Lecture 6: 30 January, 2025

Madhavan Mukund https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January–April 2025

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Predicting numerical values

	Living area (feet ²)	Price $(1000$ \$s)
Data about housing prices	2104	400
	1600	330
 Predict house price from living area 	2400	369
	1416	232
	3000	540
	:	÷ .

< 3

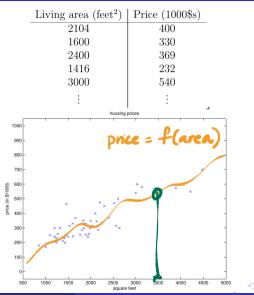
э

Predicting numerical values

Data about housing prices

Predict house price from living area

- Scatterplot corresponding to the data
- Fit a function to the points



A richer set of input data

Living area (feet ²)	#bedrooms	Price $(1000$ \$s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
÷	÷	÷

э

- A richer set of input data
- Simplest case: fit a linear function with parameters
 θ = (θ₀, θ₁, θ₂)

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

Living area (feet ²)	#bedrooms	Price $(1000$ \$s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
:	:	:
		· ·

y = mx + c

< ∃→

э

- A richer set of input data
- Simplest case: fit a linear function with parameters
 θ = (θ₀, θ₁, θ₂)
 h_θ(x) = θ₀ + θ₁x₁ + θ₂x₂
 Input x may have k feature
- Input x may have k features (x₁, x₂,..., x_k)

Living area (feet ²)	#bedrooms	Price $(1000$ \$s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
:	:	:
·	·	· ·

_

< ∃

- A richer set of input data
- Simplest case: fit a linear function with parameters
 θ = (θ₀, θ₁, θ₂)

 $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$

- Input x may have k features (x₁, x₂, ..., x_k)
- By convention, add a dummy feature x₀ = 1

Living area (feet ²)	#bedrooms	Price $(1000$ \$s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
:	:	:
·	•	· · _

_

- A richer set of input data
- Simplest case: fit a linear function with parameters
 θ = (θ₀, θ₁, θ₂)

 $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$

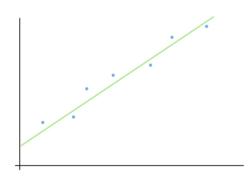
- Input x may have k features (x₁, x₂, ..., x_k)
- By convention, add a dummy feature x₀ = 1
- For k input features $h_{\theta}(x) = \sum_{i=0}^{k} \theta_i x_i$

Living area (feet ²)	#bedrooms	Price $(1000$ \$s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
:	:	
		L

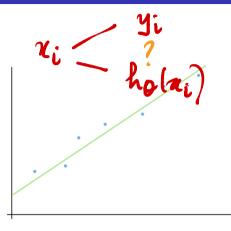
 $h_{\theta}(x)$

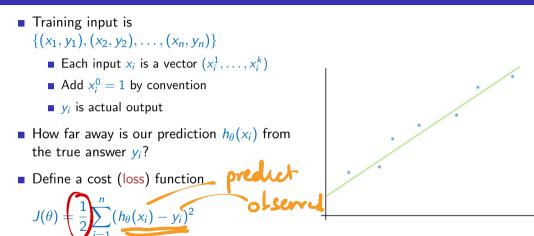
eshnate Bo-- Ok

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Each input x_i is a vector (x_i^1, \ldots, x_i^k)
 - Add $x_i^0 = 1$ by convention
 - y_i is actual output



- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Each input x_i is a vector (x_i^1, \ldots, x_i^k)
 - Add $x_i^0 = 1$ by convention
 - y_i is actual output
- How far away is our prediction h_θ(x_i) from the true answer y_i?

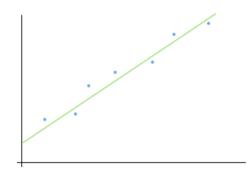


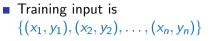


- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Each input x_i is a vector (x_i^1, \ldots, x_i^k)
 - Add $x_i^0 = 1$ by convention
 - y_i is actual output
- How far away is our prediction h_θ(x_i) from the true answer y_i?
- Define a cost (loss) function

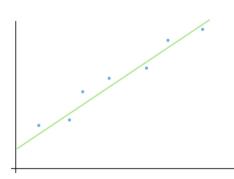
 $J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (h_{\theta}(x_i) - y_i)^2$

Essentially, the sum squared error (SSE)



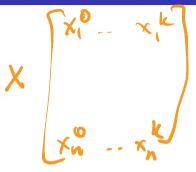


- Each input x_i is a vector (x_i^1, \ldots, x_i^k)
- Add $x_i^0 = 1$ by convention
- y_i is actual output
- How far away is our prediction h_θ(x_i) from the true answer y_i?
- Define a cost (loss) function $J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (h_{\theta}(x_i) - y_i)^2$



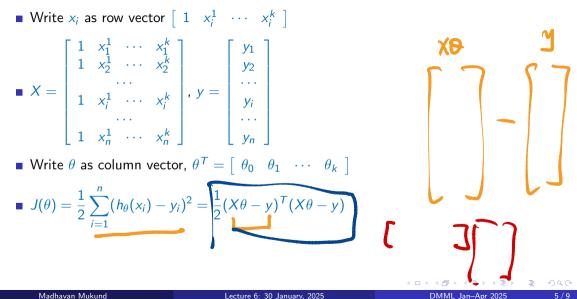
- Essentially, the sum squared error (SSE) 1
- Divide by *n*, mean squared error (MSE)

• Write x_i as row vector $\begin{bmatrix} 1 & x_i^1 & \cdots & x_i^k \end{bmatrix}$



Mad	havan	Mu	kund

• Write x_i as row vector $\begin{bmatrix} 1 \end{bmatrix}$ $x_i^1 \cdots x_i^k$ • $X = \begin{bmatrix} 1 & x_1^1 & \cdots & x_n^k \\ 1 & x_2^1 & \cdots & x_2^k \\ & & \cdots & \\ 1 & x_i^1 & \cdots & x_n^k \\ & & \cdots & \\ 1 & x_n^1 & \cdots & x_n^k \end{bmatrix} y = \begin{bmatrix} y_1 \\ y_2 \\ \cdots \\ y_i \\ \cdots \\ y_n \end{bmatrix}$ 0,1+0,x2 • Write θ as column vector, $\theta^{T} = \begin{bmatrix} \theta_0 & \theta_1 & \cdots & \theta_k \end{bmatrix}$ holdi) XO = entre set of product • • = • э Madhavan Mukund Lecture 6: 30 January, 2025 5/9DMML Jan-Apr 2025



• Write
$$x_i$$
 as row vector $\begin{bmatrix} 1 & x_i^1 & \cdots & x_i^k \\ 1 & x_2^1 & \cdots & x_2^k \\ & 1 & x_2^1 & \cdots & x_n^k \\ & \ddots & & \\ 1 & x_n^1 & \cdots & x_n^k \end{bmatrix}$, $y = \begin{bmatrix} y_1 \\ y_2 \\ \cdots \\ y_i \\ \vdots \\ y_n \end{bmatrix}$

• Write θ as column vector, $\theta^{T} = \begin{bmatrix} \theta_0 & \theta_1 & \cdots & \theta_k \end{bmatrix}$

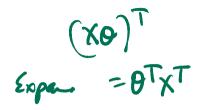
•
$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (h_{\theta}(x_i) - y_i)^2 = \frac{1}{2} (X\theta - y)^T (X\theta - y)$$

• Minimize $J(\theta)$ — set $\nabla_{\theta} J(\theta) = 0$

•
$$J(\theta) = \frac{1}{2}(X\theta - y)^T(X\theta - y)$$

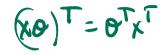
•
$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2} (X\theta - y)^T (X\theta - y)$$

• To minimize, set $\nabla_{\theta} \frac{1}{2} (X\theta - y)^T (X\theta - y) = 0$



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• $J(\theta) = \frac{1}{2}(X\theta - y)^T(X\theta - y)$ • $\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2}(X\theta - y)^T(X\theta - y)$ • To minimize, set $\nabla_{\theta} \frac{1}{2}(X\theta - y)^T(X\theta - y) = 0$ • Expand, $\frac{1}{2}\nabla_{\theta} (\theta^T X^T X \theta - y^T X \theta - \theta^T X^T y + y^T y) = 0$

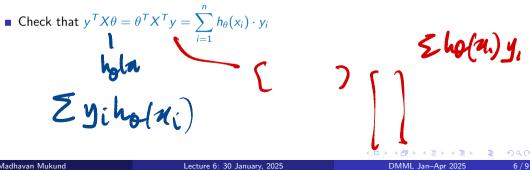


•
$$J(\theta) = \frac{1}{2}(X\theta - y)^T(X\theta - y)$$

•
$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2} (X\theta - y)^{T} (X\theta - y)$$

• To minimize, set $\nabla_{\theta} \frac{1}{2} (X\theta - y)^T (X\theta - y) = 0$

• Expand, $\frac{1}{2}\nabla_{\theta} \left(\theta^{T}X^{T}X\theta - y^{T}X\theta - \theta^{T}X^{T}y + y^{T}y\right) = 0$



•
$$J(\theta) = \frac{1}{2}(X\theta - y)^T(X\theta - y)$$

•
$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2} (X\theta - y)^{T} (X\theta - y)$$

• To minimize, set $\nabla_{\theta} \frac{1}{2} (X\theta - y)^{T} (X\theta - y) = 0$

•
$$J(\theta) = \frac{1}{2}(X\theta - y)^T(X\theta - y)$$

•
$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2} (X\theta - y)^{T} (X\theta - y)$$

• To minimize, set $\nabla_{\theta} \frac{1}{2} (X\theta - y)^T (X\theta - y) = 0$

• Expand, $\frac{1}{2} \nabla_{\theta} \left(\theta^{T} X^{T} X \theta - y^{T} X \theta - \theta^{T} X^{T} y + y^{T} y \right) = 0$

n

• Check that
$$y^T X \theta = \theta^T X^T y = \sum_{i=1}^{n} h_{\theta}(x_i) \cdot y_i$$

• Combining terms,
$$\frac{1}{2} \nabla_{\theta} \left(\theta^{T} X^{T} X \theta - (\theta^{T} X^{T} y) + y^{T} y \right) = 0$$

Sive for O

• After differentiating, $X^T X \theta - X^T y = 0$

20xTy

•
$$J(\theta) = \frac{1}{2}(X\theta - y)^T(X\theta - y)$$

•
$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2} (X\theta - y)^{T} (X\theta - y)$$

• To minimize, set $\nabla_{\theta} \frac{1}{2} (X\theta - y)^{T} (X\theta - y) = 0$

• Expand, $\frac{1}{2} \nabla_{\theta} \left(\theta^{T} X^{T} X \theta - y^{T} X \theta - \theta^{T} X^{T} y + y^{T} y \right) = 0$

• Check that
$$y^T X \theta = \theta^T X^T y = \sum_{i=1}^n h_{\theta}(x_i) \cdot y_i$$

- Combining terms, $\frac{1}{2}\nabla_{\theta} \left(\theta^{T}X^{T}X\theta 2\theta^{T}X^{T}y + y^{T}y\right) = 0$
- After differentiating, $X^T X \theta X^T y = 0$
- Solve to get normal equation, $\theta = (X^T X)^{-1} X^T y$

Linear regression

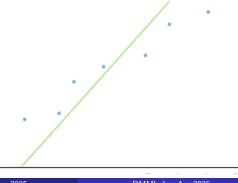
• Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution

▶ < ∃ ▶</p>

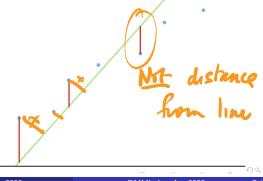
э

- Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution
- Computational challenges
 - Slow if *n* large, say $n > 10^4$
 - Matrix inversion $(X^T X)^{-1}$ is expensive, also need invertibility

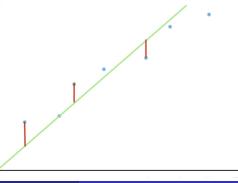
- Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution
- Computational challenges
 - Slow if *n* large, say $n > 10^4$
 - Matrix inversion $(X^T X)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess



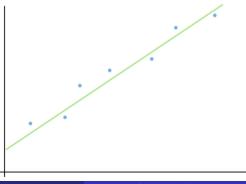
- Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution
- Computational challenges
 - Slow if *n* large, say $n > 10^4$
 - Matrix inversion $(X^T X)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess



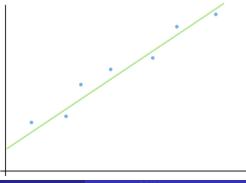
- Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution
- Computational challenges
 - Slow if *n* large, say $n > 10^4$
 - Matrix inversion $(X^T X)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess
- Keep adjusting the line to reduce SSE



- Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution
- Computational challenges
 - Slow if *n* large, say $n > 10^4$
 - Matrix inversion $(X^T X)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess
- Keep adjusting the line to reduce SSE
- Stop when we find the best fit line

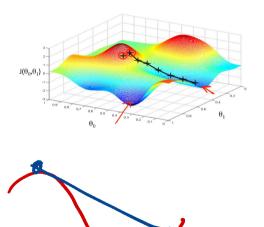


- Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution
- Computational challenges
 - Slow if *n* large, say $n > 10^4$
 - Matrix inversion $(X^T X)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess
- Keep adjusting the line to reduce SSE
- Stop when we find the best fit line
- How do we adjust the line?



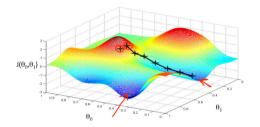
• How does cost vary with parameters $\theta = (\theta, \theta, \phi, \phi)^2$

 $\theta = (\theta_0, \theta_1, \dots, \theta_k)?$ $\blacksquare \text{ Gradients } \frac{\partial}{\partial \theta_i} J(\theta)$

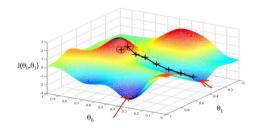


Adjust each parameter against gradient

 $\bullet \ \theta_i = \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$

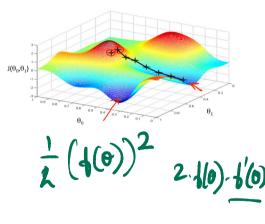


- Adjust each parameter against gradient
 - $\bullet \ \theta_i = \theta_i \left(\frac{\partial}{\partial \theta_i} J(\theta) \right) ?$
- For a single training sample (x, y)
 - $\frac{\partial}{\partial \theta_i} J(\theta) = \frac{\partial}{\partial \theta_i} \frac{1}{2} (h_{\theta}(x) y)^2$



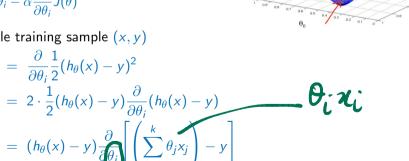
- Adjust each parameter against gradient ■ $\theta_i = \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$
- For a single training sample (x, y)

$$\frac{\partial}{\partial \theta_i} J(\theta) = \frac{\partial}{\partial \theta_i} \frac{1}{4} (h_{\theta}(x) - y)^2$$
$$= \oint \cdot \frac{1}{2} (h_{\theta}(x) - y) \frac{\partial}{\partial \theta_i} (h_{\theta}(x) - y)$$



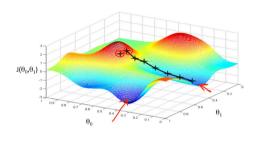
- How does cost vary with parameters $\theta = (\theta_0, \theta_1, \ldots, \theta_k)?$ • Gradients $\frac{\partial}{\partial \theta} J(\theta)$
- Adjust each parameter against gradient $\bullet \ \theta_i = \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$
- For a single training sample (x, y)

 $\frac{\partial}{\partial \theta_i} J(\theta) = \frac{\partial}{\partial \theta_i} \frac{1}{2} (h_{\theta}(x) - y)^2$



 $J(\theta_0, \theta_1)$

- How does cost vary with parameters $\theta = (\theta_0, \theta_1, \ldots, \theta_k)?$ • Gradients $\frac{\partial}{\partial \theta_i} J(\theta)$
- Adjust each parameter against gradient $\bullet \ \theta_i = \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$
- For a single training sample (x, y)



$$\frac{\partial}{\partial \theta_{i}} J(\theta) = \frac{\partial}{\partial \theta_{i}} \frac{1}{2} (h_{\theta}(x) - y)^{2}$$

$$= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \frac{\partial}{\partial \theta_{i}} (h_{\theta}(x) - y)$$

$$= (h_{\theta}(x) - y) \frac{\partial}{\partial \theta_{i}} \left[\left(\sum_{j=0}^{k} \theta_{j} x_{j} \right) - \right]$$

$$= (h_{\theta}(x) - y) \cdot x_{i}$$

• For a single training sample
$$(x, y)$$
, $\frac{\partial}{\partial \theta_i} J(\theta) = (h_{\theta}(x) - y) \cdot x_i$

Image: A matrix

3

• For a single training sample (x, y), $\frac{\partial}{\partial \theta_i} J(\theta) = (h_{\theta}(x) - y) \cdot x_i$

• Over the entire training set,
$$\frac{\partial}{\partial \theta_i} J(\theta) = \sum_{j=1}^n (h_\theta(x_j) - y_j) \cdot x_j^i$$

• • = •

э

• For a single training sample (x, y), $\frac{\partial}{\partial \theta_i} J(\theta) = (h_{\theta}(x) - y) \cdot x_i$

• Over the entire training set,
$$\frac{\partial}{\partial \theta_i} J(\theta) = \sum_{j=1}^n (h_\theta(x_j) - y_j) \cdot x_j^i$$

Batch gradient descent

- Compute h_θ(x_j) for entire training set {(x₁, y₁), ..., (x_n, y_n)}
- Adjust each parameter

$$\theta_i = \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

= $\theta_i - \alpha \cdot \sum_{j=1}^n (h_\theta(x_j) - y_j) \cdot x_j^i$

Repeat until convergence

• For a single training sample (x, y), $\frac{\partial}{\partial \theta_i} J(\theta) = (h_{\theta}(x) - y) \cdot x_i$

• Over the entire training set,
$$\frac{\partial}{\partial \theta_i} J(\theta) = \sum_{j=1}^n (h_{\theta}(x_j) - y_j)$$

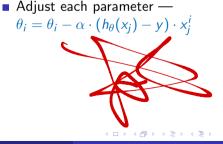
Batch gradient descent

- Compute h_θ(x_j) for entire training set {(x₁, y₁), ..., (x_n, y_n)}
- Adjust each parameter $\theta_i = \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$ $= \theta_i - \alpha \cdot \sum_{j=1}^n (h_\theta(x_j) - y_j) \cdot x_j^i$
- Repeat until convergence

Stochastic gradient descent

 x_i'

For each input x_j , compute $h_{\theta}(x_j)$



• For a single training sample (x, y), $\frac{\partial}{\partial \theta_i} J(\theta) = (h_{\theta}(x) - y) \cdot x_i$

• Over the entire training set, $\frac{\partial}{\partial \theta_i} J(\theta) = \sum_{i=1}^{''} (h_{\theta}(x_i) - y_i) \cdot x_i^i$

Batch gradient descent

- Compute h_θ(x_j) for entire training set {(x₁, y₁), ..., (x_n, y_n)}
- Adjust each parameter $\theta_i = \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$ $= \theta_i - \alpha \cdot \sum_{j=1}^n (h_\theta(x_j) - y_j) \cdot x_j^i$
- Repeat until convergence

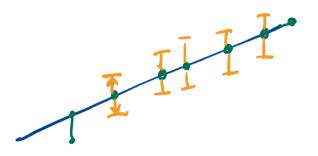
Stochastic gradient descent

- For each input x_j , compute $h_{\theta}(x_j)$
- Adjust each parameter $\theta_i = \theta_i - \alpha \cdot (h_{\theta}(x_j) - y) \cdot x_j^i$

Pros and cons

- Faster progress for large batch size
- May oscillate indefinitely

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Outputs are noisy samples from a linear function
 - $y_i = \theta^T x_i + \epsilon$



э

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Outputs are noisy samples from a linear function
 - $y_i = \theta^T x_i + \epsilon$ • $\epsilon \sim \mathcal{N}(0, \sigma^2)$: Gaussian noise, mean 0, fixed variance σ^2 • $y_i \sim \mathcal{N}(\mu_i, \sigma^2), \ \mu_i = \theta^T x_i$

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Outputs are noisy samples from a linear function
 - $y_i = \theta^T x_i + \epsilon$
 - $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2)$: Gaussian noise, mean 0, fixed variance σ^2
 - $y_i \sim \mathcal{N}(\mu_i, \sigma^2), \ \mu_i = \theta^T x_i$
- Model gives us an estimate for θ , so regression learns μ_i for each x_i

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Outputs are noisy samples from a linear function
 - $y_i = \theta^T x_i + \epsilon$
 - $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2)$: Gaussian noise, mean 0, fixed variance σ^2
 - $y_i \sim \mathcal{N}(\mu_i, \sigma^2), \ \mu_i = \theta^T x_i$
- Model gives us an estimate for θ , so regression learns μ_i for each x_i
- How good is our estimate?

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Outputs are noisy samples from a linear function
 - $y_i = \theta^T x_i + \epsilon$
 - $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2)$: Gaussian noise, mean 0, fixed variance σ^2
 - $y_i \sim \mathcal{N}(\mu_i, \sigma^2), \ \mu_i = \theta^T x_i$
- Model gives us an estimate for θ , so regression learns μ_i for each x_i
- How good is our estimate?
- **Likelihood** probability of current observation given θ

