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Finding the best fit line

Training input is
{(x1, y1), (x2, y2), . . . , (xn, yn)}

Each input xi is a vector (x1i , . . . , x
k
i )

Add x0i = 1 by convention

yi is actual output

How far away is our prediction hω(xi ) from
the true answer yi?

Define a cost (loss) function

J(ω) =
1

2

n∑

i=1

(hω(xi )→ yi )
2

Essentially, the sum squared error (SSE)

Divide by n, mean squared error (MSE)
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Minimizing SSE

Write xi as row vector
[
1 x1i · · · xki

]

X =





1 x11 · · · xk1
1 x12 · · · xk2

· · ·
1 x1i · · · xki

· · ·
1 x1n · · · xkn




, y =





y1
y2
· · ·
yi
· · ·
yn





Write ω as column vector, ωT =
[
ω0 ω1 · · · ωk

]

J(ω) =
1

2

n∑

i=1

(hω(xi )→ yi )
2 =

1

2
(Xω → y)T (Xω → y)

Minimize J(ω) — set ↑ω J(ω) = 0
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Minimizing SSE iteratively

Normal equation ω = (XTX )→1XT y is a closed form solution

Computational challenges

Matrix inversion (XTX )→1 is expensive, also need invertibility

Iterative approach, make an initial
guess

Adjust each parameter against
gradient

ωi = ωi → ε
ϑ

ϑωi
J(ω)

Stop when we converge

Gradient descent
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Regression and SSE loss

Training input is {(x1, y1), (x2, y2), . . . , (xn, yn)}
Outputs are noisy samples from a linear function

yi = ωT xi + ϖ

ϖ ↓ N (0,ϱ2) : Gaussian noise, mean 0, fixed variance ϱ2

yi ↓ N (µi ,ϱ2), µi = ωT xi

Model gives us an estimate for ω, so regression learns µi for each xi

How good is our estimate?

Likelihood — probability of current observation given ω

L(ω) =
n∏

i=1

P(yi | xi ; ω)
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Likelihood

How good is our estimate?

Want Maximum Likelihood Estimator (MLE)

Find ω that maximizes L(ω) =
n∏

i=1

P(yi | xi ; ω)

Equivalently, maximize log likelihood

ε(ω) = log

(
n∏

i=1

P(yi | xi ; ω)
)

=
n∑

i=1

log(P(yi | xi ; ω))

Easier to work with summation than product
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Log likelihood and SSE loss

yi = N (µi ,ϑ
2), so P(yi | xi ; ω) =

1→
2ϖϑ2

e→
(yi→µi )

2

2ω2

=
1→
2ϖϑ2

e→
(yi→εT xi )

2

2ω2

Log likelihood

ε(ω) =
n∑

i=1

log

(
1→
2ϖϑ2

e→
(yi→εT xi )

2

2ω2

)

= n log

(
1→
2ϖϑ2

)
↑

n∑

i=1

(yi ↑ ωT xi )2

2ϑ2

To maximize ε(ω) with respect to ω, ignore all terms that do not depend on ω

Optimum value of ω is given by

ω̂MSE = argmax
ω

[
↑

n∑

i=1

(yi ↑ ωT xi )
2

]

= argmin
ω

[
n∑

i=1

(yi ↑ ωT xi )
2

]

Assuming data points are generated by linear function and then perturbed by
Gaussian noise, SSE is the “correct” loss function to maximize likelihood
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The non-linear case

What if the relationship is
not linear?

Here the best possible
explanation seems to be a
quadratic

Non-linear : cross
dependencies

Input xi : (xi1 , xi2)

Quadratic dependencies:

y = ω0 + ω1xi1 + ω2xi2 + ω11x2i1 + ω22x2i2 + ω12xi1xi2
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The non-linear case

Recall how we fit a line
[
1 xi

] [ ω0
ω1

]

For quadratic, add new
coe!cients and expand
parameters

[
1 xi x2i

]



ω0
ω1
ω2




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The non-linear case

Input (xi1 , xi2)

For the general quadratic
case, we add new derived
“features”

xi3 = x2i1
xi4 = x2i2
xi5 = xi1xi2
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The non-linear case

Original input matrix





1 x11 x12
1 x21 x22

· · ·
1 xi1 xi2

· · ·
1 xn1 x2




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The non-linear case

Expanded input matrix





1 x11 x12 x211 x212 x11x12

1 x21 x22 x221 x222 x21x22
· · ·

1 xi1 xi2 x2i1 x2i2 xi1xi2
· · ·

1 xn1 xn2 x2n1 x2n2 xn1xn2





New columns are computed
and filled in from original
inputs
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Exponential parameter blow-up

Cubic derived features

x3i1 , x
3
i2
, x3i3 ,

x2i1xi2 , x
2
i1
xi3 ,

x2i2xi1 , x
2
i2
xi3 ,

x2i3xi1 , x
2
i3
xi2 ,

xi1xi2xi3 ,

x2i1 , x
2
i2
, x2i3 ,

xi1xi2 , xi1xi3 , xi2xi3 ,

xi1 , xi2 , xi3 .
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Higher degree polynomials

How complex a polynomial
should we try?

Aim for degree that
minimizes SSE

As degree increases,
features explode
exponentially
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Overfitting

Need to be careful about
adding higher degree terms

For n training points, can
always fit polynomial of
degree (n ↑ 1) exactly

However, such a curve
would not generalize well to
new data points

Overfitting — model fits
training data well, performs
poorly on unseen data
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Regularization

Need to trade o” SSE
against curve complexity

So far, the only cost has
been SSE

Add a cost related to
parameters (ω0, ω1, . . . , ωk)

Minimize, for instance

1

2

n∑

i=1

(zi ↑ yi )
2 +

k∑

j=1

ω2j
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Regularization

1

2

n∑

i=1

(zi ↑ yi )
2 +

k∑

j=1

ω2j

Second term penalizes curve complexity

Variations on regularization

Ridge regression:
k∑

j=1

ω2j

LASSO regression:
k∑

j=1

|ωj |

Elastic net regression:
k∑

j=1

ϱ1|ωj |+ ϱ2ω
2
j
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The non-polynomial case

Percentage of urban
population as a function of
per capita GDP

Not clear what polynomial
would be reasonable

Take log of GDP

Regression we are
computing is
y = ω0 + ω1 log x1
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The non-polynomial case

Reverse the relationship

Plot per capita GDP in
terms of percentage of
urbanization

Now we take log of the
output variable
log y = ω0 + ω1x1

Log-linear transformation

Earlier was linear-log

Can also use log-log
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