
Java: class hierarchy, polymorphism, abstract classes

Madhavan Mukund, S P Suresh

Programming Language Concepts

Lecture 4, 23 January 2025

A Java class

An Employee class

public class Employee{
private String name;
private double salary;

// Some Constructors ...

// "mutator" methods
public boolean setName(String s){ ... }
public boolean setSalary(double x){ ... }

// "accessor" methods
public String getName(){ ... }
public double getSalary(){ ... }

// other methods
public double bonus(float percent){

return (percent/100.0)*salary;
}

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 2 / 25

#

Subclasses

Managers are special types of employees with extra features

public class Manager extends Employee{

private String secretary;

public boolean setSecretary(name s){ ... }

public String getSecretary(){ ... }

}

Manager objects inherit other fields and methods from Employee

Every Manager has a name, salary and methods to access and manipulate these.

Manager is a subclass of Employee

Think of subset

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 3 / 25

& class Square (Rectory1
I

Subclasses

Managers are special types of employees with extra features

public class Manager extends Employee{

private String secretary;

public boolean setSecretary(name s){ ... }

public String getSecretary(){ ... }

}

Manager objects inherit other fields and methods from Employee

Every Manager has a name, salary and methods to access and manipulate these.

Manager is a subclass of Employee

Think of subset

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 3 / 25

A

Subclasses

Managers are special types of employees with extra features

public class Manager extends Employee{

private String secretary;

public boolean setSecretary(name s){ ... }

public String getSecretary(){ ... }

}

Manager objects inherit other fields and methods from Employee

Every Manager has a name, salary and methods to access and manipulate these.

Manager is a subclass of Employee

Think of subset

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 3 / 25

Employee
I

Manager

⑭anges Employees

Subclasses

Manager objects do not
automatically have access to private
data of parent class.

Common to extend a parent class
written by someone else

How can a constructor for Manager
set instance variables that are private
to Employee?

Some constructors for Employee

A constructor for Manager

Use parent class’s constructor using
super

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 4 / 25

Subclasses

Manager objects do not
automatically have access to private
data of parent class.

Common to extend a parent class
written by someone else

How can a constructor for Manager
set instance variables that are private
to Employee?

Some constructors for Employee

A constructor for Manager

Use parent class’s constructor using
super

public class Employee{
...
public Employee(String n, double s){

name = n; salary = s;
}
public Employee(String n){

this(n,500.00);
}

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 4 / 25

⑨

Subclasses

Manager objects do not
automatically have access to private
data of parent class.

Common to extend a parent class
written by someone else

How can a constructor for Manager
set instance variables that are private
to Employee?

Some constructors for Employee

A constructor for Manager

Use parent class’s constructor using
super

public class Employee{
...
public Employee(String n, double s){

name = n; salary = s;
}
public Employee(String n){

this(n,500.00);
}

}

public class Manager extends Employee{
..
public Manager(String n, double s, String sn){

super(n,s); /* super calls
Employee constructor */

secretary = sn;
}

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 4 / 25

-

Inheritance

In general, subclass has more features
than parent class

Subclass inherits instance variables,
methods from parent class

Every Manager is an Employee, but not
vice versa!

Can use a subclass in place of a
superclass

But the following will not work

Recall

int[] a = new int[100];

Why the seemingly redundant
reference to int in new?

One can now presumably write

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 5 / 25

Inheritance

In general, subclass has more features
than parent class

Subclass inherits instance variables,
methods from parent class

Every Manager is an Employee, but not
vice versa!

Can use a subclass in place of a
superclass
Employee e = new Manager(...)

But the following will not work
Manager m = new Employee(...)

Recall

int[] a = new int[100];

Why the seemingly redundant
reference to int in new?

One can now presumably write

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 5 / 25

⑭
-

X

Inheritance

In general, subclass has more features
than parent class

Subclass inherits instance variables,
methods from parent class

Every Manager is an Employee, but not
vice versa!

Can use a subclass in place of a
superclass
Employee e = new Manager(...)

But the following will not work
Manager m = new Employee(...)

Recall

int[] a = new int[100];

Why the seemingly redundant
reference to int in new?

One can now presumably write

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 5 / 25

-

Inheritance

In general, subclass has more features
than parent class

Subclass inherits instance variables,
methods from parent class

Every Manager is an Employee, but not
vice versa!

Can use a subclass in place of a
superclass
Employee e = new Manager(...)

But the following will not work
Manager m = new Employee(...)

Recall

int[] a = new int[100];

Why the seemingly redundant
reference to int in new?

One can now presumably write
Employee[] e = new Manager[100];

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 5 / 25

X

Dynamic dispatch

Manager can redefine bonus()

double bonus(float percent){

return 1.5*super.bonus(percent);

}

Uses parent class bonus() via super

Overrides definition in parent class

Consider the following assignment

Can we invoke e.setSecretary()?

e is declared to be an Employee

Static typechecking — e can only
refer to methods in Employee

What about e.bonus(p)? Which
bonus() do we use?

Static: Use Employee.bonus()

Dynamic: Use Manager.bonus()

Dynamic dispatch (dynamic binding,
late method binding, . . .) turns out to
be more useful

Default in Java, optional in languages
like C++ (virtual function)

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 6 / 25

bonus ()=> M
Sunse

?

Dynamic dispatch

Manager can redefine bonus()

double bonus(float percent){

return 1.5*super.bonus(percent);

}

Uses parent class bonus() via super

Overrides definition in parent class

Consider the following assignment

Employee e = new Manager(...)

Can we invoke e.setSecretary()?

e is declared to be an Employee

Static typechecking — e can only
refer to methods in Employee

What about e.bonus(p)? Which
bonus() do we use?

Static: Use Employee.bonus()

Dynamic: Use Manager.bonus()

Dynamic dispatch (dynamic binding,
late method binding, . . .) turns out to
be more useful

Default in Java, optional in languages
like C++ (virtual function)

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 6 / 25

Manager m = --

m.
bonn()

↑
- Manager

bors()
-e is actually

Fregal? a Manage

Dynamic dispatch

Manager can redefine bonus()

double bonus(float percent){

return 1.5*super.bonus(percent);

}

Uses parent class bonus() via super

Overrides definition in parent class

Consider the following assignment

Employee e = new Manager(...)

Can we invoke e.setSecretary()?

e is declared to be an Employee

Static typechecking — e can only
refer to methods in Employee

What about e.bonus(p)? Which
bonus() do we use?

Static: Use Employee.bonus()

Dynamic: Use Manager.bonus()

Dynamic dispatch (dynamic binding,
late method binding, . . .) turns out to
be more useful

Default in Java, optional in languages
like C++ (virtual function)

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 6 / 25

Dynamic dispatch

Manager can redefine bonus()

double bonus(float percent){

return 1.5*super.bonus(percent);

}

Uses parent class bonus() via super

Overrides definition in parent class

Consider the following assignment

Employee e = new Manager(...)

Can we invoke e.setSecretary()?

e is declared to be an Employee

Static typechecking — e can only
refer to methods in Employee

What about e.bonus(p)? Which
bonus() do we use?

Static: Use Employee.bonus()

Dynamic: Use Manager.bonus()

Dynamic dispatch (dynamic binding,
late method binding, . . .) turns out to
be more useful

Default in Java, optional in languages
like C++ (virtual function)

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 6 / 25

Dynamic dispatch

Manager can redefine bonus()

double bonus(float percent){

return 1.5*super.bonus(percent);

}

Uses parent class bonus() via super

Overrides definition in parent class

Consider the following assignment

Employee e = new Manager(...)

Can we invoke e.setSecretary()?

e is declared to be an Employee

Static typechecking — e can only
refer to methods in Employee

What about e.bonus(p)? Which
bonus() do we use?

Static: Use Employee.bonus()

Dynamic: Use Manager.bonus()

Dynamic dispatch (dynamic binding,
late method binding, . . .) turns out to
be more useful

Default in Java, optional in languages
like C++ (virtual function)

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 6 / 25

-

Polymorphism

Every Employee in emparray

“knows” how to calculate its bonus
correctly!

Object oriented programming
originated in Simula — event
simulation loop

Also referred to as runtime
polymorphism or inheritance
polymorphism

Di!erent from structural
polymorphism of Haskell etc — called
generics in Java

Employee[] emparray = new Employee[2];

Employee e = new Employee(...);

Manager m = new Manager(...);

emparray[0] = e;

emparray[1] = m;

for (i = 0; i < emparray.length; i++){

System.out.println(emparray[i].bonus(5.0));

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 7 / 25

Polymorphism

Every Employee in emparray

“knows” how to calculate its bonus
correctly!

Object oriented programming
originated in Simula — event
simulation loop

Also referred to as runtime
polymorphism or inheritance
polymorphism

Di!erent from structural
polymorphism of Haskell etc — called
generics in Java

Q := make-queue(first event)

repeat

remove next event e from Q

simulate e

place all events generated

by e on Q

until Q is empty

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 7 / 25

& dynamic dispatch

Timulation
Event

quere
I

thoever
on

Polymorphism

Every Employee in emparray

“knows” how to calculate its bonus
correctly!

Object oriented programming
originated in Simula — event
simulation loop

Also referred to as runtime
polymorphism or inheritance
polymorphism

Di!erent from structural
polymorphism of Haskell etc — called
generics in Java

Employee[] emparray = new Employee[2];

Employee e = new Employee(...);

Manager m = new Manager(...);

emparray[0] = e;

emparray[1] = m;

for (i = 0; i < emparray.length; i++){

System.out.println(emparray[i].bonus(5.0));

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 7 / 25

Polymorphism

Every Employee in emparray

“knows” how to calculate its bonus
correctly!

Object oriented programming
originated in Simula — event
simulation loop

Also referred to as runtime
polymorphism or inheritance
polymorphism

Di!erent from structural
polymorphism of Haskell etc — called
generics in Java

Employee[] emparray = new Employee[2];

Employee e = new Employee(...);

Manager m = new Manager(...);

emparray[0] = e;

emparray[1] = m;

for (i = 0; i < emparray.length; i++){

System.out.println(emparray[i].bonus(5.0));

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 7 / 25

E

Functions, signatures and overloading

Signature of a function is its name and
the list of argument types

Can have di!erent functions with the
same name and di!erent signatures

For example, multiple constructors

Java class Arrays has a method sort

to sort arbitrary scalar arrays

Made possible by overloaded methods
defined in class Arrays

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 8 / 25

intta
, float b)

void $ (1+ +
, floaty)

Functions, signatures and overloading

Signature of a function is its name and
the list of argument types

Can have di!erent functions with the
same name and di!erent signatures

For example, multiple constructors

Java class Arrays has a method sort

to sort arbitrary scalar arrays

Made possible by overloaded methods
defined in class Arrays

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 8 / 25

Functions, signatures and overloading

Signature of a function is its name and
the list of argument types

Can have di!erent functions with the
same name and di!erent signatures

For example, multiple constructors

Java class Arrays has a method sort

to sort arbitrary scalar arrays

Made possible by overloaded methods
defined in class Arrays

double[] darr = new double[100];

int[] iarr = new int[500];

...

Arrays.sort(darr);

// sorts contents of darr

Arrays.sort(iarr);

// sorts contents of iarr

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 8 / 25

Functions, signatures and overloading

Signature of a function is its name and
the list of argument types

Can have di!erent functions with the
same name and di!erent signatures

For example, multiple constructors

Java class Arrays has a method sort

to sort arbitrary scalar arrays

Made possible by overloaded methods
defined in class Arrays

double[] darr = new double[100];

int[] iarr = new int[500];

...

Arrays.sort(darr);

// sorts contents of darr

Arrays.sort(iarr);

// sorts contents of iarr

class Arrays{

...

public static void sort(double[] a){..}

// sorts arrays of double[]

public static void sort(int[] a){..}

// sorts arrays of int[]

...

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 8 / 25

C

Functions, signatures and overloading

Overloading: multiple methods,
di!erent signatures, choice is static

Overriding: multiple methods, same
signature, choice is static

Employee.bonus()

Manager.bonus()

Dynamic dispatch: multiple methods,
same signature, choice made at
run-time

double[] darr = new double[100];

int[] iarr = new int[500];

...

Arrays.sort(darr);

// sorts contents of darr

Arrays.sort(iarr);

// sorts contents of iarr

class Arrays{

...

public static void sort(double[] a){..}

// sorts arrays of double[]

public static void sort(int[] a){..}

// sorts arrays of int[]

...

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 9 / 25

Functions, signatures and overloading

Overloading: multiple methods,
di!erent signatures, choice is static

Overriding: multiple methods, same
signature, choice is static

Employee.bonus()

Manager.bonus()

Dynamic dispatch: multiple methods,
same signature, choice made at
run-time

double[] darr = new double[100];

int[] iarr = new int[500];

...

Arrays.sort(darr);

// sorts contents of darr

Arrays.sort(iarr);

// sorts contents of iarr

class Arrays{

...

public static void sort(double[] a){..}

// sorts arrays of double[]

public static void sort(int[] a){..}

// sorts arrays of int[]

...

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 9 / 25

Functions, signatures and overloading

Overloading: multiple methods,
di!erent signatures, choice is static

Overriding: multiple methods, same
signature, choice is static

Employee.bonus()

Manager.bonus()

Dynamic dispatch: multiple methods,
same signature, choice made at
run-time

double[] darr = new double[100];

int[] iarr = new int[500];

...

Arrays.sort(darr);

// sorts contents of darr

Arrays.sort(iarr);

// sorts contents of iarr

class Arrays{

...

public static void sort(double[] a){..}

// sorts arrays of double[]

public static void sort(int[] a){..}

// sorts arrays of int[]

...

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 9 / 25

I

Type casting

Consider the following assignment

Employee e = new Manager(...)

Can we get e.setSecretary() to
work?

Static type-checking disallows this

Type casting — convert e to Manager

Cast fails (error at run time) if e is not
a Manager

Can test if e is a Manager

A simple example of reflection in Java

“Think about oneself”

Can also use type casting for basic
types

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 10 / 25

Type casting

Consider the following assignment

Employee e = new Manager(...)

Can we get e.setSecretary() to
work?

Static type-checking disallows this

Type casting — convert e to Manager

Cast fails (error at run time) if e is not
a Manager

Can test if e is a Manager

A simple example of reflection in Java

“Think about oneself”

Can also use type casting for basic
types

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 10 / 25

Type casting

Consider the following assignment

Employee e = new Manager(...)

Can we get e.setSecretary() to
work?

Static type-checking disallows this

Type casting — convert e to Manager

((Manager) e).setSecretary(s)

Cast fails (error at run time) if e is not
a Manager

Can test if e is a Manager

A simple example of reflection in Java

“Think about oneself”

Can also use type casting for basic
types

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 10 / 25

(t) v

=> "casts" variable

mej v as type E

Type casting

Consider the following assignment

Employee e = new Manager(...)

Can we get e.setSecretary() to
work?

Static type-checking disallows this

Type casting — convert e to Manager

((Manager) e).setSecretary(s)

Cast fails (error at run time) if e is not
a Manager

Can test if e is a Manager

A simple example of reflection in Java

“Think about oneself”

Can also use type casting for basic
types

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 10 / 25

U

Type casting

Consider the following assignment

Employee e = new Manager(...)

Can we get e.setSecretary() to
work?

Static type-checking disallows this

Type casting — convert e to Manager

((Manager) e).setSecretary(s)

Cast fails (error at run time) if e is not
a Manager

Can test if e is a Manager

if (e instanceof Manager){

((Manager) e).setSecretary(s);

}

A simple example of reflection in Java

“Think about oneself”

Can also use type casting for basic
types

double d = 29.98;

long nd = (long) d;

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 10 / 25

-

Type casting

Consider the following assignment

Employee e = new Manager(...)

Can we get e.setSecretary() to
work?

Static type-checking disallows this

Type casting — convert e to Manager

((Manager) e).setSecretary(s)

Cast fails (error at run time) if e is not
a Manager

Can test if e is a Manager

if (e instanceof Manager){

((Manager) e).setSecretary(s);

}

A simple example of reflection in Java

“Think about oneself”

Can also use type casting for basic
types

double d = 29.98;

long nd = (long) d;

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 10 / 25

Type casting

Consider the following assignment

Employee e = new Manager(...)

Can we get e.setSecretary() to
work?

Static type-checking disallows this

Type casting — convert e to Manager

((Manager) e).setSecretary(s)

Cast fails (error at run time) if e is not
a Manager

Can test if e is a Manager

if (e instanceof Manager){

((Manager) e).setSecretary(s);

}

A simple example of reflection in Java

“Think about oneself”

Can also use type casting for basic
types

double d = 29.98;

long nd = (long) d;

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 10 / 25

From C

float f = 22/7 ;
=

Grouping together classes

Sometimes we collect together classes under a common heading

Classes Circle, Square and Rectangle are all shapes

Create a class Shape so that Circle, Square and Rectangle extend Shape

We want to force every Shape to define a function

public double perimeter()

Could define a function in Shape that returns an absurd value

public double perimeter() { return(-1.0); }

Rely on the subclass to redefine this function

What if this doesn’t happen?

Should not depend on programmer discipline

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 11 / 25

Grouping together classes

Sometimes we collect together classes under a common heading

Classes Circle, Square and Rectangle are all shapes

Create a class Shape so that Circle, Square and Rectangle extend Shape

We want to force every Shape to define a function

public double perimeter()

Could define a function in Shape that returns an absurd value

public double perimeter() { return(-1.0); }

Rely on the subclass to redefine this function

What if this doesn’t happen?

Should not depend on programmer discipline

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 11 / 25

Si-
Simulates

/1
Arra Dep Train Tree

ar
·Simulate)) .Simulates)

Grouping together classes

Sometimes we collect together classes under a common heading

Classes Circle, Square and Rectangle are all shapes

Create a class Shape so that Circle, Square and Rectangle extend Shape

We want to force every Shape to define a function

public double perimeter()

Could define a function in Shape that returns an absurd value

public double perimeter() { return(-1.0); }

Rely on the subclass to redefine this function

What if this doesn’t happen?

Should not depend on programmer discipline

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 11 / 25

Grouping together classes

Sometimes we collect together classes under a common heading

Classes Circle, Square and Rectangle are all shapes

Create a class Shape so that Circle, Square and Rectangle extend Shape

We want to force every Shape to define a function

public double perimeter()

Could define a function in Shape that returns an absurd value

public double perimeter() { return(-1.0); }

Rely on the subclass to redefine this function

What if this doesn’t happen?

Should not depend on programmer discipline

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 11 / 25

Abstract classes

A better solution

Provide an abstract definition in Shape

public abstract double perimeter();

Forces subclasses to provide a concrete implementation

Cannot create objects from a class that has abstract functions

Shape must itself be declared to be abstract

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 12 / 25

-

Abstract classes

A better solution

Provide an abstract definition in Shape

public abstract double perimeter();

Forces subclasses to provide a concrete implementation

Cannot create objects from a class that has abstract functions

Shape must itself be declared to be abstract

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 12 / 25

Abstract classes

A better solution

Provide an abstract definition in Shape

public abstract double perimeter();

Forces subclasses to provide a concrete implementation

Cannot create objects from a class that has abstract functions

Shape must itself be declared to be abstract

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 12 / 25

Shape

are Rage-
I
to create

Rectangles ,

must

Implement perimeter

Abstract classes

A better solution

Provide an abstract definition in Shape

public abstract double perimeter();

Forces subclasses to provide a concrete implementation

Cannot create objects from a class that has abstract functions

Shape must itself be declared to be abstract

public abstract class Shape{

...

public abstract double perimeter();

...

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 12 / 25

I

Abstract classes . . .

Can still declare variables whose type is an abstract class

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 13 / 25

Abstract classes . . .

Can still declare variables whose type is an abstract class

Shape shapearr[] = new Shape[3];

int sizearr[] = new int[3];

shapearr[0] = new Circle(...);

shapearr[1] = new Square(...);

shapearr[2] = new Rectangle(...);

for (i = 0; i < 3; i++){

sizearr[i] = shapearr[i].perimeter();

// each shapearr[i] calls the appropriate method

...

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 13 / 25

-> dynamic dispatch

Generic functions

Use abstract classes to specify generic properties

public abstract class Comparable{

public abstract int cmp(Comparable s);

// return -1 if this < s,

// 0 if this == 0,

// +1 if this > s

}

Now we can sort any array of objects that extend Comparable

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 14 / 25

of cmp 02

>

Generic functions

Use abstract classes to specify generic properties

public abstract class Comparable{

public abstract int cmp(Comparable s);

// return -1 if this < s,

// 0 if this == 0,

// +1 if this > s

}

Now we can sort any array of objects that extend Comparable

public class SortFunctions{

public static void quicksort(Comparable[] a){

...

// Usual code for quicksort, except that

// to compare a[i] and a[j] we use a[i].cmp(a[j])

}

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 14 / 25

And a= -

-

Generic functions . . .

public class SortFunctions{

public static void quicksort(Comparable[] a){

...

}

}

To use this definition of quicksort, we write

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 15 / 25

Generic functions . . .

public class SortFunctions{

public static void quicksort(Comparable[] a){

...

}

}

To use this definition of quicksort, we write

public class Myclass extends Comparable{

private double size; // quantity used for comparison

public int cmp(Comparable s){

if (s instanceof Myclass){

// compare this.size and ((Myclass) s).size

// Note the cast to access s.size

}

}

}

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 15 / 25

↑

? Comparable
- /

~Myclass

I Myclass [I a= -

auchsort(a)

Multiple inheritance

Can we sort Circle objects using the generic functions in SortFunctions?

Circle already extends Shape

Need Circle to also extend Comparable

Can a subclass extend multiple parent classes?

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 16 / 25

shapp , Comparable

Dueemp

Multiple inheritance

Can we sort Circle objects using the generic functions in SortFunctions?

Circle already extends Shape

Need Circle to also extend Comparable

Can a subclass extend multiple parent classes?

C1 C2

C3 extends C1,C2

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 16 / 25

Multiple inheritance

Can a subclass extend multiple parent classes?

C1 C2

C3 extends C1,C2

If f() is not overridden, which f() do we use in C3?

Java does not allow multiple inheritance

C++ allows this if C1 and C2 have no conflict

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 17 / 25

Multiple inheritance

Can a subclass extend multiple parent classes?

C1 C2

C3 extends C1,C2

public int f(); public int f();

If f() is not overridden, which f() do we use in C3?

Java does not allow multiple inheritance

C++ allows this if C1 and C2 have no conflict

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 17 / 25

&intent y

Multiple inheritance

Can a subclass extend multiple parent classes?

C1 C2

C3 extends C1,C2

public int f(); public int f();

If f() is not overridden, which f() do we use in C3?

Java does not allow multiple inheritance

C++ allows this if C1 and C2 have no conflict

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 17 / 25

Can check at

comple time

① C3 overrides f)

② No such clash

Multiple inheritance

Can a subclass extend multiple parent classes?

C1 C2

C3 extends C1,C2

public int f(); public int f();

If f() is not overridden, which f() do we use in C3?

Java does not allow multiple inheritance

C++ allows this if C1 and C2 have no conflict

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 17 / 25

Interfaces and Multiple inheritance

An interface is an abstract class with no concrete components

public interface Comparable{

public abstract int cmp(Comparable s);

}

A class that extends an interface is said to implement it:

Can extend only one class, but can implement multiple interfaces

Interfaces describe relevant aspects of a class

Abstract functions describe a specific “slice” of capabilities

Another class only needs to know about these capabilities

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 18 / 25

"Fully" abstract class

Interfaces and Multiple inheritance

An interface is an abstract class with no concrete components

public interface Comparable{

public abstract int cmp(Comparable s);

}

A class that extends an interface is said to implement it:

public class Circle extends Shape implements Comparable{

public double perimeter(){...}

public int cmp(Comparable s){...}

...

}

Can extend only one class, but can implement multiple interfaces

Interfaces describe relevant aspects of a class

Abstract functions describe a specific “slice” of capabilities

Another class only needs to know about these capabilities

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 18 / 25

-

-

-

extends

Interfaces and Multiple inheritance

An interface is an abstract class with no concrete components

public interface Comparable{

public abstract int cmp(Comparable s);

}

A class that extends an interface is said to implement it:

public class Circle extends Shape implements Comparable{

public double perimeter(){...}

public int cmp(Comparable s){...}

...

}

Can extend only one class, but can implement multiple interfaces

Interfaces describe relevant aspects of a class

Abstract functions describe a specific “slice” of capabilities

Another class only needs to know about these capabilities

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 18 / 25

Interfaces and Multiple inheritance

An interface is an abstract class with no concrete components

public interface Comparable{

public abstract int cmp(Comparable s);

}

A class that extends an interface is said to implement it:

public class Circle extends Shape implements Comparable{

public double perimeter(){...}

public int cmp(Comparable s){...}

...

}

Can extend only one class, but can implement multiple interfaces

Interfaces describe relevant aspects of a class

Abstract functions describe a specific “slice” of capabilities

Another class only needs to know about these capabilities
Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 18 / 25

Java class hierarchy

No multiple inheritance — tree-like

In fact, there is a universal superclass Object

Useful methods defined in Object

For Java objects x and y, x == y invokes x.equals(y)

To print o, use System.out.println(o+"");

Implicitly invokes o.toString()

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 19 / 25

-
-

Cu

Java class hierarchy

No multiple inheritance — tree-like

In fact, there is a universal superclass Object

Useful methods defined in Object

For Java objects x and y, x == y invokes x.equals(y)

To print o, use System.out.println(o+"");

Implicitly invokes o.toString()

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 19 / 25

t
class Employee

Manesan

Java class hierarchy

No multiple inheritance — tree-like

In fact, there is a universal superclass Object

Useful methods defined in Object

public boolean equals(Object o) // defaults to pointer equality

public String toString() // converts the values of the

// instance variables to String

For Java objects x and y, x == y invokes x.equals(y)

To print o, use System.out.println(o+"");

Implicitly invokes o.toString()

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 19 / 25

Java class hierarchy

No multiple inheritance — tree-like

In fact, there is a universal superclass Object

Useful methods defined in Object

public boolean equals(Object o) // defaults to pointer equality

public String toString() // converts the values of the

// instance variables to String

For Java objects x and y, x == y invokes x.equals(y)

To print o, use System.out.println(o+"");

Implicitly invokes o.toString()

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 19 / 25

Java class hierarchy

No multiple inheritance — tree-like

In fact, there is a universal superclass Object

Useful methods defined in Object

public boolean equals(Object o) // defaults to pointer equality

public String toString() // converts the values of the

// instance variables to String

For Java objects x and y, x == y invokes x.equals(y)

To print o, use System.out.println(o+"");

Implicitly invokes o.toString()

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 19 / 25

Forces conversim to string

Java class hierarchy

Can exploit the tree structure to write generic functions

Example: search for an element in an array

public int find (Object[] objarr, Object o){

int i;

for (i = 0; i < objarr.length(); i++){

if (objarr[i] == o) {return i};

}

return (-1);

}

Recall that == is pointer equality, by default

If a class overrides equals(), dynamic dispatch will use the redefined function
instead of Object.equals() for objarr[i] == o

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 20 / 25

Java class hierarchy

Can exploit the tree structure to write generic functions

Example: search for an element in an array

public int find (Object[] objarr, Object o){

int i;

for (i = 0; i < objarr.length(); i++){

if (objarr[i] == o) {return i};

}

return (-1);

}

Recall that == is pointer equality, by default

If a class overrides equals(), dynamic dispatch will use the redefined function
instead of Object.equals() for objarr[i] == o

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 20 / 25

Java class hierarchy

Can exploit the tree structure to write generic functions

Example: search for an element in an array

public int find (Object[] objarr, Object o){

int i;

for (i = 0; i < objarr.length(); i++){

if (objarr[i] == o) {return i};

}

return (-1);

}

Recall that == is pointer equality, by default

If a class overrides equals(), dynamic dispatch will use the redefined function
instead of Object.equals() for objarr[i] == o

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 20 / 25

Date. equals)
Object

- ↓
-
objarr[i]

· equals (o)

Overriding functions

For instance, a class Date with instance
variables day, month and year

May wish to override equals() to
compare the object state, as follows

Unfortunately,
boolean equals(Date d)

does not override
boolean equals(Object o)!

Should write, instead

Note the run-time type check and the
cast

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 21 / 25

Overriding functions

For instance, a class Date with instance
variables day, month and year

May wish to override equals() to
compare the object state, as follows

public boolean equals(Date d){

return ((this.day == d.day) &&

(this.month == d.month) &&

(this.year == d.year));

}

Unfortunately,
boolean equals(Date d)

does not override
boolean equals(Object o)!

Should write, instead

Note the run-time type check and the
cast

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 21 / 25

Overriding functions

For instance, a class Date with instance
variables day, month and year

May wish to override equals() to
compare the object state, as follows

public boolean equals(Date d){

return ((this.day == d.day) &&

(this.month == d.month) &&

(this.year == d.year));

}

Unfortunately,
boolean equals(Date d)

does not override
boolean equals(Object o)!

Should write, instead

Note the run-time type check and the
cast

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 21 / 25

H

Overriding functions

For instance, a class Date with instance
variables day, month and year

May wish to override equals() to
compare the object state, as follows

public boolean equals(Date d){

return ((this.day == d.day) &&

(this.month == d.month) &&

(this.year == d.year));

}

Unfortunately,
boolean equals(Date d)

does not override
boolean equals(Object o)!

Should write, instead

public boolean equals(Object d){

if (d instanceof Date){

Date myd = (Date) d;

return ((this.day == myd.day) &&

(this.month == myd.month) &&

(this.year == myd.year));

}

return(false);

}

Note the run-time type check and the
cast

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 21 / 25

-type cashing

Overriding functions

Overriding looks for “closest” match

Suppose we have public boolean equals(Employee e) but no equals() in
Manager

Consider

public boolean equals(Manager m) is compatible with both
boolean equals(Employee e) and boolean equals(Object o)

Use boolean equals(Employee e)

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 22 / 25

Overriding functions

Overriding looks for “closest” match

Suppose we have public boolean equals(Employee e) but no equals() in
Manager

Consider

public boolean equals(Manager m) is compatible with both
boolean equals(Employee e) and boolean equals(Object o)

Use boolean equals(Employee e)

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 22 / 25

Overriding functions

Overriding looks for “closest” match

Suppose we have public boolean equals(Employee e) but no equals() in
Manager

Consider

Manager m1 = new Manager(...);

Manager m2 = new Manager(...);

...

if (m1.equals(m2)){ ... }

public boolean equals(Manager m) is compatible with both
boolean equals(Employee e) and boolean equals(Object o)

Use boolean equals(Employee e)

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 22 / 25

Object
que (Ob,ute

Employee. equals (Employee e)
-

m1
. equals (Manager - (

Overriding functions

Overriding looks for “closest” match

Suppose we have public boolean equals(Employee e) but no equals() in
Manager

Consider

Manager m1 = new Manager(...);

Manager m2 = new Manager(...);

...

if (m1.equals(m2)){ ... }

public boolean equals(Manager m) is compatible with both
boolean equals(Employee e) and boolean equals(Object o)

Use boolean equals(Employee e)

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 22 / 25

Overriding functions

Overriding looks for “closest” match

Suppose we have public boolean equals(Employee e) but no equals() in
Manager

Consider

Manager m1 = new Manager(...);

Manager m2 = new Manager(...);

...

if (m1.equals(m2)){ ... }

public boolean equals(Manager m) is compatible with both
boolean equals(Employee e) and boolean equals(Object o)

Use boolean equals(Employee e)

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 22 / 25

Subclasses, subtyping and inheritance

Class hierarchy provides both subtyping and inheritance

Subtyping

Capabilities of the subtype are a superset of the main type

If B is a subtype of A, wherever we require an object of type A, we can use an object of
type B

Employee e = new Manager(...); is legal

Inheritance

Subtype can reuse code of the main type

B inherits from A if some functions for B are written in terms of functions of A

Manager.bonus() uses Employee.bonus()

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 23 / 25

Subclasses, subtyping and inheritance

Class hierarchy provides both subtyping and inheritance

Subtyping

Capabilities of the subtype are a superset of the main type

If B is a subtype of A, wherever we require an object of type A, we can use an object of
type B

Employee e = new Manager(...); is legal

Inheritance

Subtype can reuse code of the main type

B inherits from A if some functions for B are written in terms of functions of A

Manager.bonus() uses Employee.bonus()

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 23 / 25

Subclasses, subtyping and inheritance

Class hierarchy provides both subtyping and inheritance

Subtyping

Capabilities of the subtype are a superset of the main type

If B is a subtype of A, wherever we require an object of type A, we can use an object of
type B

Employee e = new Manager(...); is legal

Inheritance

Subtype can reuse code of the main type

B inherits from A if some functions for B are written in terms of functions of A

Manager.bonus() uses Employee.bonus()

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 23 / 25

Subtyping vs inheritance

Consider the following example

queue, with methods insert-rear, delete-front

stack, with methods insert-front, delete-front

deque, with methods insert-front, delete-front, insert-rear, delete-rear

What are the subtype and inheritance relationships between these classes?

Subtyping

deque has more functionality than queue or stack

deque is a subtype of both these types

Inheritance

Can suppress two functions in a deque and use it as a queue or stack

Both queue and stack inherit from deque

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 24 / 25

Subtyping vs inheritance

Consider the following example

queue, with methods insert-rear, delete-front

stack, with methods insert-front, delete-front

deque, with methods insert-front, delete-front, insert-rear, delete-rear

What are the subtype and inheritance relationships between these classes?

Subtyping

deque has more functionality than queue or stack

deque is a subtype of both these types

Inheritance

Can suppress two functions in a deque and use it as a queue or stack

Both queue and stack inherit from deque

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 24 / 25

Subtyping vs inheritance

Consider the following example

queue, with methods insert-rear, delete-front

stack, with methods insert-front, delete-front

deque, with methods insert-front, delete-front, insert-rear, delete-rear

What are the subtype and inheritance relationships between these classes?

Subtyping

deque has more functionality than queue or stack

deque is a subtype of both these types

Inheritance

Can suppress two functions in a deque and use it as a queue or stack

Both queue and stack inherit from deque

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 24 / 25

Subtyping vs inheritance

Consider the following example

queue, with methods insert-rear, delete-front

stack, with methods insert-front, delete-front

deque, with methods insert-front, delete-front, insert-rear, delete-rear

What are the subtype and inheritance relationships between these classes?

Subtyping

deque has more functionality than queue or stack

deque is a subtype of both these types

Inheritance

Can suppress two functions in a deque and use it as a queue or stack

Both queue and stack inherit from deque

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 24 / 25

Subclasses, subtyping and inheritance

Class hierarchy represents both subtyping and inheritance

Subtyping

Compatibility of interfaces.

B is a subtype of A if every function that can be invoked on an object of type A can
also be invoked on an object of type B.

Inheritance

Reuse of implementations.

B inherits from A if some functions for B are written in terms of functions of A.

Using one idea (hierarchy of classes) to implement both concepts blurs the
distinction between the two

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 25 / 25

Subclasses, subtyping and inheritance

Class hierarchy represents both subtyping and inheritance

Subtyping

Compatibility of interfaces.

B is a subtype of A if every function that can be invoked on an object of type A can
also be invoked on an object of type B.

Inheritance

Reuse of implementations.

B inherits from A if some functions for B are written in terms of functions of A.

Using one idea (hierarchy of classes) to implement both concepts blurs the
distinction between the two

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 25 / 25

Subclasses, subtyping and inheritance

Class hierarchy represents both subtyping and inheritance

Subtyping

Compatibility of interfaces.

B is a subtype of A if every function that can be invoked on an object of type A can
also be invoked on an object of type B.

Inheritance

Reuse of implementations.

B inherits from A if some functions for B are written in terms of functions of A.

Using one idea (hierarchy of classes) to implement both concepts blurs the
distinction between the two

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 25 / 25

Subclasses, subtyping and inheritance

Class hierarchy represents both subtyping and inheritance

Subtyping

Compatibility of interfaces.

B is a subtype of A if every function that can be invoked on an object of type A can
also be invoked on an object of type B.

Inheritance

Reuse of implementations.

B inherits from A if some functions for B are written in terms of functions of A.

Using one idea (hierarchy of classes) to implement both concepts blurs the
distinction between the two

Madhavan Mukund/S P Suresh Java: class hierarchy, polymorphism, abstract classes PLC, Lecture 4, 23 Jan 2025 25 / 25

