Lecture 7: 4 February, 2025

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January–April 2025

Finding the best fit line

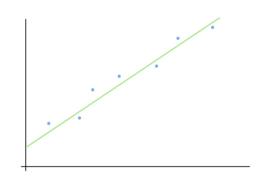
■ Training input is

$$\{(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)\}$$

- Each input x_i is a vector $(x_i^1, ..., x_i^k)$
- Add $x_i^0 = 1$ by convention
- y_i is actual output
- How far away is our prediction $h_{\theta}(x_i)$ from the true answer y_i ?
- Define a cost (loss) function

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (h_{\theta}(x_i) - y_i)^2$$

- Essentially, the sum squared error (SSE)
- Divide by n, mean squared error (MSE)



Minimizing SSE

■ Write x_i as row vector $\begin{bmatrix} 1 & x_i^1 & \cdots & x_i^k \end{bmatrix}$

$$\blacksquare X = \begin{bmatrix}
1 & x_1^1 & \cdots & x_1^k \\ 1 & x_2^1 & \cdots & x_2^k \\ & \ddots & & \\ 1 & x_i^1 & \cdots & x_n^k \\ & \ddots & & \\ 1 & x_n^1 & \cdots & x_n^k
\end{bmatrix}, y = \begin{bmatrix}
y_1 \\ y_2 \\ \vdots \\ y_n \\ y_n
\end{bmatrix}$$

- Write θ as column vector, $\theta^T = \begin{bmatrix} \theta_0 & \theta_1 & \cdots & \theta_k \end{bmatrix}$
- Minimize $J(\theta)$ set $\nabla_{\theta} J(\theta) = 0$

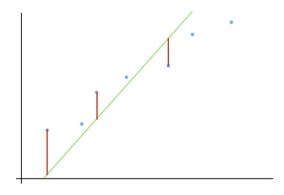
Madhavan Mukund

Minimizing SSE iteratively

- Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution
- Computational challenges
 - Matrix inversion $(X^TX)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess
- Adjust each parameter against gradient

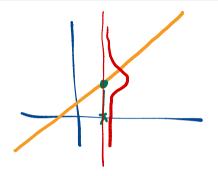
$$\bullet \theta_i = \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

- Stop when we converge
- Gradient descent

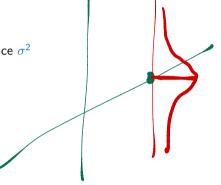


- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Outputs are noisy samples from a linear function

$$y_i = \theta^T x_i + \epsilon$$
"Actual line"



- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Outputs are noisy samples from a linear function
 - $y_i = \theta^T x_i + \epsilon$
 - ullet $\epsilon \sim \mathcal{N}(0, \sigma^2)$: Gaussian noise, mean 0, fixed variance σ^2
 - $\mathbf{y}_i \sim \mathcal{N}(\mu_i, \sigma^2), \ \mu_i = \theta^T x_i$



- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Outputs are noisy samples from a linear function
 - $y_i = \theta^T x_i + \epsilon$
 - ullet $\epsilon \sim \mathcal{N}(0,\sigma^2)$: Gaussian noise, mean 0, fixed variance σ^2
 - $\mathbf{y}_i \sim \mathcal{N}(\mu_i, \sigma^2), \ \mu_i = \theta^T x_i$
- Model gives us an estimate for θ , so regression learns μ_i for each x_i

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Outputs are noisy samples from a linear function
 - $y_i = \theta^T x_i + \epsilon$
 - ullet $\epsilon \sim \mathcal{N}(0,\sigma^2)$: Gaussian noise, mean 0, fixed variance σ^2
 - $\mathbf{y}_i \sim \mathcal{N}(\mu_i, \sigma^2), \ \mu_i = \theta^T x_i$
- Model gives us an estimate for θ , so regression learns μ_i for each x_i
- How good is our estimate?

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Outputs are noisy samples from a linear function
 - $y_i = \theta^T x_i + \epsilon$
 - ullet $\epsilon \sim \mathcal{N}(0,\sigma^2)$: Gaussian noise, mean 0, fixed variance σ^2
 - \blacksquare $y_i \sim \mathcal{N}(\mu_i, \sigma^2)$, $\mu_i = \theta^T x_i$
- Model gives us an estimate for θ , so regression learns μ_i for each x_i
- How good is our estimate?
- Likelihood probability of current observation given θ

$$\mathcal{L}(\theta) = \prod_{i=1}^{n} P(y_i \mid x_i; \theta)$$

N tosses, observe H had

Pu = H -> Rol (observation)
LIKELIHOOD

Among all poss. PH, H maximuzes this probability

Likelihood

■ How good is our estimate?

Likelihood

- How good is our estimate?
- Want Maximum Likelihood Estimator (MLE)
 - Find θ that maximizes $\mathcal{L}(\theta) = \prod_{i=1}^{n} P(y_i \mid x_i; \theta)$

6/19

Likelihood

- How good is our estimate?
- Want Maximum Likelihood Estimator (MLE)
 - Find θ that maximizes $\mathcal{L}(\theta) = \prod_{i=1}^{n} P(y_i \mid x_i; \theta)$
- Equivalently, maximize log likelihood

$$\ell(\theta) = \log \left(\prod_{i=1}^{n} P(y_i \mid x_i; \theta) \right) = \sum_{i=1}^{n} \log(P(y_i \mid x_i; \theta))$$

■ Easier to work with summation than product

•
$$y_i = \mathcal{N}(\mu_i, \sigma^2)$$
, so $P(y_i \mid x_i; \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - \mu_i)^2}{2\sigma}}$

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan-Apr 2025 7 / 19

$$y_i = \mathcal{N}(\mu_i, \sigma^2), \text{ so } P(y_i \mid x_i; \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - \mu_i)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - \theta^T x_i)^2}{2\sigma^2}}$$

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan-Apr 2025 7 / 19

•
$$y_i = \mathcal{N}(\mu_i, \sigma^2)$$
, so $P(y_i \mid x_i; \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - \mu_i)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - \theta^T x_i)^2}{2\sigma^2}}$

Log likelihood

$$\ell(\theta) = \sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - \theta^T x_i)^2}{2\sigma^2}} \right)$$

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan-Apr 2025 7 / 1

•
$$y_i = \mathcal{N}(\mu_i, \sigma^2)$$
, so $P(y_i \mid x_i; \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - \mu_i)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - \theta^T x_i)^2}{2\sigma^2}}$

Log likelihood (assuming natural logarithm)

$$\ell(\theta) = \sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{\sum_{i=1}^{n} \frac{(y_i - \theta^T x_i)^2}{2\sigma^2}} \right) = n \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right) e^{\sum_{i=1}^{n} \frac{(y_i - \theta^T x_i)^2}{2\sigma^2}}$$

DMML Jan-Apr 2025

•
$$y_i = \mathcal{N}(\mu_i, \sigma^2)$$
, so $P(y_i \mid x_i; \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - \mu_i)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - \theta^T x_i)^2}{2\sigma^2}}$

Log likelihood (assuming natural logarithm)

$$\ell(\theta) = \sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - \theta^T x_i)^2}{2\sigma^2}} \right) = n \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right) - \sum_{i=1}^{n} \frac{(y_i - \theta^T x_i)^2}{2\sigma^2}$$

■ To maximize $\ell(\theta)$ with respect to θ , ignore all terms that do not depend on θ

Madhavan Mukund

•
$$y_i = \mathcal{N}(\mu_i, \sigma^2)$$
, so $P(y_i \mid x_i; \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - \mu_i)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - \theta^T x_i)^2}{2\sigma^2}}$

Log likelihood (assuming natural logarithm)

$$\ell(\theta) = \sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - \theta^T x_i)^2}{2\sigma^2}} \right) = n \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right) - \sum_{i=1}^{n} \frac{(y_i - \theta^T x_i)^2}{2\sigma^2}$$

- To maximize $\ell(\theta)$ with respect to θ , ignore all terms that do not depend on θ
- Optimum value of θ is given by

$$\hat{\theta}_{\mathsf{MSE}} = \underset{\theta}{\mathsf{arg max}} \left[\sum_{i=1}^{n} (y_i - \theta^T x_i)^2 \right]$$

•
$$y_i = \mathcal{N}(\mu_i, \sigma^2)$$
, so $P(y_i \mid x_i; \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - \mu_i)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - \theta^T x_i)^2}{2\sigma^2}}$

Log likelihood (assuming natural logarithm)

$$\ell(\theta) = \sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - \theta^T x_i)^2}{2\sigma^2}} \right) = n \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right) - \sum_{i=1}^{n} \frac{(y_i - \theta^T x_i)^2}{2\sigma^2}$$

- To maximize $\ell(\theta)$ with respect to θ , ignore all terms that do not depend on θ
- Optimum value of θ is given by

$$\hat{\theta}_{\mathsf{MSE}} = \arg\max_{\theta} \left[-\sum_{i=1}^{n} (y_i - \theta^T x_i)^2 \right] = \arg\min_{\theta} \left[\sum_{i=1}^{n} (y_i - \theta^T x_i)^2 \right]$$

•
$$y_i = \mathcal{N}(\mu_i, \sigma^2)$$
, so $P(y_i \mid x_i; \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - \mu_i)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - \theta^T x_i)^2}{2\sigma^2}}$

Log likelihood (assuming natural logarithm)

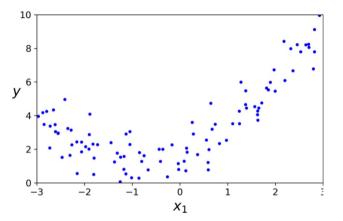
$$\ell(\theta) = \sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - \theta^T x_i)^2}{2\sigma^2}} \right) = n \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right) - \sum_{i=1}^{n} \frac{(y_i - \theta^T x_i)^2}{2\sigma^2}$$

- To maximize $\ell(\theta)$ with respect to θ , ignore all terms that do not depend on θ
- Optimum value of θ is given by

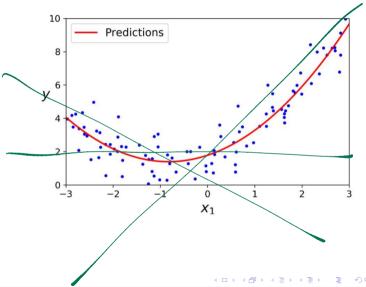
$$\hat{\theta}_{\mathsf{MSE}} = \arg\max_{\theta} \left[-\sum_{i=1}^{n} (y_i - \theta^T x_i)^2 \right] = \arg\min_{\theta} \left[\sum_{i=1}^{n} (y_i - \theta^T x_i)^2 \right]$$

Assuming data points are generated by linear function and then perturbed by Gaussian noise, SSE is the "correct" loss function to maximize likelihood

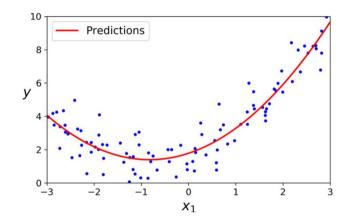
What if the relationship is not linear?



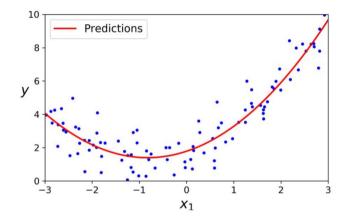
- What if the relationship is not linear?
- Here the best possible explanation seems to be a quadratic



- What if the relationship is not linear?
- Here the best possible explanation seems to be a quadratic
- Non-linear : cross dependencies



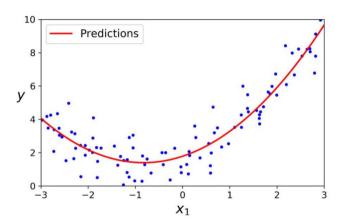
- What if the relationship is not linear?
- Here the best possible explanation seems to be a quadratic
- Non-linear : cross dependencies
- Input $x_i : (x_{i_1}, x_{i_2})$



- What if the relationship is not linear?
- Here the best possible explanation seems to be a quadratic
- Non-linear : cross dependencies
- Input $x_i : (x_{i_1}, x_{i_2})$
- Quadratic dependencies:

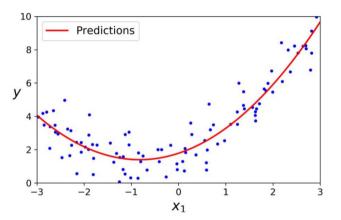
$$y = \theta_0 + \theta_1 x_{i_1} + \theta_2 x_{i_2} + \theta_{11} x_{i_1}^2 + \theta_{22} x_{i_2}^2 + \theta_{12} x_{i_1} x_{i_2}$$

QUADRATK



■ Recall how we fit a line

$$\left[\begin{array}{cc} 1 & x_i \end{array}\right] \left[\begin{array}{c} \theta_0 \\ \theta_1 \end{array}\right]$$

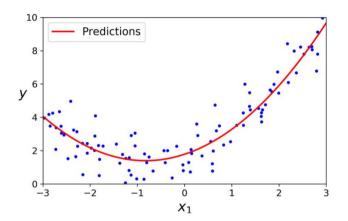


Recall how we fit a line

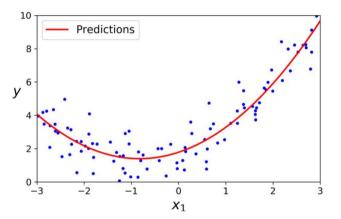
$$\left[\begin{array}{cc} 1 & \mathsf{x}_i \end{array}\right] \left[\begin{array}{c} \theta_0 \\ \theta_1 \end{array}\right]$$

 For quadratic, add new coefficients and expand parameters

$$\left[\begin{array}{ccc} 1 & x_i & x_i^2 \end{array}\right] \left[\begin{array}{c} \theta_0 \\ \theta_1 \\ \theta_2 \end{array}\right]$$



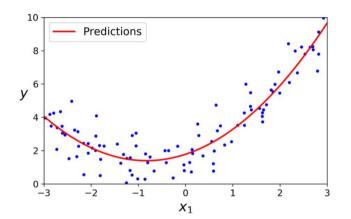
■ Input (x_{i_1}, x_{i_2})



- Input (x_{i_1}, x_{i_2})
- For the general quadratic case, we add new derived "features"

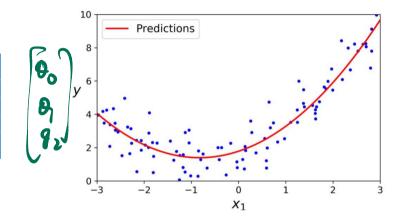
$$x_{i_3} = x_{i_1}^2$$

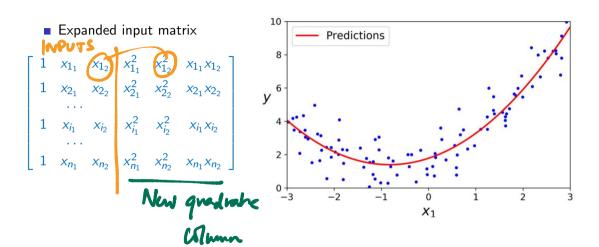
 $x_{i_4} = x_{i_2}^2$
 $x_{i_5} = x_{i_1} x_{i_2}$



Original input matrix

$$\begin{bmatrix} 1 & x_{1_1} & x_{1_2} \\ 1 & x_{2_1} & x_{2_2} \\ & \cdots \\ 1 & x_{i_1} & x_{i_2} \\ & \cdots \\ 1 & x_{n_1} & x_2 \end{bmatrix}$$



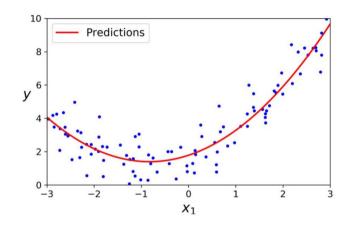


DMML Jan-Apr 2025

■ Expanded input matrix

$$\begin{bmatrix} 1 & x_{1_1} & x_{1_2} & x_{1_1}^2 & x_{1_2}^2 & x_{1_1}x_{1_2} \\ 1 & x_{2_1} & x_{2_2} & x_{2_1}^2 & x_{2_2}^2 & x_{2_1}x_{2_2} \\ & \cdots & & & & & \\ 1 & x_{i_1} & x_{i_2} & x_{i_1}^2 & x_{i_2}^2 & x_{i_1}x_{i_2} \\ & \cdots & & & & \\ 1 & x_{n_1} & x_{n_2} & x_{n_1}^2 & x_{n_2}^2 & x_{n_1}x_{n_2} \end{bmatrix}$$

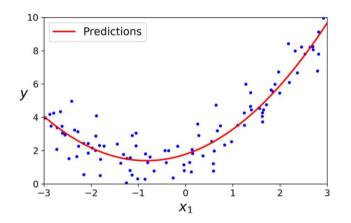
 New columns are computed and filled in from original inputs



Exponential parameter blow-up

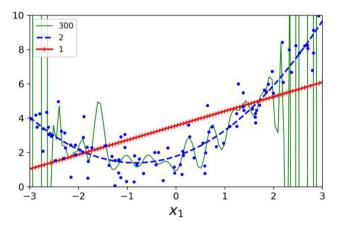
Cubic derived features

$$x_{i_1}^3, x_{i_2}^3, x_{i_3}^3,$$
 $x_{i_1}^2, x_{i_2}^2, x_{i_1}^2, x_{i_3},$
 $x_{i_2}^2, x_{i_1}, x_{i_2}^2, x_{i_3},$
 $x_{i_3}^2, x_{i_1}, x_{i_3}^2, x_{i_2},$
 $x_{i_1}, x_{i_2}^2, x_{i_3},$
 $x_{i_1}^2, x_{i_2}^2, x_{i_3}^2,$
 $x_{i_1}, x_{i_2}, x_{i_1}, x_{i_3}, x_{i_2}, x_{i_3},$
 $x_{i_1}, x_{i_2}, x_{i_3}, x_{i_3},$
 $x_{i_1}, x_{i_2}, x_{i_3},$



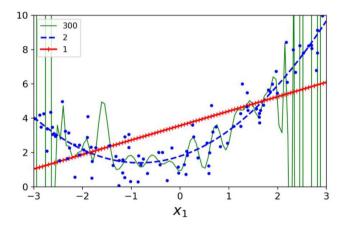
Higher degree polynomials

How complex a polynomial should we try?



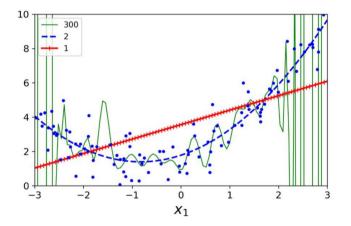
Higher degree polynomials

- How complex a polynomial should we try?
- Aim for degree that minimizes SSE



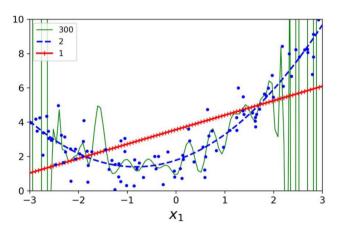
Higher degree polynomials

- How complex a polynomial should we try?
- Aim for degree that minimizes SSE
- As degree increases, features explode exponentially



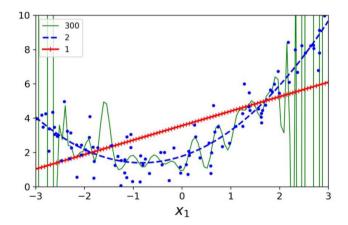
Overfitting

 Need to be careful about adding higher degree terms



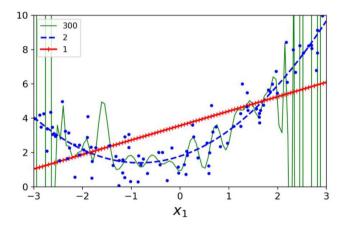
Overfitting

- Need to be careful about adding higher degree terms
- For n training points, can always fit polynomial of degree (n-1) exactly
- However, such a curve would not generalize well to new data points

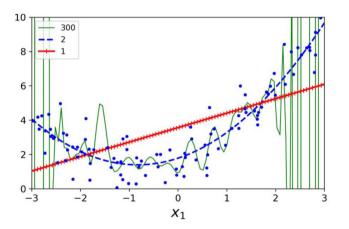


Overfitting

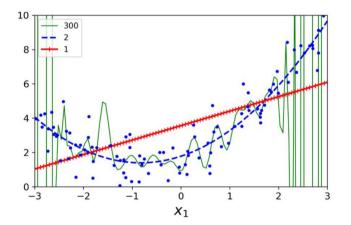
- Need to be careful about adding higher degree terms
- For n training points, can always fit polynomial of degree (n-1) exactly
- However, such a curve would not generalize well to new data points
- Overfitting model fits training data well, performs poorly on unseen data



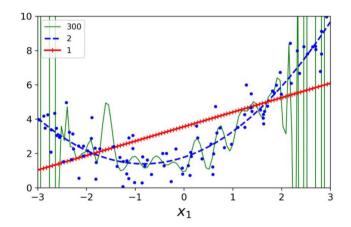
 Need to trade off SSE against curve complexity



- Need to trade off SSE against curve complexity
- So far, the only cost has been SSE

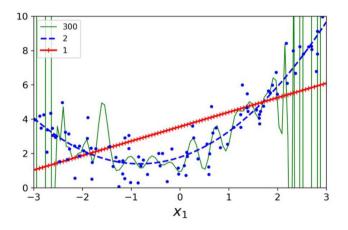


- Need to trade off SSE against curve complexity
- So far, the only cost has been SSE
- Add a cost related to parameters $(\theta_0, \theta_1, \dots, \theta_k)$



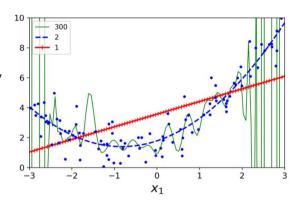
- Need to trade off SSE against curve complexity
- So far, the only cost has been SSF
- Add a cost related to parameters $(\theta_0, \theta_1, \dots, \theta_k)$
- Minimize, for instance

$$\frac{1}{2}\sum_{i=1}^{n}(z_{i}-y_{i})^{2}+\sum_{j=1}^{k}\theta_{j}^{2}$$



$$\frac{1}{2}\sum_{i=1}^{n}(z_{i}-y_{i})^{2}+\sum_{j=1}^{k}\theta_{j}^{2}$$

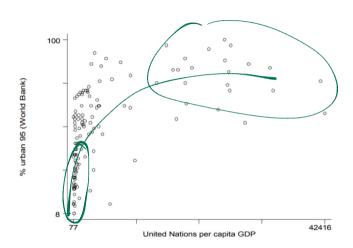
- Second term penalizes curve complexity
- Variations on regularization
 - Ridge regression: $\sum_{j=0}^{\infty} \theta_{j}^{2}$
 - lacktriangle LASSO regression: $\sum | heta_j|$
 - Elastic net regression: $\sum_{j=1}^{n} \lambda_1 |\theta_j| + \lambda_2 \theta_j^2$



$$\lambda' + y^{5} =$$

The non-polynomial case

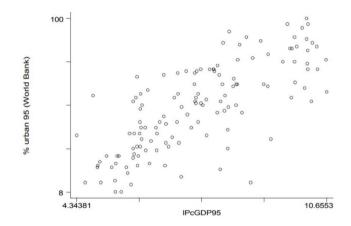
- Percentage of urban population as a function of per capita GDP
- Not clear what polynomial would be reasonable



The non-polynomial case

- Percentage of urban population as a function of per capita GDP
- Not clear what polynomial would be reasonable
- Take log of GDP
- Regression we are computing is

$$y = \theta_0 + \theta_1 \log x_1$$



The non-polynomial case

- Reverse the relationship
- Plot per capita GDP in terms of percentage of urbanization
- Now we take log of the output variable $\log y = \theta_0 + \theta_1 x_1$
- Log-linear transformation
- Earlier was linear-log
- Can also use log-log

