyzing the group G and its action on B. They showed that every
hyperelliptic surface is of one of the seven types listed in the table below; see [7, V1.20].

Every hyperelliptic surface has Picard rank 2. Serrano [18] has described a basis for the
free group Num(X) of divisors modulo numerical equivalence for each of the seven types of
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hyperelliptic surfaces. For each type, Serrano also lists the multiplicities m1, . . . ,ms of the
singular fibres of Ψ, where s is the number of singular fibres.

Theorem 2.2. [18, Theorem 1.4]. Let X ∼= (A × B)/G be a hyperelliptic surface. A basis
for the group Num(X) of divisors modulo numerical equivalence and the multiplicities of the
singular fibres of Ψ : X → B/G in each type are given in the following table.

Type of X G m1,m2, . . . ,ms Basis of Num(X)
1 Z2 2, 2, 2, 2 A/2, B
2 Z2 × Z2 2, 2, 2, 2 A/2, B/2
3 Z4 2, 4, 4 A/4, B
4 Z4 × Z2 2, 4, 4 A/4,B/2
5 Z3 3, 3, 3 A/3, B
6 Z3 × Z3 3, 3, 3 A/3, B/3
7 Z6 2, 3, 6 A/6, B

Let X be a hyperelliptic surface. Let µ = lcm(m1,m2, . . . ,ms) and let γ = |G|. By
Serrano’s theorem, a basis of Num(X) is given by A/µ, (µ/γ)B.

Notation: We say that L is a line bundle of type (a, b) on X if L is numerically equivalent
to a · A/µ+ b · (µ/γ)B. If L is of type (a, b), we write L ≡ (a, b).

We note the following properties of line bundles on X.

(1) A2 = 0, B2 = 0, A ·B = γ.
(2) A divisor b · (µ/γ)B ≡ (0, b) is effective if and only if b(µ/γ) ∈ N ([1, Proposition

5.2]).
(3) A line bundle of type (a, b) is ample if and only if a > 0 and b > 0 ([18, Lemma 1.3]).
(4) If C is an irreducible and reduced curve on X and x ∈ C is a point of multiplicity m,

then C2 ≥ m2 −m.

The inequality in (4) follows from the genus formula, and the facts that the canonical
divisor is numerically trivial on a hyperelliptic surface and that there are no rational curves
on a hyperelliptic surface.

We also use the following important lower bound on self-intersection of a curve C passing
through a very general point. See [9, 24, 15, 2], for instance.

Theorem 2.3. Let X be a hyperelliptic surface and let C be an irreducible and reduced curve
on X. Suppose that C passes through a very general point x ∈ X with multiplicity m ≥ 2.
Then C2 ≥ m2 −m+ 2.

3. Seshadri constants

In this section we first consider ε(L) and then prove our results on ε(L, 1).

3.1. Results about ε(L).
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Theorem 3.1. Let X be a hyperelliptic surface of odd type (i.e., of type 1, 3, 5, or 7). Let
L ≡ (a, b) be an ample line bundle on X. Then ε(L) = min{a, b}.

Proof. We first prove that ε(L, x) ≥ min{a, b} for any x ∈ X. We then show that equality
holds for a suitable x.

Note that since X is a hyperelliptic surface of odd type, µ = γ. Hence B is given by (0, 1)
in Num(X). On the other hand, A is given by (2, 0), (4, 0), (3, 0) and (6, 0) in types 1, 3, 5
and 7, respectively.

Since the fibres of Φ : X → A/G cover X, are smooth and are isomorphic to B, there
is a smooth curve which is numerically equivalent to (0, 1) that contains any given point x.
Similarly, the fibres of Ψ : X → B/G cover X, but they are not all smooth. The smooth
fibres of Ψ are isomorphic to A and singular fibres are multiples of smooth fibres. The number
of singular fibres and their multiplicities are completely determined by the type of X. See
the table in Theorem 2.2.

Now let x ∈ X be an arbitrary point. Let C be a reduced and irreducible curve on X
passing through x with multiplicity m ≥ 1. We consider three possibilities for C. First, it is
a fibre of Φ; second, it is a fibre of Ψ; and third, it is different from the fibres of Φ and Ψ.

If C is a fibre of Φ, then C is smooth and is isomorphic to B and is numerically equivalent
to (0, 1). In this case, m = 1. So the Seshadri ratio is L · C = a.

If C is a fibre of Ψ, then C is not necessarily smooth. Numerically, C is given by (µ, 0).
The multiplicity m is determined by the table in Theorem 2.2. For instance, if X has type
1, then m = 1, or 2. Or, if X has type 3, then m = 1, 2, or 4. In this case, the Seshadri ratio
is L·C

m
= µb

m
.

Now let C be different from the fibres of Ψ and Φ. Let C be represented by (α, β) in
Num(X). We use Bezout’s theorem to bound the values of α and β. Since x is a point of a
smooth fibre (0, 1), we have C · (0, 1) = α ≥ m. On the other hand, the fibre of Ψ containing
x may not be smooth. In this case, Bezout’s theorem gives C · (µ, 0) = µβ ≥ mn, where n is
the multiplicity of the fibre of Ψ containing x. Thus we have L·C

m
= aβ+bα

m
≥ b+ an

µ
.

Since µ ≥ m and n ≥ 1, we conclude that the Seshadri ratio L·C
m
≥ min(a, b, b+ a

µ
) for any

reduced irreducible curve C passing through x. Hence ε(L, x) ≥ min(a, b, b+ a
µ
) ≥ min(a, b).

Now let x be a point on a singular fibre of Ψ with the maximum possible multiplicity.
For instance, if X has type 7, x is any point on a fibre of Ψ of multiplicity 6. Then, in the
notation above, m = n = µ. So ε(L, x) = min(a, b, a + b) = min(a, b). This completes the
proof of the theorem. �

Remark 3.2. The result in Theorem 3.1 is proved for hyperelliptic surfaces of type 1 in
[10, Theorem 3.4] and our proof essentially follows from the arguments given by Farnik. In
fact, Farnik gives a precise value for ε(L, x) for any x and any ample line bundle L on a
hyperelliptic surface of type 1.
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Our next result partially answers [19, Question 1.6] for hyperelliptic surfaces. This question
asks if ε(X,L) is rational for any surface X and any ample line bundle L on X. So far an
affirmative answer to this question has been found in some cases.

The case of quartic surfaces X ⊂ P3 and L = OX(1) is considered in [3, Theorem]. It is
proved that ε(X,L) = 1, 4/3 or 2, depending on certain geometric properties of X. In [4,
Theorem A.1], it is proved that ε(X,L) is rational if X is an abelian surface and L is any
ample line bundle on X. The same result is shown for Enriques surfaces in [22, Theorem
3.3]. Finally, [20, 12] study minimal ruled surfaces. Such surfaces are geometrically ruled
over a smooth curve C and one attaches a certain invariant e ∈ Z to them. If e ≥ 0, then
[20, Theorem 3.27] and [12, Theorem 4.14] show that ε(X,L) ∈ Q for any ample line bundle
L on X.

Theorem 3.3. Let X be a hyperelliptic surface of type different from 6 and let L be an ample
line bundle on X. Then ε(L) is rational.

Proof. Let X be a hyperelliptic surface of type different from 6 and let L ≡ (a, b) be an ample
line bundle on X. If X has odd type then the assertion follows from Theorem 3.1.

X is of type 2: If 2a = b, then L2 = 2ab is a perfect square and ε(L) is a rational number
(for instance, see [19, Corollary 1.8]).

If b < 2a, let x be a point on a singular fibre of Ψ. This fibre is numerically equivalent
to (2, 0) and x is a point of multiplicity 2 on it. So ε(L, x) ≤ (a,b)·(2,0)

2
= b <

√
2ab =

√
L2.

It follows by [19, Lemma 1.7] that ε(L) ∈ Q. On the other hand, if b > 2a, then let x ∈ X
be any point. Then x belongs to a fibre of Φ. Note that all the fibres of Φ are smooth and
are numerically equivalent to (0, 2). So ε(L, x) ≤ (a,b)·(0,2)

1
= 2a <

√
L2. Again it follows that

ε(L) ∈ Q. Note that in fact ε(L, 1) ≤ 2a <
√
L2, if b > 2a.

X is of type 4: As in the above case, if 2a = b, then ε(L) ∈ Q.

If b < 2a, let x be a point on a fibre of Ψ of multiplicity 4. Then ε(L, x) ≤ b <
√
L2. On the

other hand, let b > 2a and let x be any point. Consider the fibre of Φ containing x. This fibre
is smooth and numerically equivalent to (0, 2). Again as before, ε(L, x) ≤ 2a <

√
L2. �

We have the following result for type 6 hyperelliptic surfaces.

Theorem 3.4. Let X be a hyperelliptic surface of type 6 and let L ≡ (a, b) be an ample line
bundle on X such that b is not in the interval (2a, 9a/2). Then ε(L) ∈ Q.

Proof. If b = 2a or b = 9a/2, then L2 = 2ab is a square and ε(L) ∈ Q. So we assume that
either b < 2a or b > 9a/2.

If b < 2a, choose a point x on a singular fibre of Ψ. Then the fibre is represented
numerically by (3, 0) and the multiplicity of the fibre at x is 3. So ε(L, x) ≤ (a,b)·(3,0)

3
= b <√

2ab. If b > 9a/2, then choose any point x and consider a fibre of Φ containing it. We have
ε(L, x) ≤ (a,b)·(0,3)

1
= 3a <

√
2ab. Thus ε(L) ∈ Q. �
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Discussion 3.5. Let X be any surface, and let L be ample on X. If x ∈ X, then an easy
upper bound for ε(L, x) is given by L·C

multxC
, where C is a curve containing x, provided this

ratio is smaller than
√
L2.

Of course, there are no such curves if ε(X,L) =
√
L2. We note below why there are no

obvious examples of such curves if X is a hyperelliptic surface of type 6 and L ≡ (a, b) with
b ∈ (2a, 9a/2).

According to Theorems 3.3 and 3.4, if X is a hyperelliptic surface of type different from
6, or if X has type 6, but L ≡ (a, b) with b /∈ (2a, 9a/2), then L·C

multxC
<
√
L2, for a suitable

x and a suitable fibre C of Ψ or Φ. This in turn allows us to conclude ε(X,L) ∈ Q in these
cases. It is also clear from the proof of Theorem 3.4 that if X has type 6 and L ≡ (a, b) with
b ∈ (2a, 9a/2), then L·C

multxC
≥
√
L2, for any fibre C of Ψ or Φ.

In general, for a surface X and an ample line bundle L on X, in order to conclude that
ε(X,L) ∈ Q, we must establish the existence of a suitable pair x ∈ C for which L·C

multxC
<
√
L2.

IfX is a hyperelliptic surface of type 6 and L ≡ (a, b) with b ∈ (2a, 9a/2), there are no obvious
candidates for such a pair. One needs more specific information about singular curves on
such a surface.

We do however give a lower bound for ε(L, x) for any x in the following proposition.

Proposition 3.6. Let X be a hyperelliptic surface of type 6 and let L ≡ (a, b) be an ample
line bundle with b ∈ (2a, 9a/2). Then ε(L, x) ≥ (0.7)

√
L2 for all x ∈ X.

Proof. If ε(L, x) < (0.7)
√
L2 for some x ∈ X, then ε(L, x) = L·C

multxC
for an irreducible and

reduced curve C ≡ (α, β) containing x. Let m = multxC. If m = 1, then L ·C <
√
L2. Then

the Hodge Index Theorem gives L2.C2 ≤ (L · C)2 < L2. So C2 = 2αβ < 1. Thus α = 0 or
β = 0. Then C is a fibre of Φ or Ψ. But this is not possible, as mentioned in Discussion 3.5.

So assume m ≥ 2. We know C2 ≥ m2 − m (see Section 2). Applying the Hodge Index
Theorem again, we get m2 −m < (0.7)2m2, which gives (0.51)m2 −m < 0. But this is not
possible for m ≥ 2. �

We use the idea in the above proof again in Theorem 3.9.

Proposition 3.7. Let X be a hyperelliptic surface of even type. Let L ≡ (a, b) be an ample
line bundle on X satisfying the following:

(1) b ≤ a if X is of type 2;
(2) 2b ≤ a if X is of type 4 or 6.

Then ε(L) = b.

Proof. First let X be of type 2. If x is a point on a singular fibre of Ψ, then as in the proof
of Theorem 3.3, ε(L, x) ≤ b.

Now let x ∈ X be an arbitrary point. Then x is in a fibre of Φ which is represented
by (0, 2). The Seshadri ratio for this fibre is L·(0,2)

1
= 2a ≥ b. The Seshadri ratio for any
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fibre of Ψ containing x is at least b. On the other hand, let C ≡ (α, β) be an irreducible
and reduced curve, different from the fibres of Ψ or Φ, passing through x with multiplicity
m ≥ 1. Then (as in the proof of Theorem 3.1) Bezout’s theorem gives 2α ≥ m and 2β ≥ m.
So L·C

m
= aβ+bα

m
≥ a+b

2
≥ b. In other words, ε(X,L, x) = inf L·C

multxC
≥ b.

Thus ε(L, x) ≥ b for all x ∈ X and ε(L, x) ≤ b if x is on a singular fibre of Ψ. It follows
that ε(L) = b.

Now let X be of type 4 or 6. As in the above case, if x is on a singular fibre of Ψ, then
ε(L, x) ≤ b (when X is of type 4, we take the point x on a fibre of multiplicity 4).

Now let x ∈ X be arbitrary and let C ≡ (α, β) be an irreducible and reduced curve,
different from the fibres of Ψ or Φ, passing through x with multiplicity m ≥ 1. Then we have
4β ≥ m and 2α ≥ m when X is of type 4 and 3β ≥ m and 3α ≥ m when X is of type 6. In
either case, L·C

m
= aβ+bα

m
≥ b. As above, we conclude that ε(L) = b. �

Proposition 3.8. Let X be a hyperelliptic surface of even type. Let L ≡ (a, b) be an ample
line bundle on X. Then the following statements hold:

(1) Let X be of type 2. If b ≥ 3a, then ε(L, x) = 2a for all x ∈ X.
(2) Let X be of type 4. If b ≥ 7a/2, then ε(L, x) = 2a for all x ∈ X.
(3) Let X be of type 6. If b ≥ 8a, then ε(L, x) = 3a for all x ∈ X.

Proof. The proof is similar to the proof of Proposition 3.7, so we will only give a brief sketch.

First let X be of type 2. Let x ∈ X be any point. Since a fibre of Φ contains x, we have
ε(L, x) ≤ L·(0,2)

1
= 2a. If x is on a singular fibre of Ψ, then the corresponding Seshadri ratio

is L·(2,0)
2

= b ≥ 2a. If x is on a smooth fibre of Ψ, then the corresponding Seshadri ratio is
L·(2,0)

1
= 2b ≥ 2a.

Now let C ≡ (α, β) be an irreducible and reduced curve, different from the fibres of Ψ or
Φ, passing through x with multiplicity m ≥ 1. Bezout’s theorem gives 2α ≥ m and 2β ≥ m.
So L·C

m
= aβ+bα

m
≥ a+b

2
≥ 2a, by hypothesis. So we conclude that ε(L, x) = 2a for all x ∈ X.

The proof for types 4 and 6 is similar. �

3.2. Results about ε(L, 1).

Theorem 3.9. Let X be a hyperelliptic surface and let L be an ample line bundle on X.
Suppose that C ≡ (α, β) is an irreducible, reduced curve with α 6= 0, β 6= 0 and which passes
through a very general point with multiplicity m ≥ 1. Then L·C

m
≥ (0.93)

√
L2.

Proof. First, let m = 1. If L · C < (0.93)
√
L2, then the Hodge Index Theorem gives C2 <

(0.93)2. So C2 = 2αβ = 0, which violates the hypothesis on C.

So assume m ≥ 2. Then we have C2 ≥ m2 − m + 2, by Theorem 2.3. Again, the
Hodge Index Theorem gives m2 −m + 2 < (0.93)2m2. So m satisfies the quadratic relation
(0.13)m2−m+ 2 < 0. But it is easy to see that the quadratic expression (0.13)m2−m+ 2 is
always positive, since it grows as m goes to ∞ or −∞ and its discriminant is 1− 8(0.13) =
−0.04 < 0. �
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Remark 3.10. In the above proof, we used the fact that the quadratic (1− δ2)m2 −m+ 2
is positive for all m ≥ 1, where δ = 0.93. In order to get a better bound in Theorem 3.9,
we have to increase δ. But this forces the above quadratic to become negative for some m.
For instance, if δ = 0.94, then the quadratic (1− 0.942)m2 −m+ 2 is negative for m = 4, 5.
Similarly, for δ = 0.99, the quadratic (1− 0.992)m2 −m+ 2 is negative for 2 ≤ m ≤ 48. As
δ approaches 1, the set {m | (1− δ2)m2 −m+ 2 < 0} keeps increasing.

As δ approaches 1, more precise information about L · C for curves passing through very
general points will be required to prove the inequality L·C

m
≥ δ
√
L2. This may be possible to

do for specific line bundles L.

As a corollary to Theorem 3.9, we obtain our main theorem about ε(L, 1) for ample line
bundles on hyperelliptic surfaces.

Theorem 3.11. Let X be a hyperelliptic surface and let L be an ample line bundle on X. If
ε(L, 1) < (0.93)

√
L2, then ε(L, 1) = min(L · A,L ·B).

Proof. If ε(L, 1) ≥ (0.93)
√
L2, then there is nothing to prove. Otherwise, we have ε(L, 1) =

L·C
m

, where C is a reduced and irreducible curve passing through a very general point with
multiplicity m. Let C ≡ (α, β). By Theorem 3.9, either α = 0 or β = 0. In other words, C
is a fibre of Φ or Ψ. Since x is a very general point, we may assume that it does not lie on
any of the finitely many singular fibres of Ψ. Thus C is smooth and isomorphic to B or A.
Hence ε(L, 1) = min(L · A,L ·B). �

We next consider different types of hyperelliptic surfaces and prove specific results about
ε(L, 1).

Theorem 3.12. Let X be a hyperelliptic surface of type 1. Let L ≡ (a, b) be an ample line
bundle on X. Then ε(L, 1) = min(a, 2b).

Proof. We repeat the proof that is already essentially given in [10, Theorem 3.4]. This proof
illustrates the special property of type 1 hyperelliptic surfaces in the sense that the Seshadri
constants are always computed by the fibres of Φ or Ψ.

Note that when X has type 1, a fibre B of Φ is given by (0, 1) and a smooth fibre A of
Ψ is given by (2, 0). So L · A = 2b and L · B = a. Since a very general point x ∈ X always
belongs to a fibre B and a smooth fibre A, we have ε(L, 1) = ε(L, x) ≤ min(a, 2b).

Now if C ≡ (α, β) is a curve with αβ 6= 0 and it passes through a very general point with
multiplicity m, then Bezout’s theorem gives α ≥ m and β ≥ m/2. Thus L·C

m
= aβ+bα

m
≥

a
2

+ b ≥ min(a, 2b). It follows that ε(L, 1) = min(a, 2b). �

Theorem 3.13. Let X be a hyperelliptic surface of type 2. Let L ≡ (a, b) be an ample line
bundle on X. Then the following statements hold:

(1) If 2 min(a,b)
(0.93)2

≤ max(a, b), then ε(L, 1) = 2 min(a, b).
(2) If 2 min(a,b)

(0.93)2
≥ max(a, b), then ε(L, 1) ≥ (0.93)

√
L2.
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Proof. Note that when X has type 2, a fibre B of Φ is given by (0, 2) and a smooth fibre A
of Ψ is given by (2, 0). So L · A = 2b and L · B = 2a. Since a very general point x ∈ X
always belongs to a fibre B and a smooth fibre A, we have ε(L, 1) = ε(L, x) ≤ min(2a, 2b).
Also, by Theorem 3.11, ε(L, 1) ≥ (0.93)

√
L2 or ε(L, 1) = min(2a, 2b). Note that L2 = 2ab.

We have
2 min(a, b)

(0.93)2
≤ max(a, b)

⇔ 4(min(a, b))2 ≤ (0.93)2(2ab)

⇔ 2 min(a, b) ≤ (0.93)
√

2ab

⇒ ε(L, 1) = min(2a, 2b).

On the other hand,
2 min(a,b)

(0.93)2
≥ max(a, b)⇔ 2 min(a, b) ≥ (0.93)

√
2ab⇒ ε(L, 1) ≥ (0.93)

√
2ab. �

Theorem 3.14. Let X be a hyperelliptic surface of type 3. Let L ≡ (a, b) be an ample line
bundle on X. Then the following statements hold:

(1) If b ≤ a(0.93)2

8
, then ε(L, 1) = 4b.

(2) If a(0.93)2

8
≤ b ≤ a

2(0.93)2
, then ε(L, 1) ≥ (0.93)

√
L2.

(3) If b ≥ a
2(0.93)2

, then ε(L, 1) = a.

Proof. Note that when X has type 3, a fibre B of Φ is given by (0, 1) and a smooth fibre A
of Ψ is given by (4, 0). So L ·A = 4b and L ·B = a. Since a very general point x ∈ X always
belongs to a fibre B and a smooth fibre A, we have ε(L, 1) = ε(L, x) ≤ min(a, 4b). Also, by
Theorem 3.11, ε(L, 1) ≥ (0.93)

√
L2 or ε(L, 1) = min(a, 4b).

If b ≤ a(0.93)2

8
, then clearly 4b ≤ a. Further b ≤ a(0.93)2

8
⇔ 4b ≤ (0.93)

√
2ab. So ε(L, 1) =

4b.

If b ≥ a
2(0.93)2

, then clearly a ≤ 4b. Further b ≥ a
2(0.93)2

⇔ a ≤ (0.93)
√

2ab. So ε(L, 1) = a.

Finally, if a(0.93)2

8
≤ b ≤ a

2(0.93)2
, then a ≥ (0.93)

√
2ab and 4b ≥ (0.93)

√
2ab. So ε(L, 1) ≥

(0.93)
√

2ab. �

Theorem 3.15. Let X be a hyperelliptic surface of type 4. Let L ≡ (a, b) be an ample line
bundle on X. Then the following statements hold:

(1) If b ≤ a(0.93)2

8
, then ε(L, 1) = 4b.

(2) If a(0.93)2

8
≤ b ≤ 2a

(0.93)2
, then ε(L, 1) ≥ (0.93)

√
L2.

(3) If b ≥ 2a
(0.93)2

, then ε(L, 1) = 2a.

Proof. Note that when X has type 4, a fibre B of Φ is given by (0, 2) and a smooth fibre A
of Ψ is given by (4, 0). So L · A = 4b and L · B = 2a. Since a very general point x ∈ X
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always belongs to a fibre B and a smooth fibre A, we have ε(L, 1) = ε(L, x) ≤ min(2a, 4b).
Also, by Theorem 3.11, ε(L, 1) ≥ (0.93)

√
L2 or ε(L, 1) = min(2a, 4b).

If b ≤ a(0.93)2

8
, then clearly 4b ≤ 2a. Further b ≤ a(0.93)2

8
⇔ 4b ≤ (0.93)

√
2ab. So

ε(L, 1) = 4b.

If b ≥ 2a
(0.93)2

, then clearly 2a ≤ 4b. Further b ≥ 2a
(0.93)2

⇔ 2a ≤ (0.93)
√

2ab. So ε(L, 1) = 2a.

Finally, if a(0.93)2

8
≤ b ≤ 2a

(0.93)2
, then 2a ≥ (0.93)

√
2ab and 4b ≥ (0.93)

√
2ab. So ε(L, 1) ≥

(0.93)
√

2ab. �

Theorem 3.16. Let X be a hyperelliptic surface of type 5. Let L ≡ (a, b) be an ample line
bundle on X. Then the following statements hold:

(1) If b ≤ 2a(0.93)2

9
, then ε(L, 1) = 3b.

(2) If 2a(0.93)2

9
≤ b ≤ a

2(0.93)2
, then ε(L, 1) ≥ (0.93)

√
L2.

(3) If b ≥ a
2(0.93)2

, then ε(L, 1) = a.

Proof. Note that when X has type 5, a fibre B of Φ is given by (0, 1) and a smooth fibre A
of Ψ is given by (3, 0). So L ·A = 3b and L ·B = a. Since a very general point x ∈ X always
belongs to a fibre B and a smooth fibre A, we have ε(L, 1) = ε(L, x) ≤ min(a, 3b). Also, by
Theorem 3.11, ε(L, 1) ≥ (0.93)

√
L2 or ε(L, 1) = min(a, 3b).

If b ≤ 2a(0.93)2

9
, then clearly 3b ≤ a. Further b ≤ 2a(0.93)2

9
⇔ 3b ≤ (0.93)

√
2ab. So

ε(L, 1) = 3b.

If b ≥ a
2(0.93)2

, then clearly a ≤ 3b. Further b ≥ a
2(0.93)2

⇔ a ≤ (0.93)
√

2ab. So ε(L, 1) = a.

Finally, if 2a(0.93)2

9
≤ b ≤ a

2(0.93)2
, then a ≥ (0.93)

√
2ab and 3b ≥ (0.93)

√
2ab. So ε(L, 1) ≥

(0.93)
√

2ab. �

Theorem 3.17. Let X be a hyperelliptic surface of type 6. Let L ≡ (a, b) be an ample line
bundle on X. Then the following statements hold:

(1) If 9 min(a,b)
2(0.93)2

≤ max(a, b), then ε(L, 1) = 3 min(a, b).
(2) If 9 min(a,b)

2(0.93)2
≥ max(a, b), then ε(L, 1) ≥ (0.93)

√
L2.

Proof. Note that when X has type 6, a fibre B of Φ is given by (0, 3) and a smooth fibre A
of Ψ is given by (3, 0). So L · A = 3b and L · B = 3a. Since a very general point x ∈ X
always belongs to a fibre B and a smooth fibre A, we have ε(L, 1) = ε(L, x) ≤ min(3a, 3b).
Also, by Theorem 3.11, ε(L, 1) ≥ (0.93)

√
L2 or ε(L, 1) = min(3a, 3b).
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We have
9 min(a, b)

2(0.93)2
≤ max(a, b)

⇔ 9(min(a, b))2 ≤ (0.93)2(2ab)

⇔ 3 min(a, b) ≤ (0.93)
√

2ab

⇒ ε(L, 1) = min(3a, 3b).

On the other hand,
9 min(a,b)
2(0.93)2

≥ max(a, b)⇔ 3 min(a, b) ≥ (0.93)
√

2ab⇒ ε(L, 1) ≥ (0.93)
√

2ab. �

Theorem 3.18. Let X be a hyperelliptic surface of type 7. Let L ≡ (a, b) be an ample line
bundle on X. Then the following statements hold:

(1) If b ≤ a(0.93)2

18
, then ε(L, 1) = 6b.

(2) If a(0.93)2

18
≤ b ≤ a

2(0.93)2
, then ε(L, 1) ≥ (0.93)

√
L2.

(3) If b ≥ a
2(0.93)2

, then ε(L, 1) = a.

Proof. Note that when X has type 7, a fibre B of Φ is given by (0, 1) and a smooth fibre A
of Ψ is given by (6, 0). So L ·A = 6b and L ·B = a. Since a very general point x ∈ X always
belongs to a fibre B and a smooth fibre A, we have ε(L, 1) = ε(L, x) ≤ min(a, 6b). Also, by
Theorem 3.11, ε(L, 1) ≥ (0.93)

√
L2 or ε(L, 1) = min(a, 6b).

If b ≤ a(0.93)2

18
, then clearly 6b ≤ a. Further b ≤ a(0.93)2

18
⇔ 6b ≤ (0.93)

√
2ab. So ε(L, 1) =

6b.

If b ≥ a
2(0.93)2

, then clearly a ≤ 6b. Further b ≥ a
2(0.93)2

⇔ a ≤ (0.93)
√

2ab. So ε(L, 1) = a.

Finally, if a(0.93)2

18
≤ b ≤ a

2(0.93)2
, then a ≥ (0.93)

√
2ab and 6b ≥ (0.93)

√
2ab. So ε(L, 1) ≥

(0.93)
√

2ab. �

Remark 3.19. We compare the result in Theorem 3.11 with some bounds in the literature.
There has been a lot of interest in finding good lower bound for ε(L, 1). See, for instance,
[16, 14, 23, 21, 11].

LetX be any surface and let L be an ample line bundle onX. It is known that ε(X,L, 1) ≥√
7
9

√
L2, or X is fibred by Seshadri curves, or X is a cubic surface in P3 and L = OX(1); see

[21, Corollary 3.3]. Since
√

7
9
is approximately 0.88, the bound we give in Theorem 3.11 is

better.

Another recent result in this direction is contained in [11]. Let d := L2 and suppose that
d is not a square. Then the equation y2−dx2 = 1 is known as Pell’s equation. If x = p, y = q
is a solution to this equation, then [11, Theorem 1.3] shows that ε(L, 1) ≥ p

q
d or ε(X,L, 1) is

contained in a finite set Exc(d; p, q) of rational numbers which are easy to list. Though this
bound is often better than (0.93)

√
L2, the set Exc(d; p, q) is typically large.
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As an example, let X be a hyperelliptic surface of type 6 and let L ≡ (5, 11). Then
d = L2 = 110 and

√
L2 ∼ 10.49. By Theorem 3.17, ε(X,L, 1) ≥ (0.93)

√
110 ∼ 9.75.

On the other hand, (2, 21) is a solution to Pell’s equation y2 − 110x2 = 1. So by [11,
Theorem 1.3], ε(X,L, 1) ≥ 220

21
∼ 10.48, or ε(X,L, 1) ∈ Exc(110; 2, 21). Though 10.48 is a

much better approximation to
√
L2 compared to our 9.75, the exceptional set Exc(110; 2, 21)

is large and it is not easy in general to lower the number of possibilities. In this case,
Exc(110; 2, 21) = {1, 2, . . . , 10} ∪ { r

s
| 1 ≤ r

s
< 220

21
and 2 ≤ s < 212 = 441}.

We also note that our results give precise values of ε(X,L, 1) in many cases. For example,
if X is hyperelliptic of type 6 and L ≡ (5, b) and b ≥ 27, then ε(X,L, 1) = 15, by Theorem
3.17.

Acknowledgement: We thank the referee for carefully reading the paper and suggesting
some changes which improved the exposition.
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