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Decision trees for regression

Can we use decision trees
for regression?

Partition the input into
intervals

For each interval, predict
mean value of output,
instead of majority class

Regression tree
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Decision trees for regression

Regression tree for noisy
quadratic centered around
x1 = 0.5

For each node, the output is
the mean y value for the
current set of points

Instead of impurity, use
mean squared error (MSE)
as cost function

Choose a split that
minimizes MSE
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Regression trees

Approximation using regression tree
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Regression trees

Extend the regression tree
one more level to get a finer
approximation

Set a threshold on MSE to
decide when to stop

Classification and
Regression Trees (CART)

Combined algorithm for
both use cases

Programming libraries
typically provide CART
implementation
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Overfitting

Overfitting: model too specific
to training data, does not
generalize well

Regression — use regularization
to penalize model complexity

What about decision trees?

Deep, complex trees ask too
many questions

Prefer shallow, simple trees
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Tree pruning

Remove leaves to improve generalization

Top-down pruning

Fix a maximum depth when building the tree

How to decide the depth in advance?

Bottom-up pruning

Build the full tree

Remove a leaf if the reduced tree generalizes better

How do we measure this?
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Tree pruning

Overfitted tree
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Tree pruning

Overfitted tree

Pruned tree
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Bottom up tree pruning

Build the full tree, remove leaf if the reduced tree generalizes better

How do we measure this?

Check performance on a test set

Use sampling theory [Quinlan]

Given n coin tosses with h heads, estimate probability of heads as h/n

Estimate comes with a confidence interval: h/n ± ω

As n increases, ω reduces: 7 heads out of 10 vs 70 out of 100 vs 700 out of 1000

Impure node, majority prediction, compute confidence interval

Pruning leaves creates a larger impure sample one level above

Does the confidence interval decrease (improve)?
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Example: Predict party from voting pattern [Quinlan]

Predict party a!liation of US legislators
based on voting pattern

Read the tree from left to right

After pruning, drastically simplified tree

Quinlan’s comment on his use of sampling
theory for post-pruning

Now, this description does violence to
statistical notions of sampling and
confidence limits, so the reasoning should
be taken with a large grain of salt. Like
many heuristics with questionable
underpinnings, however, the estimates it
produces seem frequently to yield
acceptable results.
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Regression for classification

Regression line

Set a threshold

Classifier

Output below threshold : 0 (No)

Output above threshold : 1 (Yes)

Classifier output is a step function
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Smoothen the step

Sigmoid function

ε(z) =
1

1 + e→z

Input z is output of our
regression

ε(z) =
1

1 + e→(ω0+ω1x1+···+ωkxk )

Adjust parameters to fix
horizontal position and steepness
of step
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Logistic regression

Compute the coe!cients?

Solve by gradient descent

Need derivatives to exist

Hence smooth sigmoid, not
step function

ε→(z) = ε(z)(1→ ε(z))

Need a cost function to minimize
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Loss function for logistic regression

Goal is to maximize log likelihood

Let hω(xi ) = ε(zi ).

So, P(yi = 1 | xi ; ϑ) = hω(xi ),
P(yi = 0 | xi ; ϑ) = 1→ hω(xi )

Combine as P(yi | xi ; ϑ) = hω(xi )yi · (1→ hω(xi ))1→yi

Likelihood: L(ϑ) =
n∏

i=1

hω(xi )
yi · (1→ hω(xi ))

1→yi

Log-likelihood: ϖ(ϑ) =
n∑

i=1

yi log hω(xi ) + (1→ yi ) log(1→ hω(xi ))

Minimize cross entropy: →
n∑

i=1

yi log hω(xi ) + (1→ yi ) log(1→ hω(xi ))
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MSE for logistic regression and gradient descent

Suppose we take mean sum-squared error as the loss function.

Consider two inputs x = (x1, x2)

C =
1

n

n∑

i=1

(yi → ε(zi ))
2, where zi = ϑ0 + ϑ1xi1 + ϑ2xi2

For gradient descent, we compute
ϱC

ϱϑ1
,
ϱC

ϱϑ2
,
ϱC

ϱϑ0
For j = 1, 2,

ϱC

ϱϑj
=

2

n

n∑

i=1

(yi → ε(zi )) ·→
ϱε(zi )

ϱϑj
=

2

n

n∑

i=1

(ε(zi )→ yi )
ϱε(zi )

ϱzi

ϱzi
ϱϑj

=
2

n

n∑

i=1

(ε(zi )→ yi )ε
→(zi )xij

ϱC

ϱϑ0
=

2

n

n∑

i=1

(ε(zi )→ yi )
ϱε(zi )

ϱzi

ϱzi
ϱϑ0

=
2

n

n∑

i=1

(ε(zi )→ yi )ε
→(zi )
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For gradient descent, we compute
ϱC

ϱϑ1
,
ϱC

ϱϑ2
,
ϱC

ϱϑ0
For j = 1, 2,

ϱC

ϱϑj
=

2

n

n∑

i=1

(yi → ε(zi )) ·→
ϱε(zi )

ϱϑj
=

2

n

n∑

i=1

(ε(zi )→ yi )
ϱε(zi )

ϱzi

ϱzi
ϱϑj

=
2

n

n∑

i=1

(ε(zi )→ yi )ε
→(zi )xij

ϱC

ϱϑ0
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2

n

n∑

i=1

(ε(zi )→ yi )
ϱε(zi )

ϱzi

ϱzi
ϱϑ0

=
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(ε(zi )→ yi )ε
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MSE for logistic regression and gradient descent . . .

For j = 1, 2,
ϱC

ϱϑj
=

2

n

n∑

i=1

(ε(zi )→ yi )ε
↑(zi )x

i
j , and

ϱC

ϱϑ0
=

2

n

n∑

i=1

(ε(zi )→ yi )ε
↑(zi )

Each term in
ϱC

ϱϑ1
,
ϱC

ϱϑ2
,
ϱC

ϱϑ0
is proportional to ε↑(zi )

Ideally, gradient descent should take large steps when ε(z)→ y is large

ε(z) is flat at both extremes

If ε(z) is completely wrong,
ε(z) ↑ (1→ y), we still have
ε↑(z) ↑ 0

Learning is slow even when current
model is far from optimal
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Cross entropy and gradient descent

C = →[y ln(ε(z)) + (1→ y) ln(1→ ε(z))]

ϱC

ϱϑj
=

ϱC

ϱε

ϱε

ϱϑj
= →

[
y

ε(z)
→ 1→ y

1→ ε(z)

]
ϱε

ϱϑj

= →
[

y

ε(z)
→ 1→ y

1→ ε(z)

]
ϱε

ϱz

ϱz

ϱϑj

= →
[

y

ε(z)
→ 1→ y

1→ ε(z)

]
ε↑(z)xj

= →
[
y(1→ ε(z))→ (1→ y)ε(z)

ε(z)(1→ ε(z))

]
ε↑(z)xj

Madhavan Mukund Lecture 8: 6 February, 2025 DMML Jan–Apr 2025 17 / 18

#



Cross entropy and gradient descent

C = →[y ln(ε(z)) + (1→ y) ln(1→ ε(z))]

ϱC

ϱϑj
=

ϱC

ϱε

ϱε

ϱϑj

= →
[

y

ε(z)
→ 1→ y

1→ ε(z)

]
ϱε

ϱϑj

= →
[

y

ε(z)
→ 1→ y

1→ ε(z)

]
ϱε

ϱz

ϱz

ϱϑj

= →
[

y

ε(z)
→ 1→ y

1→ ε(z)

]
ε↑(z)xj

= →
[
y(1→ ε(z))→ (1→ y)ε(z)

ε(z)(1→ ε(z))

]
ε↑(z)xj

Madhavan Mukund Lecture 8: 6 February, 2025 DMML Jan–Apr 2025 17 / 18



Cross entropy and gradient descent

C = →[y ln(ε(z)) + (1→ y) ln(1→ ε(z))]

ϱC

ϱϑj
=

ϱC

ϱε

ϱε

ϱϑj
= →

[
y

ε(z)
→ 1→ y

1→ ε(z)

]
ϱε

ϱϑj

= →
[

y

ε(z)
→ 1→ y

1→ ε(z)

]
ϱε

ϱz

ϱz

ϱϑj

= →
[

y

ε(z)
→ 1→ y

1→ ε(z)

]
ε↑(z)xj

= →
[
y(1→ ε(z))→ (1→ y)ε(z)

ε(z)(1→ ε(z))

]
ε↑(z)xj

Madhavan Mukund Lecture 8: 6 February, 2025 DMML Jan–Apr 2025 17 / 18



Cross entropy and gradient descent

C = →[y ln(ε(z)) + (1→ y) ln(1→ ε(z))]

ϱC

ϱϑj
=

ϱC

ϱε

ϱε

ϱϑj
= →

[
y

ε(z)
→ 1→ y

1→ ε(z)

]
ϱε

ϱϑj

= →
[

y

ε(z)
→ 1→ y

1→ ε(z)

]
ϱε

ϱz

ϱz

ϱϑj

= →
[

y

ε(z)
→ 1→ y

1→ ε(z)

]
ε↑(z)xj

= →
[
y(1→ ε(z))→ (1→ y)ε(z)

ε(z)(1→ ε(z))

]
ε↑(z)xj

Madhavan Mukund Lecture 8: 6 February, 2025 DMML Jan–Apr 2025 17 / 18



Cross entropy and gradient descent

C = →[y ln(ε(z)) + (1→ y) ln(1→ ε(z))]

ϱC

ϱϑj
=

ϱC

ϱε

ϱε

ϱϑj
= →

[
y

ε(z)
→ 1→ y

1→ ε(z)

]
ϱε

ϱϑj

= →
[

y

ε(z)
→ 1→ y

1→ ε(z)

]
ϱε

ϱz

ϱz

ϱϑj

= →
[

y

ε(z)
→ 1→ y

1→ ε(z)

]
ε↑(z)xj

= →
[
y(1→ ε(z))→ (1→ y)ε(z)

ε(z)(1→ ε(z))

]
ε↑(z)xj

Madhavan Mukund Lecture 8: 6 February, 2025 DMML Jan–Apr 2025 17 / 18

d(z) =~(2))-ret)



Cross entropy and gradient descent

C = →[y ln(ε(z)) + (1→ y) ln(1→ ε(z))]

ϱC

ϱϑj
=

ϱC

ϱε

ϱε

ϱϑj
= →

[
y

ε(z)
→ 1→ y

1→ ε(z)

]
ϱε

ϱϑj

= →
[

y

ε(z)
→ 1→ y

1→ ε(z)

]
ϱε

ϱz

ϱz

ϱϑj

= →
[

y

ε(z)
→ 1→ y

1→ ε(z)

]
ε↑(z)xj

= →
[
y(1→ ε(z))→ (1→ y)ε(z)

ε(z)(1→ ε(z))

]
ε↑(z)xj

Madhavan Mukund Lecture 8: 6 February, 2025 DMML Jan–Apr 2025 17 / 18

-



Cross entropy and gradient descent . . .

ϱC

ϱϑj
= →

[
y(1→ ε(z))→ (1→ y)ε(z)

ε(z)(1→ ε(z))

]
ε↑(z)xj

Recall that ε↑(z) = ε(z)(1→ ε(z))

Therefore,
ϱC

ϱϑj
= →[y(1→ ε(z))→ (1→ y)ε(z)]xj

= →[y → yε(z)→ ε(z) + yε(z)]xj

= (ε(z)→ y)xj

Similarly,
ϱC

ϱϑ0
= (ε(z)→ y)

Thus, as we wanted, the gradient is proportional to ε(z)→ y

The greater the error, the faster the learning rate
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