
Lecture 7: 4 February, 2025

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning
January–April 2025

Finding the best fit line

Training input is
{(x1, y1), (x2, y2), . . . , (xn, yn)}

Each input xi is a vector (x1i , . . . , x
k
i)

Add x0i = 1 by convention

yi is actual output

How far away is our prediction hω(xi) from
the true answer yi?

Define a cost (loss) function

J(ω) =
1

2

n∑

i=1

(hω(xi)→ yi)
2

Essentially, the sum squared error (SSE)

Divide by n, mean squared error (MSE)
Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 2 / 19

Minimizing SSE

Write xi as row vector
[
1 x1i · · · xki

]

X =





1 x11 · · · xk1
1 x12 · · · xk2

· · ·
1 x1i · · · xki

· · ·
1 x1n · · · xkn




, y =





y1
y2
· · ·
yi
· · ·
yn





Write ω as column vector, ωT =
[
ω0 ω1 · · · ωk

]

J(ω) =
1

2

n∑

i=1

(hω(xi)→ yi)
2 =

1

2
(Xω → y)T (Xω → y)

Minimize J(ω) — set ↑ω J(ω) = 0

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 3 / 19

Minimizing SSE iteratively

Normal equation ω = (XTX)→1XT y is a closed form solution

Computational challenges

Matrix inversion (XTX)→1 is expensive, also need invertibility

Iterative approach, make an initial
guess

Adjust each parameter against
gradient

ωi = ωi → ε
ϑ

ϑωi
J(ω)

Stop when we converge

Gradient descent

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 4 / 19

Regression and SSE loss

Training input is {(x1, y1), (x2, y2), . . . , (xn, yn)}
Outputs are noisy samples from a linear function

yi = ωT xi + ϖ

ϖ ↓ N (0,ϱ2) : Gaussian noise, mean 0, fixed variance ϱ2

yi ↓ N (µi ,ϱ2), µi = ωT xi

Model gives us an estimate for ω, so regression learns µi for each xi

How good is our estimate?

Likelihood — probability of current observation given ω

L(ω) =
n∏

i=1

P(yi | xi ; ω)

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 5 / 19

·Aimin

Regression and SSE loss

Training input is {(x1, y1), (x2, y2), . . . , (xn, yn)}
Outputs are noisy samples from a linear function

yi = ωT xi + ϖ

ϖ ↓ N (0,ϱ2) : Gaussian noise, mean 0, fixed variance ϱ2

yi ↓ N (µi ,ϱ2), µi = ωT xi

Model gives us an estimate for ω, so regression learns µi for each xi

How good is our estimate?

Likelihood — probability of current observation given ω

L(ω) =
n∏

i=1

P(yi | xi ; ω)

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 5 / 19

:=

Regression and SSE loss

Training input is {(x1, y1), (x2, y2), . . . , (xn, yn)}
Outputs are noisy samples from a linear function

yi = ωT xi + ϖ

ϖ ↓ N (0,ϱ2) : Gaussian noise, mean 0, fixed variance ϱ2

yi ↓ N (µi ,ϱ2), µi = ωT xi

Model gives us an estimate for ω, so regression learns µi for each xi

How good is our estimate?

Likelihood — probability of current observation given ω

L(ω) =
n∏

i=1

P(yi | xi ; ω)

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 5 / 19

Regression and SSE loss

Training input is {(x1, y1), (x2, y2), . . . , (xn, yn)}
Outputs are noisy samples from a linear function

yi = ωT xi + ϖ

ϖ ↓ N (0,ϱ2) : Gaussian noise, mean 0, fixed variance ϱ2

yi ↓ N (µi ,ϱ2), µi = ωT xi

Model gives us an estimate for ω, so regression learns µi for each xi

How good is our estimate?

Likelihood — probability of current observation given ω

L(ω) =
n∏

i=1

P(yi | xi ; ω)

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 5 / 19

Regression and SSE loss

Training input is {(x1, y1), (x2, y2), . . . , (xn, yn)}
Outputs are noisy samples from a linear function

yi = ωT xi + ϖ

ϖ ↓ N (0,ϱ2) : Gaussian noise, mean 0, fixed variance ϱ2

yi ↓ N (µi ,ϱ2), µi = ωT xi

Model gives us an estimate for ω, so regression learns µi for each xi

How good is our estimate?

Likelihood — probability of current observation given ω

L(ω) =
n∏

i=1

P(yi | xi ; ω)

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 5 / 19

-

=

N tosses
,

observeI head

Pn= -> Pobservation)
LIKELIHOOD
-

Among all poss . Ph , to maximizes the
probability

Likelihood

How good is our estimate?

Want Maximum Likelihood Estimator (MLE)

Find ω that maximizes L(ω) =
n∏

i=1

P(yi | xi ; ω)

Equivalently, maximize log likelihood

ε(ω) = log

(
n∏

i=1

P(yi | xi ; ω)
)

=
n∑

i=1

log(P(yi | xi ; ω))

Easier to work with summation than product

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 6 / 19

Likelihood

How good is our estimate?

Want Maximum Likelihood Estimator (MLE)

Find ω that maximizes L(ω) =
n∏

i=1

P(yi | xi ; ω)

Equivalently, maximize log likelihood

ε(ω) = log

(
n∏

i=1

P(yi | xi ; ω)
)

=
n∑

i=1

log(P(yi | xi ; ω))

Easier to work with summation than product

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 6 / 19

Likelihood

How good is our estimate?

Want Maximum Likelihood Estimator (MLE)

Find ω that maximizes L(ω) =
n∏

i=1

P(yi | xi ; ω)

Equivalently, maximize log likelihood

ε(ω) = log

(
n∏

i=1

P(yi | xi ; ω)
)

=
n∑

i=1

log(P(yi | xi ; ω))

Easier to work with summation than product

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 6 / 19

t

Log likelihood and SSE loss

yi = N (µi ,ϑ
2), so P(yi | xi ; ω) =

1→
2ϖϑ2

e→
(yi→µi)

2

2ω2

=
1→
2ϖϑ2

e→
(yi→εT xi)

2

2ω2

Log likelihood

ε(ω) =
n∑

i=1

log

(
1→
2ϖϑ2

e→
(yi→εT xi)

2

2ω2

)

= n log

(
1→
2ϖϑ2

)
↑

n∑

i=1

(yi ↑ ωT xi)2

2ϑ2

To maximize ε(ω) with respect to ω, ignore all terms that do not depend on ω

Optimum value of ω is given by

ω̂MSE = argmax
ω

[
↑

n∑

i=1

(yi ↑ ωT xi)
2

]

= argmin
ω

[
n∑

i=1

(yi ↑ ωT xi)
2

]

Assuming data points are generated by linear function and then perturbed by
Gaussian noise, SSE is the “correct” loss function to maximize likelihood

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 7 / 19

On:0

↓

Ni0

Log likelihood and SSE loss

yi = N (µi ,ϑ
2), so P(yi | xi ; ω) =

1→
2ϖϑ2

e→
(yi→µi)

2

2ω2 =
1→
2ϖϑ2

e→
(yi→εT xi)

2

2ω2

Log likelihood

ε(ω) =
n∑

i=1

log

(
1→
2ϖϑ2

e→
(yi→εT xi)

2

2ω2

)

= n log

(
1→
2ϖϑ2

)
↑

n∑

i=1

(yi ↑ ωT xi)2

2ϑ2

To maximize ε(ω) with respect to ω, ignore all terms that do not depend on ω

Optimum value of ω is given by

ω̂MSE = argmax
ω

[
↑

n∑

i=1

(yi ↑ ωT xi)
2

]

= argmin
ω

[
n∑

i=1

(yi ↑ ωT xi)
2

]

Assuming data points are generated by linear function and then perturbed by
Gaussian noise, SSE is the “correct” loss function to maximize likelihood

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 7 / 19

Log likelihood and SSE loss

yi = N (µi ,ϑ
2), so P(yi | xi ; ω) =

1→
2ϖϑ2

e→
(yi→µi)

2

2ω2 =
1→
2ϖϑ2

e→
(yi→εT xi)

2

2ω2

Log likelihood

ε(ω) =
n∑

i=1

log

(
1→
2ϖϑ2

e→
(yi→εT xi)

2

2ω2

)

= n log

(
1→
2ϖϑ2

)
↑

n∑

i=1

(yi ↑ ωT xi)2

2ϑ2

To maximize ε(ω) with respect to ω, ignore all terms that do not depend on ω

Optimum value of ω is given by

ω̂MSE = argmax
ω

[
↑

n∑

i=1

(yi ↑ ωT xi)
2

]

= argmin
ω

[
n∑

i=1

(yi ↑ ωT xi)
2

]

Assuming data points are generated by linear function and then perturbed by
Gaussian noise, SSE is the “correct” loss function to maximize likelihood

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 7 / 19

Log likelihood and SSE loss

yi = N (µi ,ϑ
2), so P(yi | xi ; ω) =

1→
2ϖϑ2

e→
(yi→µi)

2

2ω2 =
1→
2ϖϑ2

e→
(yi→εT xi)

2

2ω2

Log likelihood (assuming natural logarithm)

ε(ω) =
n∑

i=1

log

(
1→
2ϖϑ2

e→
(yi→εT xi)

2

2ω2

)
= n log

(
1→
2ϖϑ2

)
↑

n∑

i=1

(yi ↑ ωT xi)2

2ϑ2

To maximize ε(ω) with respect to ω, ignore all terms that do not depend on ω

Optimum value of ω is given by

ω̂MSE = argmax
ω

[
↑

n∑

i=1

(yi ↑ ωT xi)
2

]

= argmin
ω

[
n∑

i=1

(yi ↑ ωT xi)
2

]

Assuming data points are generated by linear function and then perturbed by
Gaussian noise, SSE is the “correct” loss function to maximize likelihood

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 7 / 19

o
-

Log likelihood and SSE loss

yi = N (µi ,ϑ
2), so P(yi | xi ; ω) =

1→
2ϖϑ2

e→
(yi→µi)

2

2ω2 =
1→
2ϖϑ2

e→
(yi→εT xi)

2

2ω2

Log likelihood (assuming natural logarithm)

ε(ω) =
n∑

i=1

log

(
1→
2ϖϑ2

e→
(yi→εT xi)

2

2ω2

)
= n log

(
1→
2ϖϑ2

)
↑

n∑

i=1

(yi ↑ ωT xi)2

2ϑ2

To maximize ε(ω) with respect to ω, ignore all terms that do not depend on ω

Optimum value of ω is given by

ω̂MSE = argmax
ω

[
↑

n∑

i=1

(yi ↑ ωT xi)
2

]

= argmin
ω

[
n∑

i=1

(yi ↑ ωT xi)
2

]

Assuming data points are generated by linear function and then perturbed by
Gaussian noise, SSE is the “correct” loss function to maximize likelihood

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 7 / 19

Log likelihood and SSE loss

yi = N (µi ,ϑ
2), so P(yi | xi ; ω) =

1→
2ϖϑ2

e→
(yi→µi)

2

2ω2 =
1→
2ϖϑ2

e→
(yi→εT xi)

2

2ω2

Log likelihood (assuming natural logarithm)

ε(ω) =
n∑

i=1

log

(
1→
2ϖϑ2

e→
(yi→εT xi)

2

2ω2

)
= n log

(
1→
2ϖϑ2

)
↑

n∑

i=1

(yi ↑ ωT xi)2

2ϑ2

To maximize ε(ω) with respect to ω, ignore all terms that do not depend on ω

Optimum value of ω is given by

ω̂MSE = argmax
ω

[
↑

n∑

i=1

(yi ↑ ωT xi)
2

]

= argmin
ω

[
n∑

i=1

(yi ↑ ωT xi)
2

]

Assuming data points are generated by linear function and then perturbed by
Gaussian noise, SSE is the “correct” loss function to maximize likelihood

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 7 / 19

X

-

Log likelihood and SSE loss

yi = N (µi ,ϑ
2), so P(yi | xi ; ω) =

1→
2ϖϑ2

e→
(yi→µi)

2

2ω2 =
1→
2ϖϑ2

e→
(yi→εT xi)

2

2ω2

Log likelihood (assuming natural logarithm)

ε(ω) =
n∑

i=1

log

(
1→
2ϖϑ2

e→
(yi→εT xi)

2

2ω2

)
= n log

(
1→
2ϖϑ2

)
↑

n∑

i=1

(yi ↑ ωT xi)2

2ϑ2

To maximize ε(ω) with respect to ω, ignore all terms that do not depend on ω

Optimum value of ω is given by

ω̂MSE = argmax
ω

[
↑

n∑

i=1

(yi ↑ ωT xi)
2

]
= argmin

ω

[
n∑

i=1

(yi ↑ ωT xi)
2

]

Assuming data points are generated by linear function and then perturbed by
Gaussian noise, SSE is the “correct” loss function to maximize likelihood

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 7 / 19

Log likelihood and SSE loss

yi = N (µi ,ϑ
2), so P(yi | xi ; ω) =

1→
2ϖϑ2

e→
(yi→µi)

2

2ω2 =
1→
2ϖϑ2

e→
(yi→εT xi)

2

2ω2

Log likelihood (assuming natural logarithm)

ε(ω) =
n∑

i=1

log

(
1→
2ϖϑ2

e→
(yi→εT xi)

2

2ω2

)
= n log

(
1→
2ϖϑ2

)
↑

n∑

i=1

(yi ↑ ωT xi)2

2ϑ2

To maximize ε(ω) with respect to ω, ignore all terms that do not depend on ω

Optimum value of ω is given by

ω̂MSE = argmax
ω

[
↑

n∑

i=1

(yi ↑ ωT xi)
2

]
= argmin

ω

[
n∑

i=1

(yi ↑ ωT xi)
2

]

Assuming data points are generated by linear function and then perturbed by
Gaussian noise, SSE is the “correct” loss function to maximize likelihood

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 7 / 19

The non-linear case

What if the relationship is
not linear?

Here the best possible
explanation seems to be a
quadratic

Non-linear : cross
dependencies

Input xi : (xi1 , xi2)

Quadratic dependencies:

y = ω0 + ω1xi1 + ω2xi2 + ω11x2i1 + ω22x2i2 + ω12xi1xi2

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 8 / 19

The non-linear case

What if the relationship is
not linear?

Here the best possible
explanation seems to be a
quadratic

Non-linear : cross
dependencies

Input xi : (xi1 , xi2)

Quadratic dependencies:

y = ω0 + ω1xi1 + ω2xi2 + ω11x2i1 + ω22x2i2 + ω12xi1xi2

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 8 / 19

*

The non-linear case

What if the relationship is
not linear?

Here the best possible
explanation seems to be a
quadratic

Non-linear : cross
dependencies

Input xi : (xi1 , xi2)

Quadratic dependencies:

y = ω0 + ω1xi1 + ω2xi2 + ω11x2i1 + ω22x2i2 + ω12xi1xi2

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 8 / 19

The non-linear case

What if the relationship is
not linear?

Here the best possible
explanation seems to be a
quadratic

Non-linear : cross
dependencies

Input xi : (xi1 , xi2)

Quadratic dependencies:

y = ω0 + ω1xi1 + ω2xi2 + ω11x2i1 + ω22x2i2 + ω12xi1xi2

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 8 / 19

The non-linear case

What if the relationship is
not linear?

Here the best possible
explanation seems to be a
quadratic

Non-linear : cross
dependencies

Input xi : (xi1 , xi2)

Quadratic dependencies:

y = ω0 + ω1xi1 + ω2xi2 + ω11x2i1 + ω22x2i2 + ω12xi1xi2

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 8 / 19

FearAdratic

The non-linear case

Recall how we fit a line
[
1 xi

] [ω0
ω1

]

For quadratic, add new
coe!cients and expand
parameters

[
1 xi x2i

]



ω0
ω1
ω2





Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 9 / 19

The non-linear case

Recall how we fit a line
[
1 xi

] [ω0
ω1

]

For quadratic, add new
coe!cients and expand
parameters

[
1 xi x2i

]



ω0
ω1
ω2





Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 9 / 19

The non-linear case

Input (xi1 , xi2)

For the general quadratic
case, we add new derived
“features”

xi3 = x2i1
xi4 = x2i2
xi5 = xi1xi2

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 10 / 19

The non-linear case

Input (xi1 , xi2)

For the general quadratic
case, we add new derived
“features”

xi3 = x2i1
xi4 = x2i2
xi5 = xi1xi2

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 10 / 19

The non-linear case

Original input matrix





1 x11 x12
1 x21 x22

· · ·
1 xi1 xi2

· · ·
1 xn1 x2





Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 11 / 19

(

The non-linear case

Expanded input matrix





1 x11 x12 x211 x212 x11x12

1 x21 x22 x221 x222 x21x22
· · ·

1 xi1 xi2 x2i1 x2i2 xi1xi2
· · ·

1 xn1 xn2 x2n1 x2n2 xn1xn2





New columns are computed
and filled in from original
inputs

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 12 / 19

wours

t
grea

The non-linear case

Expanded input matrix





1 x11 x12 x211 x212 x11x12

1 x21 x22 x221 x222 x21x22
· · ·

1 xi1 xi2 x2i1 x2i2 xi1xi2
· · ·

1 xn1 xn2 x2n1 x2n2 xn1xn2





New columns are computed
and filled in from original
inputs

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 12 / 19

Exponential parameter blow-up

Cubic derived features

x3i1 , x
3
i2
, x3i3 ,

x2i1xi2 , x
2
i1
xi3 ,

x2i2xi1 , x
2
i2
xi3 ,

x2i3xi1 , x
2
i3
xi2 ,

xi1xi2xi3 ,

x2i1 , x
2
i2
, x2i3 ,

xi1xi2 , xi1xi3 , xi2xi3 ,

xi1 , xi2 , xi3 .

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 13 / 19

Higher degree polynomials

How complex a polynomial
should we try?

Aim for degree that
minimizes SSE

As degree increases,
features explode
exponentially

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 14 / 19

Higher degree polynomials

How complex a polynomial
should we try?

Aim for degree that
minimizes SSE

As degree increases,
features explode
exponentially

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 14 / 19

Higher degree polynomials

How complex a polynomial
should we try?

Aim for degree that
minimizes SSE

As degree increases,
features explode
exponentially

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 14 / 19

Overfitting

Need to be careful about
adding higher degree terms

For n training points, can
always fit polynomial of
degree (n ↑ 1) exactly

However, such a curve
would not generalize well to
new data points

Overfitting — model fits
training data well, performs
poorly on unseen data

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 15 / 19

Overfitting

Need to be careful about
adding higher degree terms

For n training points, can
always fit polynomial of
degree (n ↑ 1) exactly

However, such a curve
would not generalize well to
new data points

Overfitting — model fits
training data well, performs
poorly on unseen data

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 15 / 19

Overfitting

Need to be careful about
adding higher degree terms

For n training points, can
always fit polynomial of
degree (n ↑ 1) exactly

However, such a curve
would not generalize well to
new data points

Overfitting — model fits
training data well, performs
poorly on unseen data

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 15 / 19

Regularization

Need to trade o” SSE
against curve complexity

So far, the only cost has
been SSE

Add a cost related to
parameters (ω0, ω1, . . . , ωk)

Minimize, for instance

1

2

n∑

i=1

(zi ↑ yi)
2 +

k∑

j=1

ω2j

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 16 / 19

Regularization

Need to trade o” SSE
against curve complexity

So far, the only cost has
been SSE

Add a cost related to
parameters (ω0, ω1, . . . , ωk)

Minimize, for instance

1

2

n∑

i=1

(zi ↑ yi)
2 +

k∑

j=1

ω2j

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 16 / 19

Regularization

Need to trade o” SSE
against curve complexity

So far, the only cost has
been SSE

Add a cost related to
parameters (ω0, ω1, . . . , ωk)

Minimize, for instance

1

2

n∑

i=1

(zi ↑ yi)
2 +

k∑

j=1

ω2j

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 16 / 19

Regularization

Need to trade o” SSE
against curve complexity

So far, the only cost has
been SSE

Add a cost related to
parameters (ω0, ω1, . . . , ωk)

Minimize, for instance

1

2

n∑

i=1

(zi ↑ yi)
2 +

k∑

j=1

ω2j

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 16 / 19

Regularization

1

2

n∑

i=1

(zi ↑ yi)
2 +

k∑

j=1

ω2j

Second term penalizes curve complexity

Variations on regularization

Ridge regression:
k∑

j=1

ω2j

LASSO regression:
k∑

j=1

|ωj |

Elastic net regression:
k∑

j=1

ϱ1|ωj |+ ϱ2ω
2
j

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 17 / 19

x ,+xz= 1

The non-polynomial case

Percentage of urban
population as a function of
per capita GDP

Not clear what polynomial
would be reasonable

Take log of GDP

Regression we are
computing is
y = ω0 + ω1 log x1

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 18 / 19

↳
o

The non-polynomial case

Percentage of urban
population as a function of
per capita GDP

Not clear what polynomial
would be reasonable

Take log of GDP

Regression we are
computing is
y = ω0 + ω1 log x1

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 18 / 19

The non-polynomial case

Reverse the relationship

Plot per capita GDP in
terms of percentage of
urbanization

Now we take log of the
output variable
log y = ω0 + ω1x1

Log-linear transformation

Earlier was linear-log

Can also use log-log

Madhavan Mukund Lecture 7: 4 February, 2025 DMML Jan–Apr 2025 19 / 19

