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for regression? 10
m Partition the input into 8 Yaum
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Decision trees for regression

m Can we use decision trees
for regression? 10

m Partition the input into
intervals

m For each interval, predict
mean value of output,
instead of majority class
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Decision trees for regression

m Can we use decision trees
for regression?

m Partition the input into
intervals

m For each interval, predict
mean value of output,
instead of majority class

m Regression tree

Madhavan Mukund

10
8 1 ..°.'3.
y 6 . ‘o *
‘e, o s ®

24 ® :n" .... . o ® H » . ¢

0 age ° .

-3 -2 -1 0 1 2

X1

Lecture 8: 6 February, 2025

DMML Jan-Apr 2025




Decision

m Regression tree for noisy
quadratic centered around
X1 = 0.5

Madhavan Mukund

X1i<=0:1

samples =

mse = 0.098
value = 0.354

97
200

x1 <= 0.092

mse = 0.038
samples = 44
value = 0.689

x1 <=0.772
mse = 0.074

value = 0.259

samples = 156

mse =0.015

mse =0.013 mse = 0.036
samples = 24 samples = 110 samples = 46
value = 0.552 value = 0.111 value = 0.615
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Decision

m Regression tree for noisy
quadratic centered around
X1 = 0.5

m For each node, the output is
the mean y value for the
current set of points

x1<=0.197
mse = 0.098
samples = 200
value = 0.354

True False
x1 <= 0.092 x1 <=0.772
mse = 0.038 mse = 0.074
samples = 44 samples = 156
value = 0.689 value = 0.259

mse =0.013 mse = 0.015 mse = 0.036
samples = 24 samples = 110 samples = 46

value = 0.552 value

=0.111 value = 0.615
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Decision trees for regression

m Regression tree for noisy
quadratic centered around
X1 = 0.5

m For each node, the output is
the mean y value for the
current set of points

m Instead of impurity, use
mean squared error (MSE)
as cost function

G bdex — WMsSE
Predichan : — M%/A'Vengt_

x1<=0.197
mse = 0.098
samples = 200
value = 0.354

True False
x1 <= 0.092 x1 <=0.772
mse = 0.038 mse = 0.074
samples = 44 samples = 156
value = 0.689 value = 0.259

mse =0.013 mse =0.015 mse = 0.036
samples = 24 samples = 110 samples = 46
value = 0.552 value = 0.111 value = 0.615
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Decision trees for regression

m Regression tree for noisy
quadratic centered around
X1 = 0.5

m For each node, the output is
the mean y value for the
current set of points

m Instead of impurity, use
mean squared error (MSE)
as cost function

m Choose a split that

x1<=0.197
mse = 0.098
samples = 200
value = 0.354

True False

x1 <= 0.092 x1 <=0.772

mse = 0.038 mse = 0.074

samples = 44 samples = 156
value = 0.689 value = 0.259

mse =0.013 mse =0.015 mse = 0.036
samples = 24 samples = 110 samples = 46
value = 0.552 value = 0.111 value = 0.615
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Regression trees

m Approximation using regression tree

True

x1<=0.197
mse = 0.098
samples = 200
value = 0.354

x1 <= 0.092
mse = 0.038
samples = 44
value = 0.689

x1 <=0.772

mse = 0.074
samples = 156
value = 0.259

mse =0.013 mse =0.015 mse = 0.036
samples = 24 samples = 110 samples = 46

value = 0.552

value = 0.111

value = 0.615
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Regression trees

m Extend the regression tree
one more level to get a finer 1.0 +
approximation

0.2 1
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Regression trees

m Extend the regression tree

one more level to get a finer 1.0 = T -
approximation i i A
0.81.Lsl« ! ofee o
m Set a threshold on MSE to G i i :’.
decide when to stop 5 i

1.0
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Regression trees

m Extend the regression tree
one more level to get a finer 1.0 =1 ; =
approximation : :

m Set a threshold on MSE to o . .
decide when to stop E

m Classification and
Regression Trees (CART)

—
——
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Regression trees

m Extend the regression tree

one more level to get a finer 1.0 = ; = T -
approximation )i : i A
0.81. ‘el ’ : 0'00—.
m Set a threshold on MSE to uspe 1 s
. : 1 .
decide when to stop : 1
m Classification and
Regression Trees (CART)
m Combined algorithm for
both use cases
1.0
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Regression trees

m Extend the regression tree

one more level to get a finer 1.0 = ; = T -
approximation )i : i A
0.8 ‘el ’ : 0'00—.
m Set a threshold on MSE to e 1 s
: 1 ¢
; I

decide when to stop

m Classification and
Regression Trees (CART)

m Combined algorithm for
both use cases

m Programming libraries
typically provide CART
implementation

1.0
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Overfitting

m Overfitting: model too specific
to training data, does not
generalize well
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itting
m Overfitting: model too specific

to training data, does not
generalize well

m Regression — use regularization
to penalize model complexity

9’ ({91,‘
2 9
L=D
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Overfitting

m Overfitting: model too specific
to training data, does not
generalize well

m Regression — use regularization
to penalize model complexity

m What about decision trees?
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Overfitting

m Overfitting: model too specific
to training data, does not
generalize well

m Regression — use regularization
to penalize model complexity

m What about decision trees?

m Deep, complex trees ask too
many questions
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Overfitting

m Overfitting: model too specific
to training data, does not
generalize well

m Regression — use regularization
to penalize model complexity

m What about decision trees?

m Deep, complex trees ask too
many questions

m Prefer shallow, simple trees

Madhavan Mukund
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Tree pruning

m Remove leaves to improve generalization
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m Remove leaves to improve generalization

m Top-down pruning
m Fix a maximum depth when building the tree

m How to decide the depth in advance?
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m Remove leaves to improve generalization

m Top-down pruning
m Fix a maximum depth when building the tree

m How to decide the depth in advance?

m Bottom-up pruning
m Build the full tree
m Remove a leaf if the reduced tree generalizes better

m How do we measure this?
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Tree pruning

Overfitted tree
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Tree pruning

Overfitted tree

Pruned tree Y
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Bottom up tree pruning

m Build the full tree, remove leaf if the reduced tree generalizes better

m How do we measure this?
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Bottom up tree pruning

m Build the full tree, remove leaf if the reduced tree generalizes better
m How do we measure this?

m Check performance on a test set
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Bottom up tree pruning

m Build the full tree, remove leaf if the reduced tree generalizes better
m How do we measure this?
m Check performance on a test set

m Use sampling theory [Quinlan]
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Bottom up tree pruning

m Build the full tree, remove leaf if the reduced tree generalizes better
m How do we measure this?

m Check performance on a test set

m Use sampling theory [Quinlan]

m Given n coin tosses with h heads, estimate probability of heads as h/n
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Bottom up tree pruning

m Build the full tree, remove leaf if the reduced tree generalizes better
m How do we measure this?

m Check performance on a test set

m Use sampling theory [Quinlan]

m Given n coin tosses with h heads, estimate probability of heads as h/n

m Estimate comes with a confidence interval: h/n+§
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Bottom up tree pruning

m Build the full tree, remove leaf if the reduced tree generalizes better
m How do we measure this?

m Check performance on a test set

m Use sampling theory [Quinlan]

m Given n coin tosses with h heads, estimate probability of heads as @

m Estimate comes with a confidence interval; h//@
m As nincreases, ¢ reduces: 7 heads out of 10=vS out of 100 vs 700 out of 1000

awu» '.’.".,‘7\ —> FmCS"T
n
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Bottom up tree pruning

m Build the full tree, remove leaf if the reduced tree generalizes better
m How do we measure this?

m Check performance on a test set

m Use sampling theory [Quinlan]

m Given n coin tosses with h heads, estimate probability of heads as h/n

m Estimate comes with a confidence interval: h/n+§
m As nincreases, 0 reduces: 7 heads out of 10 vs 70 out of 100 vs 700 out of 1000

Impure node, majority prediction, compute confidence interval
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Bottom up tree pruning

m Build the full tree, remove leaf if the reduced tree generalizes better
m How do we measure this?

m Check performance on a test set

m Use sampling theory [Quinlan]

m Given n coin tosses with h heads, estimate probability of heads as h/n

m Estimate comes with a confidence interval: h/n+§
m As nincreases, 0 reduces: 7 heads out of 10 vs 70 out of 100 vs 700 out of 1000

Impure node, majority prediction, compute confidence interval

Pruning leaves creates a larger impure sample one level above
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Bottom up tree pruning

m Build the full tree, remove leaf if the reduced tree generalizes better
m How do we measure this?

m Check performance on a test set

m Use sampling theory [Quinlan]

m Given n coin tosses with h heads, estimate probability of heads as h/n

m Estimate comes with a confidence interval: h/n+§
m As nincreases, 0 reduces: 7 heads out of 10 vs 70 out of 100 vs 700 out of 1000

Impure node, majority prediction, compute confidence interval

Pruning leaves creates a larger impure sample one level above

m Does the confidence interval decrease (improve)?
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Example: Predict party from voting pattern

m Predict party affiliation of US legislators
based on voting pattern

m Read the tree from left to right

physician fee freeze = n:
adoption of the budget resolution = y: dem (151
adoption of the budget resolution = u: democriat (1)
adoption of the budget resolution = n:

education spending = n: democrat (6) PU-VQ
education spending = y: democrat (9)
education spending = u: republican (1)
physician fee freeze = y:
synfuels corporation cutback = n: republican (97/3}
synfuels corporation cutback = u: republican'{4) -
synfuels corporation cutback = y:
[ duty free exports = y: democrat (2

duty free exports = u: republica@

duty free exports = n:
education spending = n: democrzt (5/2)
education spending = y: republican (13/2)
education spending = u: democrat ()
physician fee freeze = u:
water project cost sharing = n: democrat (0)
water project cost sharing = y: democrat (4)
water project cost sharing = u:

mx missile = n: republican (0)

mx missile = y: democrat (3/1)

mx missile = u: republican (2)
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Example: Predict party from voting pattern

m Predict party affiliation of US legislators
based on voting pattern

m Read the tree from left to right ““‘6

llo.d.

physician fee freeze = n: democrat (168/2.6)
physician fee freeze = y: republican (123/13.9)
physician fee freeze = u:

mx missile = n: democrat (3/1. 1)

mx missile = y: democrat (4/2.2)

mx missile = u: republican (2/1)

m After pruning, drastically simplified tree
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Example: Predict party from voting pattern

m Predict party affiliation of US legislators
based on voting pattern

m Read the tree from left to right
m After pruning, drastically simplified tree

m Quinlan’s comment on his use of sampling physician fee freeze = n: democrat (168/2:6)

. physician fee freeze = y: republican (123/13.9
theory for post-pruning physician fes freezs = u; R

mx missile = n: democrat (3/1.1) .

v ; . mx missile = y: democrat (4/2.2)
statistical notions of sampling and mx missile = u: republican (2/1)

confidence limits, so the reasoning should
be taken with a large grain of salt. Like
many heuristics with questionable
underpinnings, however, the estimates it
produces seem frequently to yield
acceptable results.

Now, this description does violence to
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Regression for classification

m Regression line

m Set a threshold

m Classifier
m Output below threshold : 0 (No)
m Output above threshold : 1 (Yes)
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Regression for classification

m Regression line

m Set a threshold '

m Classifier
m Output below threshold : 0 (No) ~ feeememmeeees ﬂ
m Output above threshold : 1 (Yes)

m Classifier output is a step function \
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Smoothen the step

m Sigmoid function

3
o(2) b =

- 1+e 2

0.5
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Smoothen the step

m Sigmoid function
1 15
o(2)

- 1+e 2

® Input z is output of our
regression 0.5

N 1
o(z) = 1 + e—(Oo+01x1+-+0kxi)
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Smoothen the step

m Sigmoid function
1 15
o(2)

- 1+e 2

® Input z is output of our
regression 0.5

N 1
o(z) = 1 + e—(Oo+01x1++0kxi)

m Adjust parameters to fix -6 -4 -2 0 5 4 6
horizontal position and steepness
of step
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Logistic regression

m Compute the coefficients?

m Solve by gradient descent

0.5
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Logistic regression

m Compute the coefficients?

-
m Solve by gradient descent
m Need derivatives to exist
m Hence smooth sigmoid, not 0.5
step function
m 0'(z) = 0(z)(1 - o(2))
| | o) | | )
-6 -4 -2 0 2 4 6
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Logistic regression

m Compute the coefficients?

m Solve by gradient descent

m Need derivatives to exist

m Hence smooth sigmoid, not 0.5
step function

mo'(z) =0(z)(1 —o(2))

m Need a cost function to minimize | ,
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Loss function for logistic regression

m Goal is to maximize log likelihood
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Loss function for logistic regression

m Goal is to maximize log likelihood

m Let hy(x;) = o(z).
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Loss function for logistic regression

m Goal is to maximize log likelihood —

m Let hy(x;) = o(z). So, P(yi=1]|x;0) = ho(x),
P(yi =0|x;0) =1 — hp(x;)

m Combine as P(y; | x;;0) = hg(x,-)ylf (1 = hg(x;)) ——r"}"—'&

0 orl .oro
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Loss function for logistic regression

Goal is to maximize log likelihood

Let ho(x;) = o(z). So, P(yi =1 x;;60) = ho(x;),
P(yi =0|x;0) =1 — hp(x;)

Combine as P(y; | xi;0) = ho(x;)" - (1 — hy(x;))*

m Likelihood: £(0 th X))+ (L= hg(xi))' ™
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Loss function for logistic regression

m Goal is to maximize log likelihood

Let h (Xi):U(Z,'). So, P( i:]-|Xi; )7h XI
9 P(;:OIX;; 0) = 19— ho(x;) @G(“\ ) %

Combine as P(y; | xi;0) = ho(x;)" - (1 — hy(x;))*

m Likelihood: £(0 th X"+ (1= hg(x;))' ™

Log-likelihood: £(0) = " yilog hy(x;) + (1 — yi) log(1 — hy(x;))
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Loss function for logistic regression

m Goal is to maximize log likelihood P l-?
& VU‘O["&
Let hy(x;) = o(zi). So, P(yi =1]xi;0) = hg(x), P(”jp * l'(’ “S*O

P(yi=0|x;;0) =1 — hy(x;)

Combine as P(y; | xi;0) = ho(x;)¥1 - (1 — ha(x;))t i

Z P‘\ (4)5 P

m Likelihood: £(0 th X))+ (L= hg(xi))' ™

Log-likelihood: £(0) = " yilog hy(x;) + (1 — yi) log(1 — hy(x;))

Macowree

+ (1 — y;) log(1 — hg(x;))
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MSE for logistic regression and gradient descent

m Suppose we take mean sum-squared error as the loss function.

m Consider two inputs x = (x1, x2)
n

1
C=- Z(y,' — O’(Z,'))2, where z; = 0y + 91X,‘1 + 92X,'2

' L
T(ho(x))

i=1

Madhavan Mukund Lecture 8: 6 February, 2025 DMML Jan—Apr 2025



MSE for logistic regression and gradient descent

m Suppose we take mean sum-squared error as the loss function.
m Consider two inputs x = (x1, x2)
1

n

C= n Zl()’i —0(z))?, where z; = 0 + 01x;, + Oax;,
m For gradient descent, we compute % % %
& ! PUte B6." 96, 6,
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MSE for logistic regression and gradient descent

m Suppose we take mean sum-squared error as the loss function.
m Consider two inputs x = (x1, x2)
1

n

C= n Z(y; — ()%, where zj = 0 + 01, + 02x;,
i=1 —  —
m For gradient descent, we compute % % %
' 001" 06>" 90y
m Forj =12,
9C 2 do(z)
RDYELEE

i=1
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MSE for logistic regression and gradient descent

m Suppose we take mean sum-squared error as the loss function.
m Consider two inputs x = (x1, x2)

10
C = E ;(y,- — O’(Z,'))2, where z; = 0y + 91X,‘1 + 92X,'2

oc oC oC
001" 06>" 90y

m For gradient descent, we compute
m Forj =12,
o0C 2

6791 5 Z(Y/ -

i=1
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MSE for logistic regression and gradient descent

m Suppose we take mean sum-squared error as the loss function.
m Consider two inputs x = (x1, x2)
1

n

c=- Zl()’i — 0(2))?, where z; = 0y + 01, + 02x;,
m For gradient descent, we compute % % %
' 001" 06>" 90y
m Forj =12,
€ 2L do(z) 2 0o(z;) 0z
5, = n 21— ol@) — = 1D (ela) —n) =5, 5y
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MSE for logistic regression and gradient descent

m Suppose we take mean sum-squared error as the loss function.
m Consider two inputs x = (x1, x2)
1

n

C= ; ;(y; — O'(Z,'))2, where zZ; = 90 + 91X,-1 + 92x,-2
m For gradient descent, we compute E % %
& ! PUte B6." 96, 6,

m Forj =12,
5= a2t o@) =25 =23 (ol — ) G
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MSE for logistic regression and gradient descent ...

12 9C 2N 000 - vol(21xd and OC = 2 N oz
u FOI’] - 1,2, 879‘, - n Z(G(ZI) )/I)U (ZI)Xj' and 090 - n ;(O’(Z,) YI)U (ZI)

=

m Each term in oc oc oc is proportional to ¢’(z;)
96,' 96," 96 " PF ’

DMML Jan—Apr 2025
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MSE for logistic regression and gradient descent ...
! : oc 2 ,
= (0(z) = yi)o'(z:)

) oc 2 / i —
m Forj=1,2, 8791 = Z(o(z,) —Yi)o (ZI)XJ', and 0790 Y

=

m Each term in oc oc oc is proportional to ¢’(z;)
96,' 96," 96 " PF ’

m Ideally, gradient descent should take large steps when o(z) — y is large

DMML Jan-Apr 2025

Lecture 8: 6 February, 2025

Madhavan Mukund



MSE for logistic regression and gradient descent ...

o OC 2~ N OC  2~, v
u FOI’] - 1,2, 879‘, - ; ;_ (G(Zl) )/I)U (ZI)X'- and 0790 E §: (O’(Z,) YI)U (ZI)
Cc 9C oC
m Each term in 301 202 290 is proportional to ¢’(z;)

m Ideally, gradient descent should take large steps when o(z) — y is large
m o(z) is flat at both extremes 1-

m If o(z) is completely wrong,
o(z) =~ (1 —y), we still have
o'(z) =0 05

m Learning is slow even when current
model is far from optimal
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Cross entropy and gradient descent

m C=—[yln(c(2))+ (1 —y)In(1l —o(2))]
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Cross entropy and gradient descent

m C=—[yln(c(2))+ (1 —y)In(1l —o(2))]

L 9C_9Coo
96, 0o 96;
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Cross entropy and gradient descent

m C=—[yln(c(2))+ (1 —y)In(1l —o(2))]

oC _0CIo {y l—y]ao
o

"o, 0006 |o(d) 1-0(2)] 0
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Cross entropy and gradient descent

m C=—[yln(c(2))+ (1 —y)In(1l —o(2))]

oC _0CIo {y l—y]ao
o

"o, 0006 |o(d) 1-0(2)] 0
_ |y 1-y |00z
 lo(z) 1-o0(2)] 0z 09,
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Cross entropy and gradient descent

m C=—[yln(c(2))+ (1 —y)In(1l —o(2))]

L0C_Cor _ [y -y o
00; 0o 08;  |o(z) 1-—o(2)] 90;
y 1oy |000z
o(z) 1-o0(z)] 0z 00;

_ /
Tl i@ ’*"’(Zﬂ“’ﬁ)
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Cross entropy and gradient descent

m C=—[yln(c(2))+ (1 —y)In(1l —o(2))]

L9C_9Cor [y 1yl

00; 0o 08;  |o(z) 1-—o(2)] 90;
vy 1oy 000z
o(z) 1—o0(z)] 0z 06;

= — _ y — 1 _y O'/ Z)X;

= @ 1_0(2)} (2)g
Y1 o(z) (1 y)a(z)}
(21— o))

o' (2)x;
———
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Cross entropy and gradient descent . ..
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Cross entropy and gradient descent . ..

oC
m Therefore, 876’1 = -yl -0o(2)) = (1 - y)o(2)]lx
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Cross entropy and gradient descent . ..
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Cross entropy and gradient descent . ..

m Therefore, 8£ = -yl -0o(2)) = (1 - y)o(2)]lx

96,
=~y —yo(z) = a(2) + yo(2)]x Pm"“:s
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Cross entropy and gradient descent . ..

Recall that 0/(z) = o(z)(1 — o(2))

Therefore, g;j = -yl -0o(2)) = (1 - y)o(2)]lx

= —ly —yo(z) —o(z) + yo(z)]x

Similarly, SQC; =(o(z) —y)

m Thus, as we wanted, the gradient is proportional to o(z) — y

The greater the error, the faster the learning rate
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