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Predicting numerical values

Data about housing prices

Predict house price from living area

Scatterplot corresponding to the data

Fit a function to the points

Madhavan Mukund Lecture 6: 30 January, 2025 DMML Jan–Apr 2025 2 / 10



Linear predictors

A richer set of input data

Simplest case: fit a linear
function with parameters
θ = (θ0, θ1, θ2)

hθ(x) = θ0 + θ1x1 + θ2x2

Input x may have k features
(x1, x2, . . . , xk)

By convention, add a dummy
feature x0 = 1

For k input features

hθ(x) =
k∑

i=0

θixi
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Finding the best fit line

Training input is
{(x1, y1), (x2, y2), . . . , (xn, yn)}

Each input xi is a vector (x1i , . . . , x
k
i )

Add x0i = 1 by convention

yi is actual output

How far away is our prediction hθ(xi ) from
the true answer yi?

Define a cost (loss) function

J(θ) =
1

2

n∑
i=1

(hθ(xi )− yi )
2

Essentially, the sum squared error (SSE)

Divide by n, mean squared error (MSE)
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Minimizing SSE

Write xi as row vector
[
1 x1i · · · xki

]

X =



1 x11 · · · xk1
1 x12 · · · xk2

· · ·
1 x1i · · · xki

· · ·
1 x1n · · · xkn

, y =



y1
y2
· · ·
yi
· · ·
yn


Write θ as column vector, θT =

[
θ0 θ1 · · · θk

]
J(θ) =

1

2

n∑
i=1

(hθ(xi )− yi )
2 =

1

2
(Xθ − y)T (Xθ − y)

Minimize J(θ) — set ∇θ J(θ) = 0
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Minimizing SSE

J(θ) =
1

2
(Xθ − y)T (Xθ − y)

∇θ J(θ) = ∇θ
1
2(Xθ − y)T (Xθ − y)

To minimize, set ∇θ
1
2(Xθ − y)T (Xθ − y) = 0

Expand, 1
2∇θ (θTXTXθ − yTXθ − θTXT y + yT y) = 0

Check that yTXθ = θTXT y =
n∑

i=1

hθ(xi ) · yi

Combining terms, 1
2∇θ (θTXTXθ − 2θTXT y + yT y) = 0

After differentiating, XTXθ − XT y = 0

Solve to get normal equation, θ = (XTX )−1XT y
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Minimizing SSE iteratively

Normal equation θ = (XTX )−1XT y is a closed form solution

Computational challenges

Slow if n large, say n > 104

Matrix inversion (XTX )−1 is expensive, also need invertibility

Iterative approach, make an initial
guess

Keep adjusting the line to reduce SSE

Stop when we find the best fit line

How do we adjust the line?
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Gradient descent

How does cost vary with parameters
θ = (θ0, θ1, . . . , θk)?

Gradients
∂

∂θi
J(θ)

Adjust each parameter against gradient

θi = θi − α
∂

∂θi
J(θ)

For a single training sample (x , y)

∂

∂θi
J(θ) =

∂

∂θi

1

2
(hθ(x)− y)2

= 2 · 1
2
(hθ(x)− y)

∂

∂θi
(hθ(x)− y)

= (hθ(x)− y)
∂

∂θi

 k∑
j=0

θjxj

− y

 = (hθ(x)− y) · xi
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Gradient descent

For a single training sample (x , y),
∂

∂θi
J(θ) = (hθ(x)− y) · xi

Over the entire training set,
∂

∂θi
J(θ) =

n∑
j=1

(hθ(xj)− yj) · x ij

Batch gradient descent

Compute hθ(xj) for entire training set
{(x1, y1), . . . , (xn, yn)}

Adjust each parameter

θi = θi − α
∂

∂θi
J(θ)

= θi − α ·
n∑

j=1

(hθ(xj)− yj) · x ij

Repeat until convergence

Stochastic gradient descent

For each input xj , compute hθ(xj)

Adjust each parameter —
θi = θi − α · (hθ(xj)− y) · x ij

Pros and cons

Faster progress for large batch size

May oscillate indefinitely
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Regression and SSE loss

Training input is {(x1, y1), (x2, y2), . . . , (xn, yn)}
Outputs are noisy samples from a linear function

yi = θT xi + ϵ

ϵ ∼ N (0, σ2) : Gaussian noise, mean 0, fixed variance σ2

yi ∼ N (µi , σ
2), µi = θT xi

Model gives us an estimate for θ, so regression learns µi for each xi

How good is our estimate?

Likelihood — probability of current observation given θ

L(θ) =
n∏

i=1

P(yi | xi ; θ)
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