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Predicting numerical values

Living area (feet?) | Price (10008s)
- : 2104 400
m D housing pri
ata about housing prices 4660 e
. . . 2400 369
m Predict house price from living area 1416 939
3000 540
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Predicting numerical values

Living area (feet?) | Price (10008s)
m Data about housing prices ?égg ggg
m Predict house price from living area ﬁ?g ggg
3000 540

m Scatterplot corresponding to the data e -
m Fit a function to the points il

300 wx XS

TR TR I

square feet
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Linear predictors

m A richer set of input data

Living area (feet?) | #bedrooms | Price (1000$s)
2104 3 400
1600 3 330
2400 3 369
1416 2 232
3000 4 540
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Linear predictors

m A richer set of input data

_ _ ) Living area (feet?) | #bedrooms | Price (1000$s)
m Simplest case: fit a linear 2104 3 200
function with parameters 1600 3 330
0 = (6, 01.6>) 2400 3 369
1416 2 232
ho(x) = 0o + O1x1 + O2x2 3000 4 540

\[/
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Linear predictors

m A richer set of input data

m Simplest case: fit a linear
function with parameters
¢ = (0o, 01, 02)

ho(x) ={0o H- 01x1 + O2x2

m Input x may have k features
(X1, X2y« -+, Xk)

Madhavan Mukund
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Living area (feet?) | #bedrooms | Price (1000$s)
2104 3 400
1600 3 330
2400 3 369
1416 2 232
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Linear predictors

m A richer set of input data

_ _ ) Living area (feet?) | #bedrooms | Price (1000$s)
m Simplest case: fit a linear 2104 3 400
function with parameters 1600 3 330
6 = (6o, 01,65) 2400 3 369
1416 2 232
ho(x) = 6 + O1x1 + O2x2 3000 4 540
m Input x may have k features : E 5 B
(X1, X2y« -+, Xk)

m By convention, add a dummy
feature xp = 1
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Linear predictors

m A richer set of input data

m Simplest case: fit a linear
function with parameters
¢ = (0o, 01, 02)

ho(x) = 0o + O1x1 + O2x2

m Input x may have k features
(X1, X2y« -+, Xk)

m By convention, add a dummy
feature xp = 1

m For k input features

k
he(x) = Z 0;x;
i=0

Madhavan Mukund

Living area (feet?) | #bedrooms | Price (1000$s)
2104 3 400
1600 3 330
2400 3 369
1416 2 232
4

3000
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Finding the best fit line

m Training input is
{(x1,31), (x2,52), -+ (Xn, yn)}
m Each input x; is a vector (x, ..., xX)

m Add x? = 1 by convention

m y; is actual output
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Finding the best fit line

m Training input is °

Y
{(X17Y1)7(X27Y2)7~~-»(Xm)/n)} ,l. /
m Each input x; is a vector (x,-l, o ,x,-k) L -~ &
m Add x? = 1 by convention o,(fli;)
m y; is actual output

m How far away is our prediction hy(x;) from
the true answer y;?

o govd in b ?
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Finding the best fit line

m Training input is
{(x1,31), (x2,52), -+, (Xn, yn) }
m Each input x; is a vector (x, ..., xX)
m Add x? = 1 by convention
m y; is actual output

m How far away is our prediction hy(x;) from
the true answer y;?

m Define a cost (loss) function
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Finding the best fit line

m Training input is
{(x1,31), (x2,52), -+, (Xn, yn) }
m Each input x; is a vector (x, ..., xX)
m Add x? = 1 by convention
m y; is actual output

m How far away is our prediction hy(x;) from
the true answer y;?

m Define a cost (loss) function
1< 2
J(0) = 5 > (ho(xi) = vi)

i=1

m Essentially, the sum squared error (SSE)

Madhavan Mukund Lecture 6: 30 January, 2025 DMML Jan-Apr 2025 4/9



Finding the best fit line

m Training input is
{60, y2): (2, 2)s - s (s i)}
m Each input x; is a vector (x, ..., xX)
m Add x? = 1 by convention
m y; is actual output
m How far away is our prediction hy(x;) from
the true answer y;?

m Define a cost (loss) function

50) = 5 3 (holos) )

i=1
m Essentially, the sum squared error (SSE) \/
m Divide by n, mean squared error (MSE)
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Minimizing SSE

m Write x; as row vector [ 1 x,-1 oo xk ]
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Minimizing SSE

m Write x; as row vector [ 1 x} - xk ] LO(:":) 'z%v} 4’9‘( - +q

(1 xd - x] %l

e [h] A :
"X=1 Xl.ln.'.. |1y y 5. 0 Oyl 48,
094 -- Oy 4
R roxk
m Write 0 as column vector, GT:[HO 01 --- Hk} %

e —

‘“"‘f‘b XO = e sk ) podd @
Ll9(71.3
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Minimizing SSE

m Write x; as row vector [ 1 x,-1 x,-k]
L] [
1 d y

m X = 1 Xil.""' Xik Y = yi
U IR B I

——

( 3
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Minimizing SSE

m Write x; as row vector [ 1 x,-1 x,-k ]
(1 xt o X ] [ v ]
1 x3 - xXF y2
L .
1 Xil Xik y yi
L1 Xy o xp L o
m Write 0 as column vector, GT:[HO 01 --- Hk}
1< 2 1 T
n J(0) = 5 > (ho(x) 1) = H(X0— ) T(X0~ y)
i=1

m Minimize J(6) — set Vy J(0) =0
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Minimizing SSE

= J(0) = S(X0— )T (X6~ y) Q(O)T

m Vo J(0) = Vg (X0 - y)T (X0 - y)

m To minimize, set Vy £(X60 — )T (X0 — y) =0 { -
0 2(‘ y) ' ( y) !Oflr—'

\
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Minimizing SSE

1
" J(0) = (X0 )T (X0 y) T
ko))" = 6%

m Vo J(0) = Vo 5(X0—y)T (X0 - y)
— - —

= To minimize, set Vy 3(X0 — y)" (X0 —y) =0
— _—_— e

m Expand, 1V, (7XTX0 —y"X0 —0TXTy+yTy)=0
=)

———

\/
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Minimizing SSE

= J(0) = 5(X0—y) (X0~ y)

m Vo J(0) = Vg 3(X0— y)T (X0 —y)
= To minimize, set Vy 3(X0 — y)7 (X0 —y) =0
m Expand, 1V, (7TXTX0 —y"™X0 —0TXTy+yTy)=0

m Check that y " X0 = 07Xy =" hy(x) - y;

o — < Tlo(x)y,
Z‘.’N"—H%O
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Minimizing SSE

= J(0) = 5(X0—y) (X0~ y)

m Vo J(0) = Vo 5(X0—y)T (X0 - y)
= To minimize, set Vy 3(X0 — y)7 (X0 —y) =0

Expand, 1V, (0TXTX0—yTX0—0TXTy +yTy)=0

m Check that y " X0 = 07Xy =" hy(x) - y;
i=1

Combining terms, %Vg (HTXTXH —20TXTy + yq_v) =0

——
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Minimizing SSE

= J(0) = 5(X0—y) (X0~ y)

m Vo J(0) = Vo 5(X0—y)T (X0 - y)
= To minimize, set Vy 3(X0 — y)7 (X0 —y) =0

Expand, 3V (07XTX0 —yTX0 — 07Xy +yTy) =0 P
m Check that y" X0 =07 X"y = Z ho(xi) - i <~
Combining terms, ,Vg 0T XT X0 &T@—F =0 2% 7.
/ X'y

m After differentiating, X" X0 — X Ty

Madhavan Mukund Lecture 6: 30 January, 2025 DMML Jan-Apr 2025 6/9



Minimizing SSE

= J(0) = 5(X0—y) (X0~ y)

m Vo J(0) =Vy 5(X0—y)T (X0 —y) le‘_
m To minimize, set Vy %(X@ — y)T(X9 —y)=0 ¢
m Expand, 1V, (7TXTX0 —y"™X0 —0TXTy+yTy)=0 Y¢5m$Slm

m Check that y " X0 = 07Xy =" hy(x) - y;
i=1

Combining terms, %Vg (OTXTXO—20"XTy +yTy)=0
m After differentiating, X" X0 — X7y =0

m Solve to get normal equation, § = (X" X)X Ty
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Minimizing SSE iteratively

m Normal equation # = (X" X)X Ty is a closed form solution
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Minimizing SSE iteratively

m Normal equation # = (X" X)X Ty is a closed form solution

m Computational challenges
m Slow if n large, say n > 10*

m Matrix inversion (X" X)~! is expensive, also need invertibility
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Minimizing SSE iteratively

m Normal equation # = (X" X)X Ty is a closed form solution

m Computational challenges
m Slow if n large, say n > 10*
m Matrix inversion (X" X)~! is expensive, also need invertibility

m lterative approach, make an initial
guess
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Minimizing SSE iteratively

m Normal equation # = (X" X)X Ty is a closed form solution

m Computational challenges
m Slow if n large, say n > 10*
m Matrix inversion (X" X)~! is expensive, also need invertibility

m lterative approach, make an initial
guess
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Minimizing SSE iteratively

m Normal equation # = (X" X)X Ty is a closed form solution

m Computational challenges
m Slow if n large, say n > 10*

m Matrix inversion (X" X)~! is expensive, also need invertibility

m lterative approach, make an initial
guess

m Keep adjusting the line to reduce SSE
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Minimizing SSE iteratively

m Normal equation # = (X" X)X Ty is a closed form solution

m Computational challenges
m Slow if n large, say n > 10*

m Matrix inversion (X" X)~! is expensive, also need invertibility

m lterative approach, make an initial
guess

m Keep adjusting the line to reduce SSE

m Stop when we find the best fit line
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Minimizing SSE iteratively

m Normal equation # = (X" X)X Ty is a closed form solution

m Computational challenges
m Slow if n large, say n > 10*

m Matrix inversion (X" X)~! is expensive, also need invertibility

Iterative approach, make an initial
guess

Keep adjusting the line to reduce SSE
m Stop when we find the best fit line

m How do we adjust the line?
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Gradient desce

m How does cost vary with parameters
0 = (00,01,...,0)?
s,
i —J(6
m Gradients 80,-'/( )

20,6,)
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Gradient descent

m How does cost vary with parameters
0 = (00,01,...,0)?
s,
i —J(0
m Gradients 20, J(0)
m Adjust each parameter against gradient

| 9,’ = 9,‘ — O/aielj(e)
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Gradient descent

m How does cost vary with parameters
0 = (00,01,...,0)?
s,
i —J(6
m Gradients 80,-'/( )
m Adjust each pargs
| 9,’ — 9,‘ —

m For a single training sample (x, y)

0 01
5500 = 55 () = y)
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Gradient descent

m How does cost vary with parameters
0 = (00,01,...,0)?
s,
i —J(0
m Gradients 20, J(0)
m Adjust each parameter against gradient

| 9,’ = 9,‘ — O/aielj(e)

m For a single training sample (x, y)

0 0

e
89,-J(9) = a@/_]f(he(x)—Y) 2 *(-9')') 2,”0),."(01

= z %(hg(X) —)/)aaei(hﬁ(x) _y)

————
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Gradient descent

m How does cost vary with parameters
0 = (00,01,...,0)?
s,
i —J(0
m Gradients 20, J(0)
m Adjust each parameter against gradient

| 9,’ = 9,‘ — O/aielj(e)

m For a single training sample (x, y)

0 01

570 = 255 (h(x) — y)?
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Gradient descent

m How does cost vary with parameters
0 = (00,01,...,0)?
s,
i —J(0
m Gradients 20, J(0)
m Adjust each parameter against gradient

| 9,’ = 9,‘ — O/aielj(e)

m For a single training sample (x, y)

0 01
S I0) = 2 (he() — )
= 2 (h() ) (ko) ~ )
0| (< 1
= (ho(x) =)o | [ Dt | K = (h(x) =) xi
! J:O
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Gradient descent

O J(6) = (ho(x) — y) - x

m For a single training sample (x, y), 20
i
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Gradient descent

O J(6) = (ho(x) — y) - x

m For a single training sample (x, y), 20
i

n

: . 0 .
m Over the entire training set, a—gij(e) = Z}(hg(xj-) = Yj) X
J:
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Gradient descent

O J(6) = (ho(x) — y) - x

m For a single training sample (x, y), 20
i

. - 0 . ,
m Over the entire training set, a—gij(e) = Z}(hg(xj-) —Yj) X
J:
Batch gradient descent
m Compute hy(x;) for entire training set
{(Xl‘/ yl)v ) (X,,./ Yn)}
m Adjust each parameter

0
0 = 0 — g J(0)

=0 —a-Y (h(x)—y) X
j=1

m Repeat until convergence
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Gradient descent

O J(6) = (ho(x) — y) - x

m For a single training sample (x, y), 20
i

n

: . 0 .
m Over the entire training set, a—gij(e) = Z(hg()(j) = Yj) X

j=1
Batch gradient descent Stochastic gradient descent
m Compute hy(x;) for entire training set m For each input x;, compute hy(x;)
{Gas), - Gcn, )} m Adjust each parameter —
m Adjust each parameter 0i =0;i —a-(ho(x5) — y) - X
0
n

=0 —a-Y (h(x)—y) X
j=1

m Repeat until convergence
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Gradient descent

m For a single training sample (x, y), %J(G) = (ho(x) — y) - xi ,g l A

n

m Over the entire training set, %J(G) = Z(hg(Xj) -y Xj g"‘k“’lc

j=1 T
Batch gradient descent Stochastic gradient descent

m Compute hy(x;) for entire training set m For each input x;, compute hy(x;)

{Gas), - Gcn, )} m Adjust each parameter —

m Adjust each paarameter 0i =0;i —a-(ho(x5) — y) - X

=0 aa—einJ(é’) Pros and cons
=0, —a- Z(hﬁ(xf) —y)- XJ' m Faster progress for large batch size
j=1

m May oscillate indefinitely
m Repeat until convergence
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Regression and SSE loss

m Training input is {(x1,y1), (x2,¥2), -, (X, ¥n)}
m Outputs are noisy samples from a linear function

[ ] y;:OTX;+e
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Regression and SSE loss

m Training input is {(x1, 1), (x2,¥2), .-, (X0, ¥n)}
m Outputs are noisy samples from a linear function
Yi= 07 x; +@
e ~ N(0,0?) : Gaussian noise, mean 0, fixed variance o2

2 T
w oy~ N(pi,0%), pi =0"x
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Regression and SSE loss

m Training input is {(x1,y1), (x2,y2), ..., (Xn, ¥n)}

m Outputs are noisy samples from a linear function

my = 0T x; + €

m ¢ ~ N(0,0?) : Gaussian noise, mean 0, fixed variance o
m yi ~ N (i, 0?), pi =07 x

m Model gives us an estimate for ¢, so regression learns 1i; for each x;
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Regression and SSE loss

m Training input is {(x1,y1), (x2,y2), ..., (Xn, ¥n)}
m Outputs are noisy samples from a linear function
my = 0T x; + €
m ¢ ~ N(0,0?) : Gaussian noise, mean 0, fixed variance o
m yi ~ N (i, 0?), pi =07 x

m Model gives us an estimate for ¢, so regression learns 1i; for each x;

m How good is our estimate?
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Regression and SSE loss

m Training input is {(x1, 1), (x2,¥2), .-, (X0, ¥n)}
m Outputs are noisy samples from a linear function
my = 0T x; + €
m ¢ ~ N(0,0?) : Gaussian noise, mean 0, fixed variance o

m oy~ N(pi,0?), pi =07
m Model gives us an estimate for ¢, so regression learns 1i; for each x;
m How good is our estimate?

m Likelihood — probability of current observation given 6
£0) =[Pt | Maximes oﬁ@)
i=1 = -_—
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