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Predicting numerical values

Data about housing prices

Predict house price from living area

Scatterplot corresponding to the data

Fit a function to the points
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Linear predictors

A richer set of input data

Simplest case: fit a linear
function with parameters
ω = (ω0, ω1, ω2)

hω(x) = ω0 + ω1x1 + ω2x2

Input x may have k features
(x1, x2, . . . , xk)

By convention, add a dummy
feature x0 = 1

For k input features

hω(x) =
k∑

i=0

ωixi
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Finding the best fit line

Training input is
{(x1, y1), (x2, y2), . . . , (xn, yn)}

Each input xi is a vector (x1i , . . . , x
k
i )

Add x0i = 1 by convention

yi is actual output

How far away is our prediction hω(xi ) from
the true answer yi?

Define a cost (loss) function

J(ω) =
1

2

n∑

i=1

(hω(xi )→ yi )
2

Essentially, the sum squared error (SSE)

Divide by n, mean squared error (MSE)
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Minimizing SSE

Write xi as row vector
[
1 x1i · · · xki

]

X =





1 x11 · · · xk1
1 x12 · · · xk2

· · ·
1 x1i · · · xki

· · ·
1 x1n · · · xkn




, y =





y1
y2
· · ·
yi
· · ·
yn





Write ω as column vector, ωT =
[
ω0 ω1 · · · ωk

]

J(ω) =
1

2

n∑

i=1

(hω(xi )→ yi )
2 =

1

2
(Xω → y)T (Xω → y)

Minimize J(ω) — set ↑ω J(ω) = 0
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Minimizing SSE

J(ω) =
1

2
(Xω → y)T (Xω → y)

↑ω J(ω) = ↑ω
1
2(Xω → y)T (Xω → y)

To minimize, set ↑ω
1
2(Xω → y)T (Xω → y) = 0

Expand, 1
2↑ω (ωTXTXω → yTXω → ωTXT y + yT y) = 0

Check that yTXω = ωTXT y =
n∑

i=1

hω(xi ) · yi

Combining terms, 1
2↑ω (ωTXTXω → 2ωTXT y + yT y) = 0

After di!erentiating, XTXω → XT y = 0

Solve to get normal equation, ω = (XTX )→1XT y
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Minimizing SSE iteratively

Normal equation ω = (XTX )→1XT y is a closed form solution

Computational challenges

Slow if n large, say n > 104

Matrix inversion (XTX )→1 is expensive, also need invertibility

Iterative approach, make an initial
guess

Keep adjusting the line to reduce SSE

Stop when we find the best fit line

How do we adjust the line?
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Gradient descent

How does cost vary with parameters
ω = (ω0, ω1, . . . , ωk)?

Gradients
ε

εωi
J(ω)

Adjust each parameter against gradient

ωi = ωi → ϑ
ε

εωi
J(ω)

For a single training sample (x , y)
ε

εωi
J(ω) =

ε

εωi

1

2
(hω(x)→ y)2
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Gradient descent
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ε

εωi
J(ω) =

ε

εωi

1

2
(hω(x)→ y)2

= 2 · 1
2
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ε

εωi
(hω(x)→ y)
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Gradient descent
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






k∑
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ωjxj


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


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Gradient descent

How does cost vary with parameters
ω = (ω0, ω1, . . . , ωk)?

Gradients
ε
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ωi = ωi → ϑ
ε

εωi
J(ω)

For a single training sample (x , y)
ε

εωi
J(ω) =

ε

εωi

1

2
(hω(x)→ y)2

= 2 · 1
2
(hω(x)→ y)

ε

εωi
(hω(x)→ y)

= (hω(x)→ y)
ε

εωi








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ωjxj



→ y



 = (hω(x)→ y) · xi

Madhavan Mukund Lecture 6: 30 January, 2025 DMML Jan–Apr 2025 8 / 9

-



Gradient descent

For a single training sample (x , y),
ε

εωi
J(ω) = (hω(x)→ y) · xi

Over the entire training set,
ε

εωi
J(ω) =

n∑

j=1

(hω(xj)→ yj) · x ij

Compute hω(xj) for entire training set
{(x1, y1), . . . , (xn, yn)}

Adjust each parameter

ωi = ωi → ϑ
ε

εωi
J(ω)

= ωi → ϑ ·
n∑

j=1

(hω(xj)→ yj) · x ij

Repeat until convergence

For each input xj , compute hω(xj)

Adjust each parameter —
ωi = ωi → ϑ · (hω(xj)→ y) · x ij
Faster progress for large batch size

May oscillate indefinitely
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For each input xj , compute hω(xj)

Adjust each parameter —
ωi = ωi → ϑ · (hω(xj)→ y) · x ij

Faster progress for large batch size

May oscillate indefinitely
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Gradient descent

For a single training sample (x , y),
ε

εωi
J(ω) = (hω(x)→ y) · xi

Over the entire training set,
ε

εωi
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Repeat until convergence

Stochastic gradient descent

For each input xj , compute hω(xj)

Adjust each parameter —
ωi = ωi → ϑ · (hω(xj)→ y) · x ij

Pros and cons

Faster progress for large batch size

May oscillate indefinitely
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Regression and SSE loss

Training input is {(x1, y1), (x2, y2), . . . , (xn, yn)}
Outputs are noisy samples from a linear function

yi = ωT xi + ϖ

ϖ ↓ N (0,ϱ2) : Gaussian noise, mean 0, fixed variance ϱ2

yi ↓ N (µi ,ϱ2), µi = ωT xi

Model gives us an estimate for ω, so regression learns µi for each xi

How good is our estimate?

Likelihood — probability of current observation given ω

L(ω) =
n∏

i=1

P(yi | xi ; ω)
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