PLC2025 Lecture 06, 30 Jan 2025

Rust

» Rustresources: https://www.rust-lang.org/
« Installing Rust: https://www.rust-lang.org/tools/install
« Documentation: https://www.rust-lang.org/learn

Typing

« Static (Java, Haskell) vs dynamic (Python)

= |deally, type errors should be caught at compile-time (static)

= Dynamic --- type is determined by current value, type of a variable can change over time
o Implicit (Haskell, Python) vs explicit (Java declarations)

= Implicit + static = type inference
« Degrees of strictness

= |s mixed mode arithmetic allowed?e.g.,, x = 1.5 + 3

= Can numbers be intepreted as booleans? if len(l) { ... }
¢ Rust types

= Static

= Mostly implicit, but must declare types for function signatures

= Very strict!

Rust program

* Not object oriented

e Programis a collection of functions

» Execution begins with main()

» Read documentation about how to compile

e cargo to build Rust projects

Hello world!

fn main(){
println!("Hello world");
b
main()
Hello world
()

o | after println signifies itis a macro, not a function --- will worry about this later

o This function returns nothing, so return valueis ()

Variables

« Declare variables using let and assign avalue

o Value implicitly fixes type

fn varl(){

let x = 55;

println! ("Value of x is {x}"); // Insert value in string, Version 1
}
varl()

Value of x is 55
()

fn var2(){

let x = 55;

println!("Value of x is {}",x); // Insert value in string, Version 2
}
var2()

Value of x is 55

https://www.rust-lang.org/
https://www.rust-lang.org/tools/install
https://www.rust-lang.org/learn

()

e What if we try to update the value of x ?

fn var3(){
let x = 55;
X = 66;
println!("Value of x is {}",x); // Insert value in string, Version 2

b

[unused assignments] Error: value assigned to "x° is never read
—[command 8:1:1]

2 X

=
L— warning: value assigned to “x° is never read

[EO384] Error: cannot assign twice to immutable variable “x°
—[command_8:1:1]

2 X

T
L— first assignment to “x°

— help: consider making this binding mutable: “mut x°
3 X = 66

—
L—— cannot assign twice to immutable variable

: You can change an existing variable to mutable like: ‘let mut x = x;°

e Rust variables are immutable by default
= Like variables in mathematics
= Letz =4 .. means z is an arbitrary but fixed value
e Need to add a qualifier mut to say that a variable is mutable
= Notice the useful error message, suggesting that we add the qualifier mut

fn vard(){

let mut x = 55;

X = 66;

println!("Value of x is {}",x); // Insert value in string, Version 2
}
vard()

Value of x is 66
()

Constants

e Immutable variables are not the same as constants
« Declare constants explicitly
= So far we have used implicit typing
= Constants need to be typed explicitly -- Rust uses older Algol/Pascal style var: type notation for typing rather than C/Java
style type var
= Will describe Rust types shortly

» Constants can have globalscope, declared outside all functions

const PI_APPROX: f32 = 3.1415927;
fn constl(){
println!("Value of pi is approximately {}",PI_APPROX);

b

constl()

Value of pi is approximately 3.1415927
()

Shadowing

o Redeclaring a variable shadows the earlier definition
e Can change the type with each fresh declaration (but why?)

let x 0.0;
let x = 5;

println!("value of x is {}",x);

value of x is 5

« But cannot change the type of a mutable variable

let mut x = 0.0;
X =5;
println!("value of x is {}",x);

[E0308] Error: mismatched types
—[command 14:1:1]

1| 0.0
| T
| L— expected due to this value
2 | 5
|
| L— expected floating-point number, found integer
—
Scalar types

» Signedintegers: 18, 132, 164, isize -- explicitly specify number of bits, last version uses the underlying architecture default
« Unsignedintegers: u8, u32, u64, usize

e Floats: f32, f64

» Boolean: bool ---valuesare true and false

e Charactre: char ---write with single quote, 'a' , uses UTF-8, upto 4 bytes per character

« Implicit vs explicit typing
= Normally Rust deduces type from value assigned in let

= Can also explicitly annotate type

let y: 32 = 5.0;
println!("Value of y is {}",y);

Value of y is 5

e Strict typing
= Cannot have mixed int/float expressions --- use as type to "recast" atype

= Arithmetic expressions cannot replace boolean expressions -- convention that 0 is false ,non-zerois true etcdoes not
work

let mut x = 5.8;
X =x*17,;
println!("Value of x is {}",x);

[EO277] Error: cannot multiply “{float} by "{integer}"
—[command 16:1:1]

*

2

-
L— no implementation for ‘{float} * {integer}"

[__

let mut x = 5.8;
x = x * 7 as 32;
println!("Value of x is {}",x);

Value of x is 40.600002

Defining functions

e Functions are defined using fn
« Need to provide explicit types for arguments and return value

« Notation for return value uses -> like Haskell

fn addtwo(x : i32, y: i32) -> i32 {
return x + y;

i

let a = addtwo(17,42);
println!("Value of a is {}",a);

Value of a is 59

Expressions

» Functions implicitly return last expression evaluated

o Can rewrite our function as below

fn addtwoexpr(x : i32, y: i32) -> i32 {
X +y

}

let a = addtwoexpr(17,42);
println!("Value of a is {}",a);

Value of a is 59

e An expression should not have a semicolon at the end
« Semicolon turns the expression into a statement

= Note again the helpful compiler error message

fn addtwosemicolon(x : i32, y: i32) -> i32 {
X +Y;

i

[E0308] Error: mismatched types
—[command 22:1:1]

1 addtwosemicolon i32

—!7 -

implicitly returns *()' as its body has no tail or ‘return’ ex
pression

L— expected i32", found ' ()°
2 ;

=
L— help: remove this semicolon to return this value:

Control flow

e 1if boolean-expression { ... } else {....}
e loops: while boolean-expression {...}, loop {...}, for
« loop requiresa break , elseinfinite

o for runsoverelementsfrom aniterator --- later

fn signuml(x: i32) -> i32{
if x < 0 {return -1;}
else if x == 0 {return 0;}
else {1}

signuml(-7)

-1

« 1if isitself an expression, so can do a conditional assignment

fn signum2(y: i32) -> i32{
let x = if y < 0 {-1} else if y == 0 {0} else {1};

return x;
}
signum2(0)
0

e Thiscryptic if expression suffices

fn signum3(y: i32) -> i32{
if y < 0 {-1} else if y == 0 {0} else {1}
}

signum3(77)

1

Copying values

e X

y for values stored on the stack copies the value

y forvalues stored on the heap creates an alias -- both X and y refer to the same value on the heap

= Useful to avoid copying large values, and to pass heap objects to a function
= However, leads to subtle errors because updating y indirectly updates X
= Also, releasing memory through y resultsin a dangling pointerat X

e Rustintroduces a concept called ownership to address these issues

