Lecture 3: 21 January, 2025

Madhavan Mukund https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January–April 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- Set of items $I = \{i_1, i_2, ..., i_N\}$
- A transaction is a set $t \subseteq I$ of items, set of transactions $T = \{t_1, t_2, \ldots, t_M\}$

→

- Set of items $I = \{i_1, i_2, ..., i_N\}$
- A transaction is a set $t \subseteq I$ of items, set of transactions $T = \{t_1, t_2, \dots, t_M\}$
- Identify association rules $X \rightarrow Y$
 - $X, Y \subseteq I, X \cap Y = \emptyset$
 - If $X \subseteq t_j$ then it is likely that $Y \subseteq t_j$

- Set of items $I = \{i_1, i_2, ..., i_N\}$
- A transaction is a set $t \subseteq I$ of items, set of transactions $T = \{t_1, t_2, \dots, t_M\}$
- Identify association rules $X \rightarrow Y$
 - $X, Y \subseteq I, X \cap Y = \emptyset$
 - If $X \subseteq t_j$ then it is likely that $Y \subseteq t_j$
- How frequently does $X \subseteq t_j$ imply $Y \subseteq t_j$?

• Want
$$\frac{(X \cup Y).count}{X.count} \ge \chi$$
 (Confidence)

- Set of items $I = \{i_1, i_2, ..., i_N\}$
- A transaction is a set $t \subseteq I$ of items, set of transactions $T = \{t_1, t_2, \dots, t_M\}$
- Identify association rules $X \to Y$
 - $X, Y \subseteq I, X \cap Y = \emptyset$
 - If $X \subseteq t_j$ then it is likely that $Y \subseteq t_j$
- How frequently does $X \subseteq t_j$ imply $Y \subseteq t_j$?

• Want
$$\frac{(X \cup Y).count}{X.count} \ge \chi$$
 (Confidence)

How significant is this pattern overall?

• Want
$$\frac{(X \cup Y).count}{M} \ge \sigma$$
 (support)

- Set of items $I = \{i_1, i_2, ..., i_N\}$
- A transaction is a set $t \subseteq I$ of items, set of transactions $T = \{t_1, t_2, \ldots, t_M\}$
- Identify association rules $X \rightarrow Y$
 - $\blacksquare X, Y \subseteq I, X \cap Y = \emptyset$
 - If $X \subseteq t_j$ then it is likely that $Y \subseteq t_j$
- How frequently does $X \subseteq t_j$ imply $Y \subseteq t_j$?

Apriori

Apriori observation

If Z is not a frequent itemset, no superset $Y \supseteq Z$ can be frequent

For any frequent pair $\{x, y\}$, both $\{x\}$ and $\{y\}$ must be frequent

Build frequent itemsets bottom up, size 1,2,...

• • = • • = •

Apriori

Apriori observation

If Z is not a frequent itemset, no superset $Y \supseteq Z$ can be frequent

- For any frequent pair $\{x, y\}$, both $\{x\}$ and $\{y\}$ must be frequent
- Build frequent itemsets bottom up, size 1,2,...
- F_i : frequent itemsets of size i Level i
- F_1 : Scan T, maintain a counter for each $x \in I$
- C_k = subsets of size k, every (k-1)-subset is in F_{k-1}
- F_k : Scan T, maintain a counter for each $X \in C_k$

Z. count | ≥ J. M

- Given sets of items *I* and transactions *T*, with confidence χ and support σ, find all valid association rules X → Y
 - $X, Y \subseteq I, X \cap Y = \emptyset$ • $\frac{(X \cup Y).count}{X.count} \ge \chi$ • $\frac{(X \cup Y).count}{M} \ge \sigma$

A B M A B M

- Given sets of items *I* and transactions *T*, with confidence χ and support σ, find all valid association rules X → Y
 - $X, Y \subseteq I, X \cap Y = \emptyset$ • $\frac{(X \cup Y).count}{X.count} \ge \chi$ • $\frac{(X \cup Y).count}{M} \ge \sigma$
- For a rule X → Y to be valid, X ∪ Y should be a frequent itemset
- Apriori algorithm finds all $Z \subseteq I$ such that Z.count $\geq \sigma \cdot M$

Naïve strategy

- For every frequent itemset Z
 - Enumerate all pairs $X, Y \subseteq Z, X \cap Y = \emptyset$

• Check $\frac{(X \cup Y).count}{X.count} \ge \chi$

• • = • • = •

3

Naïve strategy

- For every frequent itemset Z
 - Enumerate all pairs $X, Y \subseteq Z, X \cap Y = \emptyset$

• Check $\frac{(X \cup Y).count}{X.count} \ge \chi$

Can we do better?

→

Naïve strategy

- For every frequent itemset Z
 - Enumerate all pairs $X, Y \subseteq Z, X \cap Y = \emptyset$

• Check $\frac{(X \cup Y).count}{X.count} \ge \chi$

- Can we do better?
- Sufficient to check all partitions of Z
 - If $X, Y \subseteq Z, X \cup Y$ is also a frequent itemset

- Sufficient to check all partitions of Z
- Suppose $Z = X \uplus Y$, $X \to Y$ is a valid rule and $y \in Y$
- What about $(X \cup \{y\}) \to Y \setminus \{y\}$?

1 E N

- Sufficient to check all partitions of Z
- Suppose $Z = X \uplus Y$, $X \to Y$ is a valid rule and $y \in Y$
- What about $(X \cup \{y\}) \to Y \setminus \{y\}$?
 - Know $\frac{(X \cup Y).count}{X.count} \ge \chi$ • Check $\frac{(X \cup Y).count}{(X \cup \{y\}).count} \ge \chi$
 - X.count $\geq (X \cup \{y\})$.count, always
 - Second fraction has smaller denominator, so $(X \cup \{y\}) \rightarrow Y \setminus \{y\}$ is also a valid rule

X ⊆ XU {y} Every true I see XU{y} I also see X

- Sufficient to check all partitions of Z
- Suppose $Z = X \uplus Y$, $X \to Y$ is a valid rule and $y \in Y$
- What about $(X \cup \{y\}) \to Y \setminus \{y\}$?
 - Know $\frac{(X \cup Y).count}{X.count} \ge \chi$ • Check $\frac{(X \cup Y).count}{(X \cup \{y\}).count} \ge \chi$
 - X.count $\geq (X \cup \{y\})$.count, always
 - Second fraction has smaller denominator, so $(X \cup \{y\}) \rightarrow Y \setminus \{y\}$ is also a valid rule

Observation: Can use apriori principle again!

6/25

Apriori for association rules

- If $X \to Y$ is a valid rule, and $y \in Y$, $(X \cup \{y\}) \to Y \setminus \{y\}$ must also be a valid rule
- If $X \to Y$ is not a valid rule, and $x \in X$, $(X \setminus \{x\}) \to Y \cup \{x\}$ cannot be a valid rule

1 E N

Apriori for association rules

- If $X \to Y$ is a valid rule, and $y \in Y$, $(X \cup \{y\}) \to Y \setminus \{y\}$ must also be a valid rule
- If $X \to Y$ is not a valid rule, and $x \in X$, $(X \setminus \{x\}) \to Y \cup \{x\}$ cannot be a valid rule
- Start by checking rules with single element on the right
 Z \ z → {z}
- For $X \to \{x, y\}$ to be a valid rule, both $(X \cup \{x\}) \to \{y\}$ and $(X \cup \{y\}) \to \{x\}$ must be valid
- Explore partitions of each frequent itemset "level by level"

Classify documents by topic

• Consider the table on the right

Words in document	Topic
student, teach, school	Education
student, school	Education
teach, school, city, game	Education
cricket, football	Sports
football, player, spectator	Sports
cricket, coach, game, team	Sports
football, team, city, game	Sports

- Classify documents by topic
- Consider the table on the right
- Items are regular words and topics
- Documents are transactions set of words and one topic

$\sim \sim$	Y
Words in document	Торіс
student, teach, school	Education
student, school	Education
teach, school, city, game	Education
cricket, football 🛛 🦳	Sports
football, player, spectator	Sports
cricket, coach, game, team	Sports
football, team, city, game	Sports

- Classify documents by topic
- Consider the table on the right
- Items are regular words and topics
- Documents are transactions set of words and one topic
- Look for association rules of a special form
 - {student, school} \rightarrow {Education}
 - {game, team} \rightarrow {Sports}

Words in document	Topic			
student, teach, school	Education			
student, school	Education			
teach, school, city, game	Education			
cricket, football	Sports			
football, player, spectator	Sports			
cricket, coach, game, team	Sports			
football, team, city, game	Sports			

- Classify documents by topic
- Consider the table on the right
- Items are regular words and topics
- Documents are transactions set of words and one topic
- Look for association rules of a special form
 - {student, school} \rightarrow {Education}
 - {game, team} \rightarrow {Sports}
- Right hand side always a single topic
- Class Association Rules

Words in document	Topic			
student, teach, school	Education			
student, school	Education			
teach, school, city, game	Education			
cricket, football	Sports			
football, player, spectator	Sports			
cricket, coach, game, team	Sports			
football, team, city, game	Sports			

- Market-basket analysis searches for correlated items across transactions
- Formalized as association rules
- Apriori principle helps us to efficiently
 - identify frequent itemsets, and
 - split these itemsets into valid rules
- Class association rules simple supervised learning model

9/25

- A set of items
 - Each item is characterized by attributes (a_1, a_2, \ldots, a_k)
 - Each item is assigned a class or category c

Given a set of examples, predict c for a new item with attributes $(a'_1, a'_2, \dots, a'_k)$

- A set of items
 - Each item is characterized by attributes (a₁, a₂, ..., a_k)
 - Each item is assigned a class or category c
- Given a set of examples, predict c for a new item with attributes $(a'_1, a'_2, \dots, a'_k)$
- Examples provided are called training data
- Aim is to learn a mathematical model that generalizes the training data
 - Model built from training data should extend to previously unseen inputs

3

- A set of items
 - Each item is characterized by attributes (a₁, a₂, ..., a_k)
 - Each item is assigned a class or category c
- Given a set of examples, predict c for a new item with attributes $(a'_1, a'_2, \dots, a'_k)$
- Examples provided are called training data
- Aim is to learn a mathematical model that generalizes the training data
 - Model built from training data should extend to previously unseen inputs
- Classification problem
 - Usually assumed to binary two classes

د، ح

Example: Loan application data set

Class	Credit_rating	Own_house	Has_job	Age
No	fair	laise	faise	young
No	good	false	false	young
Yes 👝	good	false	true	young
Yes 👝	fair	true	true	young
No	fair	false	false	young
No	fair	false	false	middle
No	good	false	false	middle
Yes -	good	true	true	middle
Yes 🗖	excellent	true	false	middle
Yes	excellent	true	false	middle
Yes	excellent	true	false	old
Yes	good	true	false	old
Yes	good	false	true	old
Yes	excellent	false	true	old
No	fair	false	false	old

9/15 Yes

11/25

Fundamental assumption of machine learning

Distribution of training examples is identical to distribution of unseen data

< E

Fundamental assumption of machine learning

Distribution of training examples is identical to distribution of unseen data

What does it mean to learn from the data?

- Build a model that does better than random guessing
 - In the loan data set, always saying Yes would be correct about 9/15 of the time
- Performance should ideally improve with more training data

Fundamental assumption of machine learning

Distribution of training examples is identical to distribution of unseen data

What does it mean to learn from the data?

- Build a model that does better than random guessing
 - In the loan data set, always saying Yes would be correct about 9/15 of the time
- Performance should ideally improve with more training data

How do we evaluate the performance of a model?

- Model is optimized for the training data. How well does it work for unseen data?
- Don't know the correct answers in advance to compare different from normal software verification

(3)

Many different models

- Decision trees
- Probabilistic models naïve Bayes classifiers
- Models based on geometric separators
 - Support vector machines (SVM)
 - Neural networks

< ∃ >

э

13/25

Many different models

- Decision trees
- Probabilistic models naïve Bayes classifiers
- Models based on geometric separators
 - Support vector machines (SVM)
 - Neural networks

Important issues related to supervised learning

- Evaluating models
- Ensuring that models generalize well to unseen data
 - A theoretical framework to provide some guarantees
- Strategies to deal with the training data bottleneck

3

13 / 25

Decision trees

20 questions				[Age?					
Questions are adaptive	Ha	s_job'	You ?	ung Ow	middle vn_house? rae false	old Cr fair	credit_rating		g? ellent	
	Yes	I	No	Ye	s No	No No	Yes		Yes	
HELL I	(2/2)	((3/3)	(3/3	3) (2/.	2) (1/1)	(2/2)	1	(2/2)	
Which Augshan		ID	Age	Has_job	Own_house	Credit_rating	Class			
		1	young	false	false	fair	No			
· · · · ·		3	voung	true	false	good	Yes			
		4	young	true	true	fair	Yes			
TO ASK		5	young	false	false	fair	No]		
)		6	middle	false	false	fair	INU			
0 0		7	middle	false	false	good	No			
		6	middle	false	true	good	Ves			
when i		10	middle	false	true	excellent	Yes			
				Tail 20	true	exterient	Yes			
		12	old	false	true	good	Yes]		
		13	old	true	false	good	Yes			
		14	old	true	false	excellent	Yes	≣⇒	.⊒ - 4	200
Madhavan Mukund	Lecture 3: 2	Lecture 3: 21 January, 2025					n-Apr 202	4	1	4 / 25

Decision tree algorithm

Comparing decision trees

Comparing decision trees

Greedy heuristic — impurity

Greedy heuristic — impurity

Greedy heuristic — impurity

