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Finding the best fit line

m Training input is
{(Xl-/yl)v (X27y2)7 ) (men)}
m Each input x; is a vector (x, ..., xX)

m Add x? = 1 by convention

m y; is actual output

m How far away is our prediction hy(x;) from
the true answer y;?

m Define a cost (loss) function
1< 2
J(0) =5 > (ho(xi) = vi)

i=1

m Essentially, the sum squared error (SSE)

m Divide by n, mean squared error (MSE)
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Minimizing SSE

m Write x; as row vector [ 1 x,-1 x,-k ]
r 1 X% DTS X]l-( T B _yl 7]
1 x3 - xXF y2
L X . .
1 Xil A Xik y yi
L1 Xy o X L o
m Write 6 as column vector, 7 = [ Oy 01 --- 04 }
1< 21 T
u J(0) = 5 D (ho(x) 1) = H(X0— ) T(X0~ y)
i=1

m Minimize J(6) — set Vy J(0) =0
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Minimizing SSE iteratively

m Normal equation # = (X" X)X Ty is a closed form solution

m Computational challenges

m Matrix inversion (X7 X) ! is expensive, also need invertibility

m lterative approach, make an initial
guess
m Adjust each parameter against I
gradient
0
] 9,':(9,'—&7./(9) I

00;

m Stop when we converge

Gradient descent
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Regression and SSE loss

m Training input is {(x1, 1), (x2,¥2), .-+, (X0, ¥n)}
m Outputs are noisy samples from a linear function
my = 0T x; + €
m ¢ ~ N(0,0?) : Gaussian noise, mean 0, fixed variance o

m oy~ N(pi,0?), pi =07
m Model gives us an estimate for ¢, so regression learns yi; for each x;
m How good is our estimate?

m Likelihood — probability of current observation given 6

£(0) =[] Pi | xi:6)
=1
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Likelihood

m How good is our estimate?

m Want Maximum Likelihood Estimator (MLE)
m Find 6 that maximizes £(0 H P(y; | xi; 0
m Equivalently, maximize log likelihood

£(0) = log (H P(yi | xi; 0 ) Z log(P(y; | xi; 0))
i—1

m Easier to work with summation than product
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Log likelihood and SSE loss

1 Ci—e)? 1 (vi—6 T x)?
e 252 — e 202

V2ro? V2mo?

m Log likelihood (assuming natural logarithm)

Z'°g< <;ZX”2> :,,|og( ! )_ZW
V2mo? V2ro? P 2072

m To maximize /(0) with respect to 0, ignore all terms that do not depend on 0

m y; =N (pi,0%), so P(yi | xi;0) =

m Optimum value of ¢ is given by
n n
Omse = arg max [— Z(y,- — HTX,-)2] = arg min [Z(y,- — 0Tx,-)2]
0 i=1 0 i=1
m Assuming data points are generated by linear function and then perturbed by
Gaussian noise, SSE is the “correct” loss function to maximize likelihood
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The non-linear case

. . . 10 .
m What if the relationship is )
not linear? = Xy
m Here the best possible A
explanation seems to be a y £ . N
quadratic - ¢ S 1"
m Non-linear : cross " _w 0.
dependencies L R
m Input x; : (x;;, X 0 e 0w
PUt X; : (Xi» X 3 2 ol 0 1 2
m Quadratic dependencies: X1

y = 00+ 01x;, + 02x;, + 011X7 + 022%7 + 012, X,
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The non-linear case

10

m What if the relationship is
not linear?

—— Predictions

m Here the best possible
explanation seems to be a
quadratic

m Non-linear : cross
dependencies

m Input x; : (X, ;)

m Quadratic dependencies:
y = 0o + 01x;, + O2x;, + 911X,-f + 922X,-§ + O12xi, Xi,
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The non-linear case

10

m Recall how we fit a line
to
1 x| { . }

m For quadratic, add new
coefficients and expand

—— Predictions

parameters
to
[1 X; X?} 01
)
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The non-linear case

m Input (x;,, x;,) —— Predictions

m For the general quadratic
case, we add new derived

“features”
Xy = ><,-21
Xiy = XI%
Xis = XjXi,
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The non-linear case

m Original input matrix

1 X11
1 X2
1 Xi
L1 Xp

Madhavan Mukund

X1,
X2,

X, i

—— Predictions
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The non-linear case

m Expanded input matrix —— Predictions

- 5 o -
1 Xy, X, X3, Xg, XX
2

2
I xo, X2, X3, X5, Xo,X2,
. . 2 2 s
1 x; X Xi o Xg o Xy Xi

2 2
1 Xnp Xnp an XnQ Xny Xy d

m New columns are computed
and filled in from original
inputs
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Exponential parameter blow-up

m Cubic derived features —— Predictions

2., 2.,
Xi2 Xiy s Xi2X13'
X X X2X'

B g2y
Xiy Xiy Xig s

2 2 2

n' Xf2 T3

Xiy Xiny Xiy Xigy XiyXiz,

Xiyr Xipy Xz -
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Higher degree polynomials

m How complex a polynomial

should we try? 10 1 7
300

-2 /

m Aim for degree that
minimizes SSE

m As degree increases,
features explode
exponentially
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m Need to be careful about

. : 10
adding higher degree terms R & g v

-2 /

m For n training points, can
always fit polynomial of
degree (n — 1) exactly

m However, such a curve
would not generalize well to
new data points

m Overfitting — model fits
training data well, performs
poorly on unseen data
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Regularization

m Need to trade off SSE

against curve complexity 10 = J
4

-2 /

m So far, the only cost has
been SSE

m Add a cost related to
parameters (0o, 01,...,0k)

m Minimize, for instance

Z ~ ) +292
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Regularization

1 n 5 5 10 T
DICEIOES W T 7
i=1

Jj=1
m Second term penalizes curve complexity

m Variations on regularization

k
m Ridge regression: 2912
j=1

K
m LASSO regression: Z 16;|
j=1
K
m Elastic net regression: Z M10;] + /\QOJ-Z
j=1
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The non-polynomial case

m Percentage of urban

population as a function of 100 ) LR
- o
per capita GDP 0 o ° ° o
. = o © ° ° o
m Not clear what polynomial E 7 8 ° © ° .
would be reasonable o cos oo I
2 @, ; .
m Take log of GDP 2 o
§ & o
. Q2 o
m Regression we are 5 &, °
_ 2 1
computing is g
y = 6o + 01logx; 8 o
8- °
T
77

T T T T
42416
United Nations per capita GDP
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The non-polynomial case

m Percentage of urban

population as a function of 100 B o
. o
per capita GDP a o u 5 my
@ o
o
. = - o © o
m Not clear what polynomial c o & 30 ° B
o o o ° 4
would be reasonable D B 0 °od o o,
o ° Oo o° 0o o o 8
E 1 ° & o %% °,0 ¢
m Take log of GDP 2 . B . B
§ ooc?O ) ° 5 9
. el o o
m Regression we are 3 | @ e . °
. . ® o @ §o e 2
computing Is R
o
=0+ 611 g °
y 0 1108 X1 o o R o
8 - oo
4,3‘{381 : ' I 10,655’)3
IPcGDP95
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The non-polynomial case

m Reverse the relationship

m Plot per capita GDP in
terms of percentage of
urbanization

m Now we take log of the
output variable
logy = 0o + 01xa

m Log-linear transformation
m Earlier was linear-log

m Can also use log-log

IPcGDP95
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% urban 95 (World Bank)
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