Lecture 6: 30 January, 2025

Madhavan Mukund https://www.cmi.ac.in/~madhavan

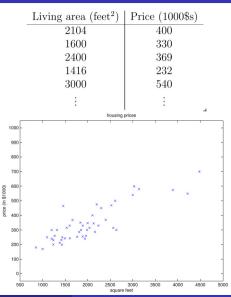
Data Mining and Machine Learning January–April 2025

Predicting numerical values

Data about housing prices

Predict house price from living area

- Scatterplot corresponding to the data
- Fit a function to the points



Linear predictors

- A richer set of input data
- Simplest case: fit a linear function with parameters
 θ = (θ₀, θ₁, θ₂)

 $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$

- Input x may have k features (x₁, x₂, ..., x_k)
- By convention, add a dummy feature x₀ = 1
- For k input features $h_{\theta}(x) = \sum_{i=0}^{k} \theta_i x_i$

Living area (feet ²)	#bedrooms	Price $(1000$ \$s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
:	÷	÷

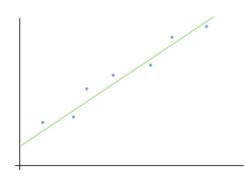
1

Finding the best fit line

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Each input x_i is a vector (x_i^1, \ldots, x_i^k)
 - Add $x_i^0 = 1$ by convention
 - y_i is actual output
- How far away is our prediction h_θ(x_i) from the true answer y_i?
- Define a cost (loss) function

 $J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (h_{\theta}(x_i) - y_i)^2$

- Essentially, the sum squared error (SSE)
- Divide by *n*, mean squared error (MSE)



Minimizing SSE

• Write
$$x_i$$
 as row vector $\begin{bmatrix} 1 & x_i^1 & \cdots & x_i^k \\ 1 & x_2^1 & \cdots & x_2^k \\ & 1 & x_2^1 & \cdots & x_n^k \\ & \ddots & & \\ 1 & x_i^1 & \cdots & x_n^k \end{bmatrix}$, $y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_i \\ \vdots \\ y_n \end{bmatrix}$

• Write θ as column vector, $\theta^{T} = \begin{bmatrix} \theta_0 & \theta_1 & \cdots & \theta_k \end{bmatrix}$

•
$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (h_{\theta}(x_i) - y_i)^2 = \frac{1}{2} (X\theta - y)^T (X\theta - y)$$

• Minimize $J(\theta)$ — set $\nabla_{\theta} J(\theta) = 0$

Minimizing SSE

•
$$J(\theta) = \frac{1}{2}(X\theta - y)^T(X\theta - y)$$

•
$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2} (X\theta - y)^{T} (X\theta - y)$$

• To minimize, set $\nabla_{\theta} \frac{1}{2} (X\theta - y)^T (X\theta - y) = 0$

• Expand, $\frac{1}{2} \nabla_{\theta} \left(\theta^{T} X^{T} X \theta - y^{T} X \theta - \theta^{T} X^{T} y + y^{T} y \right) = 0$

• Check that
$$y^T X \theta = \theta^T X^T y = \sum_{i=1}^n h_{\theta}(x_i) \cdot y_i$$

• Combining terms, $\frac{1}{2}\nabla_{\theta} \left(\theta^{T}X^{T}X\theta - 2\theta^{T}X^{T}y + y^{T}y\right) = 0$

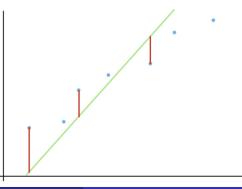
• After differentiating, $X^T X \theta - X^T y = 0$

Solve to get normal equation, $\theta = (X^T X)^{-1} X^T y$

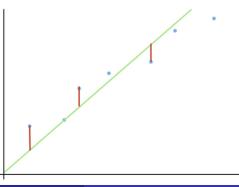
- Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution
- Computational challenges
 - Slow if *n* large, say $n > 10^4$
 - Matrix inversion $(X^T X)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess
- Keep adjusting the line to reduce SSE
- Stop when we find the best fit line
- How do we adjust the line?



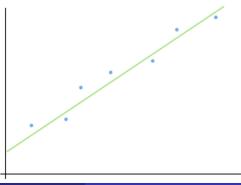
- Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution
- Computational challenges
 - Slow if *n* large, say $n > 10^4$
 - Matrix inversion $(X^T X)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess
- Keep adjusting the line to reduce SSE
- Stop when we find the best fit line
- How do we adjust the line?



- Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution
- Computational challenges
 - Slow if *n* large, say $n > 10^4$
 - Matrix inversion $(X^T X)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess
- Keep adjusting the line to reduce SSE
- Stop when we find the best fit line
- How do we adjust the line?



- Normal equation $\theta = (X^T X)^{-1} X^T y$ is a closed form solution
- Computational challenges
 - Slow if *n* large, say $n > 10^4$
 - Matrix inversion $(X^T X)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess
- Keep adjusting the line to reduce SSE
- Stop when we find the best fit line
- How do we adjust the line?

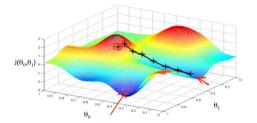


Gradient descent

- Adjust each parameter against gradient

 θ_i = θ_i − α ∂/∂θ_i J(θ)
- For a single training sample (x, y)

$$\begin{aligned} \frac{\partial}{\partial \theta_i} J(\theta) &= \frac{\partial}{\partial \theta_i} \frac{1}{2} (h_{\theta}(x) - y)^2 \\ &= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \frac{\partial}{\partial \theta_i} (h_{\theta}(x) - y) \\ &= (h_{\theta}(x) - y) \frac{\partial}{\partial \theta_i} \left[\left(\sum_{j=0}^k \theta_j x_j \right) - y \right] &= (h_{\theta}(x) - y) \cdot x_i \end{aligned}$$



Gradient descent

• For a single training sample (x, y), $\frac{\partial}{\partial \theta_i} J(\theta) = (h_{\theta}(x) - y) \cdot x_i$

Over the entire training set, -

$$rac{\partial}{\partial heta_i} J(heta) = \sum_{j=1}^n (h_{ heta}(x_j) - y_j) \cdot x_j^i$$

Batch gradient descent

- Compute *h*_θ(*x*_j) for entire training set {(*x*₁, *y*₁), . . . , (*x*_n, *y*_n)}
- Adjust each parameter $\theta_i = \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$ $= \theta_i - \alpha \cdot \sum_{j=1}^n (h_\theta(x_j) - y_j) \cdot x_j^i$
- Repeat until convergence

Stochastic gradient descent

- For each input x_j , compute $h_{\theta}(x_j)$
- Adjust each parameter $\theta_i = \theta_i - \alpha \cdot (h_{\theta}(x_j) - y) \cdot x_j^i$

Pros and cons

- Faster progress for large batch size
- May oscillate indefinitely

Regression and SSE loss

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Outputs are noisy samples from a linear function
 - $y_i = \theta^T x_i + \epsilon$
 - $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2)$: Gaussian noise, mean 0, fixed variance σ^2
 - $y_i \sim \mathcal{N}(\mu_i, \sigma^2), \ \mu_i = \theta^T x_i$
- Model gives us an estimate for θ , so regression learns μ_i for each x_i
- How good is our estimate?
- **Likelihood** probability of current observation given θ

$$\mathcal{L}(\theta) = \prod_{i=1}^{n} P(y_i \mid x_i; \theta)$$