Lecture 2: 16 January, 2025

Madhavan Mukund https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January–April 2025

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Market-Basket Analysis

- People who buy X also tend to buy Y
- Rearrange products on display based on customer patterns

▶ < ∃ ▶</p>

Market-Basket Analysis

- People who buy X also tend to buy Y
- Rearrange products on display based on customer patterns
 - The diapers and beer legend
 - The true story, http://www.dssresources. com/newsletters/66.php

▶ < ∃ ▶</p>

Market-Basket Analysis

- People who buy X also tend to buy Y
- Rearrange products on display based on customer patterns
 - The diapers and beer legend
 - The true story, http://www.dssresources. com/newsletters/66.php
- Applies in more abstract settings
 - Items are concepts, basket is a set of concepts in which a student does badly
 - Students with difficulties in concept A also tend to misunderstand concept B
 - Items are words, transactions are documents

Formal setting

- Set of items $I = \{i_1, i_2, ..., i_N\}$
- A transaction is a set $t \subseteq I$ of items
- Set of transactions $T = \{t_1, t_2, \dots, t_M\}$

< ∃→

Formal setting

- Set of items $I = \{i_1, i_2, ..., i_N\}$
- A transaction is a set $t \subseteq I$ of items
- Set of transactions $T = \{t_1, t_2, \dots, t_M\}$
- Identify association rules $X \rightarrow Y$
 - $X, Y \subseteq I, X \cap Y = \emptyset$
 - If $X \subseteq t_j$ then it is likely that $Y \subseteq t_j$

Formal setting

- Set of items $I = \{i_1, i_2, ..., i_N\}$
- A transaction is a set $t \subseteq I$ of items
- Set of transactions $T = \{t_1, t_2, \dots, t_M\}$
- Identify association rules $X \rightarrow Y$
 - $X, Y \subseteq I, X \cap Y = \emptyset$
 - If $X \subseteq t_j$ then it is likely that $Y \subseteq t_j$
- Two thresholds
 - How frequently does $X \subseteq t_j$ imply $Y \subseteq t_j$?
 - How significant is this pattern overall?

• For $Z \subseteq I$, Z.count = $|\{t_j \mid Z \subseteq t_j\}|$

- For $Z \subseteq I$, Z.count = $|\{t_j \mid Z \subseteq t_j\}|$
- How frequently does $X \subseteq t_j$ imply $Y \subseteq t_j$?
 - Fix a confidence level χ

• Want $\frac{(X \cup Y).count}{X.count} \ge \chi$

- For $Z \subseteq I$, Z.count = $|\{t_j \mid Z \subseteq t_j\}|$
- How frequently does $X \subseteq t_j$ imply $Y \subseteq t_j$?
 - Fix a confidence level χ
 - Want $\frac{(X \cup Y).count}{X.count} \ge \chi$
- How significant is this pattern overall?
 - Fix a support level σ

• Want
$$\frac{(X \cup Y).count}{M} \ge \sigma$$

▶ < ∃ ▶</p>

- For $Z \subseteq I$, Z.count = $|\{t_j \mid Z \subseteq t_j\}|$
- How frequently does $X \subseteq t_j$ imply $Y \subseteq t_j$?
 - Fix a confidence level χ
 - Want $\frac{(X \cup Y).count}{X.count} \ge \chi$
- How significant is this pattern overall?
 - Fix a support level σ

• Want
$$\frac{(X \cup Y).count}{M} \ge c$$

■ Given sets of items *I* and transactions *T*, with confidence χ and support σ, find all valid association rules X → Y

Frequent itemsets

- $X \to Y$ is interesting only if $(X \cup Y)$.count $\geq \sigma \cdot M$
- First identify all frequent itemsets
 - $Z \subseteq I$ such that Z.count $\geq \sigma \cdot M$

▶ < ∃ ▶</p>

Frequent itemsets

- $X \to Y$ is interesting only if $(X \cup Y)$.count $\geq \sigma \cdot M$
- First identify all frequent itemsets

```
• Z \subseteq I such that Z.count \geq \sigma \cdot M
```

Naïve strategy: maintain a counter for each Z

```
For each t_j \in T
For each Z \subseteq t_j
Increment the counter for Z
```

• After scanning all transactions, keep Z with Z.count $\geq \sigma \cdot M$

1 E K

Frequent itemsets

- $X \to Y$ is interesting only if $(X \cup Y)$.count $\geq \sigma \cdot M$
- First identify all frequent itemsets

• $Z \subseteq I$ such that Z.count $\geq \sigma \cdot M$

Naïve strategy: maintain a counter for each Z

```
■ For each t_j \in T
For each Z \subseteq t_j
Increment the counter for Z
```

- After scanning all transactions, keep Z with Z.count $\geq \sigma \cdot M$
- Need to maintain 2^{|/|} counters
 - Infeasible amount of memory
 - Can we do better?

Sample calculation

• Let's assume a bound on each $t_i \in T$

No transacation has more than 10 items

• Say $N = |I| = 10^6$, $M = |T| = 10^9$, $\sigma = 0.01$

• Number of possible subsets to count is $\sum_{i=1}^{10} {10^6 \choose i}$

Sample calculation

- Let's assume a bound on each $t_i \in T$
 - No transacation has more than 10 items
- Say $N = |I| = 10^6$, $M = |T| = 10^9$, $\sigma = 0.01$

• Number of possible subsets to count is $\sum_{i=1}^{10} {10^6 \choose i}$

 A singleton subset that is frequent is an item that appears in at least 10⁷ transactions

Sample calculation

- Let's assume a bound on each $t_i \in T$
 - No transacation has more than 10 items
- Say $N = |I| = 10^6$, $M = |T| = 10^9$, $\sigma = 0.01$

• Number of possible subsets to count is $\sum_{i=1}^{10} {10^6 \choose i}$

- A singleton subset that is frequent is an item that appears in at least 10⁷ transactions
- Totally, T contains at most 10^{10} items
- At most $10^{10}/10^7 = 1000$ items are frequent!
- How can we exploit this?

• Clearly, if Z is frequent, so is every subset $Y \subseteq Z$

▶ ▲ 国 ▶ ▲ 国 ▶

< □ > < 円

- Clearly, if Z is frequent, so is every subset $Y \subseteq Z$
- We exploit the contrapositive

```
Apriori observation

If Z is not a frequent itemset, no superset Y \supseteq Z can be

frequent
```

- Clearly, if Z is frequent, so is every subset $Y \subseteq Z$
- We exploit the contrapositive

```
Apriori observation
If Z is not a frequent itemset, no superset Y \supseteq Z can be
frequent
```

- For instance, in our earlier example, every frequent itemset must be built from the 1000 frequent items
- In particular, for any frequent pair {x, y}, both {x} and {y} must be frequent
- Build frequent itemsets bottom up, size 1,2,...

• F_i : frequent itemsets of size i — Level i

- F_i : frequent itemsets of size i Level i
- F_1 : Scan T, maintain a counter for each $x \in I$

→

- F_i : frequent itemsets of size i Level i
- F_1 : Scan T, maintain a counter for each $x \in I$
- $C_2 = \{\{x, y\} \mid x, y \in F_1\}$: Candidates in level 2

1 E N

- F_i : frequent itemsets of size i Level i
- F_1 : Scan T, maintain a counter for each $x \in I$
- $C_2 = \{\{x, y\} \mid x, y \in F_1\}$: Candidates in level 2
- F_2 : Scan T, maintain a counter for each $X \in C_2$

- F_i : frequent itemsets of size i Level i
- F_1 : Scan T, maintain a counter for each $x \in I$
- $C_2 = \{\{x, y\} \mid x, y \in F_1\}$: Candidates in level 2
- F_2 : Scan T, maintain a counter for each $X \in C_2$
- $C_3 = \{\{x, y, z\} \mid \{x, y\}, \{x, z\}, \{y, z\} \in F_2\}$
- F_3 : Scan T, maintain a counter for each $X \in C_3$

- F_i : frequent itemsets of size i Level i
- F_1 : Scan T, maintain a counter for each $x \in I$
- $C_2 = \{\{x, y\} \mid x, y \in F_1\}$: Candidates in level 2
- F_2 : Scan T, maintain a counter for each $X \in C_2$
- $C_3 = \{\{x, y, z\} \mid \{x, y\}, \{x, z\}, \{y, z\} \in F_2\}$
- F_3 : Scan T, maintain a counter for each $X \in C_3$

...

. . . .

- C_k = subsets of size k, every (k-1)-subset is in F_{k-1}
- F_k : Scan T, maintain a counter for each $X \in C_k$

- C_k = subsets of size k, every (k-1)-subset is in F_{k-1}
- How do we generate C_k ?

- C_k = subsets of size k, every (k-1)-subset is in F_{k-1}
- How do we generate C_k ?
- Naïve: enumerate subsets of size k and check each one

Expensive!

▶ < ∃ ▶</p>

- C_k = subsets of size k, every (k-1)-subset is in F_{k-1}
- How do we generate C_k ?
- Naïve: enumerate subsets of size k and check each one

Expensive!

• Observation: Any $C'_k \supseteq C_k$ will do as a candidate set

- C_k = subsets of size k, every (k-1)-subset is in F_{k-1}
- How do we generate C_k ?
- Naïve: enumerate subsets of size k and check each one

Expensive!

- Observation: Any $C'_k \supseteq C_k$ will do as a candidate set
- Items are ordered: $i_1 < i_2 < \cdots < i_N$
- List each itemset in ascending order canonical representation

- C_k = subsets of size k, every (k-1)-subset is in F_{k-1}
- How do we generate C_k ?
- Naïve: enumerate subsets of size k and check each one

Expensive!

- Observation: Any $C'_k \supseteq C_k$ will do as a candidate set
- Items are ordered: $i_1 < i_2 < \cdots < i_N$
- List each itemset in ascending order canonical representation
- Merge two (k-1)-subsets if they differ in last element

•
$$X = \{i_1, i_2, \dots, i_{k-2}, i_{k-1}\}$$

- $X' = \{i_1, i_2, \dots, i_{k-2}, i'_{k-1}\}$
- Merge $(X, X') = \{i_1, i_2, \dots, i_{k-2}, i_{k-1}, i'_{k-1}\}$

• Merge $(X, X') = \{i_1, i_2, \dots, i_{k-2}, i_{k-1}, i'_{k-1}\}$ • $X = \{i_1, i_2, \dots, i_{k-2}, i_{k-1}\}$ • $X' = \{i_1, i_2, \dots, i_{k-2}, i'_{k-1}\}$

• Merge
$$(X, X') = \{i_1, i_2, \dots, i_{k-2}, i_{k-1}, i'_{k-1}\}$$

• $X = \{i_1, i_2, \dots, i_{k-2}, i_{k-1}\}$
• $X' = \{i_1, i_2, \dots, i_{k-2}, i'_{k-1}\}$

• $C'_{k} = \{ Merge(X, X') \mid X, X' \in F_{k-1} \}$

• Merge
$$(X, X') = \{i_1, i_2, \dots, i_{k-2}, i_{k-1}, i'_{k-1}\}$$

•
$$X = \{i_1, i_2, \dots, i_{k-2}, i_{k-1}\}$$

•
$$X' = \{i_1, i_2, \dots, i_{k-2}, i'_{k-1}\}$$

• $C'_k = \{ \operatorname{Merge}(X, X') \mid X, X' \in F_{k-1} \}$

• Claim $C_k \subseteq C'_k$

- Suppose $Y = \{i_1, i_2, ..., i_{k-1}, i_k\} \in C_k$
- $X = \{i_1, i_2, \dots, i_{k-2}, i_{k-1}\} \in F_{k-1}$ and $X' = \{i_1, i_2, \dots, i_{k-2}, i_k\} \in F_{k-1}$
- $Y = Merge(X, X') \in C'_k$

• Merge
$$(X, X') = \{i_1, i_2, \dots, i_{k-2}, i_{k-1}, i'_{k-1}\}$$

•
$$X = \{i_1, i_2, \dots, i_{k-2}, i_{k-1}\}$$

•
$$X' = \{i_1, i_2, \dots, i_{k-2}, i'_{k-1}\}$$

• $C'_k = \{ \operatorname{Merge}(X, X') \mid X, X' \in F_{k-1} \}$

• Claim $C_k \subseteq C'_k$

- Suppose $Y = \{i_1, i_2, \dots, i_{k-1}, i_k\} \in C_k$
- $X = \{i_1, i_2, \dots, i_{k-2}, i_{k-1}\} \in F_{k-1}$ and $X' = \{i_1, i_2, \dots, i_{k-2}, i_k\} \in F_{k-1}$
- $Y = Merge(X, X') \in C'_k$
- Can generate C'_k efficiently
 - Arrange F_{k-1} in dictionary order
 - Split into blocks that differ on last element
 - Merge all pairs within each block

э

10 / 11

- $C_1 = \{\{x\} \mid x \in I\}$
- $F_1 = \{Z \mid Z \in C_1, Z. \text{count} \geq \sigma \cdot M\}$
- For $k \in \{2, 3, ...\}$
 - $C'_k = \{ \operatorname{Merge}(X, X') \mid X, X' \in F_{k-1} \}$
 - $F_k = \{Z \mid Z \in C'_k, Z. \text{count} \geq \sigma \cdot M\}$

- $C_1 = \{\{x\} \mid x \in I\}$
- $F_1 = \{Z \mid Z \in C_1, Z. \text{count} \geq \sigma \cdot M\}$
- For $k \in \{2, 3, ...\}$
 - $C'_k = \{ \operatorname{Merge}(X, X') \mid X, X' \in F_{k-1} \}$
 - $F_k = \{Z \mid Z \in C'_k, Z. \text{count} \geq \sigma \cdot M\}$
- When do we stop?

A B < A B </p>

- $C_1 = \{\{x\} \mid x \in I\}$
- $F_1 = \{Z \mid Z \in C_1, Z. \text{count} \geq \sigma \cdot M\}$
- For $k \in \{2, 3, ...\}$
 - $C'_k = \{ \operatorname{Merge}(X, X') \mid X, X' \in F_{k-1} \}$
 - $F_k = \{Z \mid Z \in C'_k, Z.\text{count} \geq \sigma \cdot M\}$
- When do we stop?
- k exceeds the size of the largest transaction
- F_k is empty

A 3 >

- $C_1 = \{\{x\} \mid x \in I\}$
- $F_1 = \{Z \mid Z \in C_1, Z. \text{count} \geq \sigma \cdot M\}$
- For $k \in \{2, 3, ...\}$
 - $C'_k = \{ \operatorname{Merge}(X, X') \mid X, X' \in F_{k-1} \}$
 - $F_k = \{Z \mid Z \in C'_k, Z.\text{count} \geq \sigma \cdot M\}$
- When do we stop?
- k exceeds the size of the largest transaction
- F_k is empty

Next step: From frequent itemsets to association rules