PLC 2025, Lecture 9, 11 February 2025

Tuples

o Similar to other languages
e Can deconstruct by assigning to a tuple of variables
e Index by positionusing t.0, t.1,..

fn main() {
let tup = (500, 6.4, 1);
let (x, y, z) = tup;
println! ("The value of y is: {y}");

main()

The value of y is: 6.4
()

fn main() {
let x: (i32, f64, u8) = (500, 6.4, 1);

let five hundred = x.0;
let six_point_four = x.1;
let one = x.2;

println!("x.0 = {}, x.1 = {}, x.2 = {}", five hundred, six point four,one);

main()

Arrays

¢ Notation, indexing are as usual

fn main() {

let a = [1, 2, 3, 4, 5];

let first = a[0];
let second = a[ll;
println!("first is {}, second is {}", first, second);

main()

first is 1, second is 2

()

let a = [1,2,3,4,5];
println!("{}",a.len());

5

e Type of an array includes its length!
= Functions can only work on arrays of a fixed length
o Trick: Explicitly type with wrong type to reveal type of a value

fn lastelem(a:[132]) -> 1i32{
let 1 = a.len();
all-1]

}

[EO277] Error: the size for values of type "[i32] cannot be known at compilation time
—lcommand 9:1:1]

1| [132]
| T
| L——— help: function arguments must have a statically known size, borrowed slices always have a known size:
&
| I
| L—— doesn't have a size known at compile-time
—J

let a: () = [1, 2, 3, 4, 5];

[E0308] Error: mismatched types
—[command 10:1:1]

1] O =11, 2, 3, 4, 5]
_{' - 1

L——— expected ' (), found '[{integer}; 5]

|
| expected due to this
|
|

_

fn lastelem(a:[i32;5]) -> i32{
let 1 = a.len();
al[l-1]

let b = [1,2,3,4,5];
let n = lastelem(b);
printin! ("{},{}",n,b.len());

5,5

let b = [1,2,3,4,5,6];
let n = lastelem(b);
printin! ("{},{}",n,b.len());

[E0308] Error: mismatched types
—[command 13:1:1]

2 | lastelem(b
| -1 T
| L—— arguments to this function are incorrect
|
| L— expected an array with a fixed size of 5 elements, found one with 6 elements
S

¢ Instead of passing an array, pass a reference via a slice

fn lastelem(a:&[132]) -> i32{
let 1 = a.len();
al[l-1]

let b = [1,2,3,4,5,71;
let n = lastelem(&b[..]);
println! ("{}",n);

let b = [1,2,3,4,5,71;
let n = lastelem(&b[1..4]);
printin!("{}",n);

4

Structs

o Like a tuple with named components
e Instance variables of a class

e Define a class

struct User {
active: bool,
username: String,
email: String,
sign_in_count: u64,

e Create aninstance

fn main() {
let userl = User {
active: true,
username: String::from("someusernamel23"),
email: String::from("someone@example.com"),
sign_in_count: 1,

e No notion of private
e Can always update a component directly

fn main() {
let mut userl = User {
active: true,
username: String::from("someusernamel23"),
email: String::from("someone@example.com"),

sign in count: 1,

15

userl.email = String::from("anotheremail@example.com");

e Canhavea struct with unnamed components
e Atupleisanunnamed struct with unnamed components

struct Color(i32, i32, i32);
struct Point(i32, 132, i32);

fn main() {
let black = Color(0, 0, 0);
let origin = Point(0, 0, 0);
let black R = black.0;
let origin z = origin.2;
println!("Black Red = {}, Origin Z = {}", black R, origin_z);

main()
Black Red = 0, Origin Z = 0
()

e Can pass structs to functions

struct Rectangle {
width: u32,
height: u32,

b

fn area(rectangle: &Rectangle) -> u32 {
rectangle.width * rectangle.height
}

fn main() {
let rectl = Rectangle {

width: 30,
height: 50,
};
println!(
"The area of the rectangle is {} square pixels.",
area(&rectl)
);
b
main()

The area of the rectangle is 1500 square pixels.

0

e Attach functions to structs --- methods
e First parameter of a method is always &self (shades of Python)
= Type of &self isfixed by the fact that impl referstothe struct

struct Rectangle {
width: u32,
height: u32,

}

impl Rectangle {
fn area(&self) -> u32 {
self.width * self.height
}
}

fn main() {
let rectl = Rectangle {

width: 30,
height: 50,
i
println!(
"The area of the rectangle is {} square pixels.",
rectl.area() // Should be (&rectl).area()
)5
}
main()

The area of the rectangle is 1500 square pixels.

()

¢ Side note: Rust automatically references and dereferences

= We wrote rect.area, whichis a short form for (&rect).area
= Inside the function, self.width and self.length instead of (*self).width and (*self).length

e Can define methods with parameters other than self

impl Rectangle {
fn can_hold(&self, other: &Rectangle) -> bool {
self.width > other.width && self.height > other.height
}

fn main() {
let rectl = Rectangle {

width: 30,
height: 50,

};

let rect2 = Rectangle {
width: 10,
height: 40,

};

let rect3 = Rectangle {
width: 60,
height: 45,

5

println!("Can rectl hold rect2? {}", rectl.can hold(&rect2));
println!("Can rectl hold rect3? {}", rectl.can_hold(&rect3));

main()
Can rectl hold rect2? true
Can rectl hold rect3? false
()

Generics

e Two functions to find the largest element in an array
e Same code, except for the base type of the array

fn largest i32(list: &[i32]) -> &i32 {
let mut largest = &list[0];

for item in list {
if item > largest {
largest = item;
}
}

largest
}

fn largest char(list: &[char]) -> &char {
let mut largest = &list[0];

for item in list {
if item > largest {
largest = item;
}
}

largest

fn main() {
let number array = [34, 50, 25, 100, 65];
let number list = &number array[..];

let result = largest i32(&number list);
println! ("The largest number is {}", result);

let char_array = ['y', 'm', 'a', 'q'l;
let char_list = &char_array[..];

let result = largest char(&char list);
println! ("The largest char is {}", result);

main()

The largest number is 100
The largest char is y

0

e Create a generic version of the function using a type variable, like Java
e How to specify that the type T supports comparison of values?

fn largest<T>(list: &[T]) -> &T {
let mut largest = &list[0];

for item in list {
if item > largest {
largest = item;
}
}

largest
}

[EO369] Error: binary operation > cannot be applied to type ‘&T°
—[command 32:1:1]

- help: consider restricting type parameter ‘T': “: std::cmp::PartialOrd’

5 item > largest

- T T T
V&1

L————— error: binary operation ‘> cannot be applied to type “&T"

L &T

e Generic structs and generic methods

struct Point<T> {

x: T,
y: T,
}
fn main() {
let integer = Point { x: 5, y: 10 };
let float = Point { x: 1.0, y: 4.0 };
}
struct Point<T> {
%8 Ty
y: T,

}

impl<T> Point<T> {
fn x(&self) -> &T {
&self.x
}
}

fn main() {
let p = Point { x: 5, y: 10 };

println!("p.x = {}", p.x());

e As usual, different type variables denote (possibly) different types

struct Point<T, U> {
x: T,
y: U,

}

fn main() {
let both integer = Point { x: 5, y: 10 };
let both float = Point { x: 1.0, y: 4.0 };
let integer and float = Point { x: 5, y: 4.0 };

b

struct Point<X1l, Y1> {
X: X1,
y: Y1,

b

impl<Xl, Y1> Point<X1l, Y1> {
fn mixup<X2, Y2>(self, other: Point<X2, Y2>) -> Point<X1l, Y2> {

Point {
x: self.x,
y: other.y,
}

}
fn main() {
let pl = Point { x: 5, y: 10.4 };
let p2 = Point { x: "Hello", y: 'c' };

let p3 = pl.mixup(p2);

println!("p3.x = {}, p3.y = {}", p3.x, p3.y);

Traits

e Specify common properties across types
= Via required functions, as headers
o Like Haskell type classes, Java interfaces

trait Summary {
fn summarize(&self) -> String; // No body
}

e Specify that a type implements a trait and provide an implementation of the required function

struct NewsArticle {
pub headline: String,
pub location: String,
pub author: String,
pub content: String,
}

impl Summary for NewsArticle {
fn summarize(&self) -> String {
format! ("{}, by {} ({})", self.headline, self.author, self.location)
}

struct Tweet {
pub username: String,
pub content: String,
pub reply: bool,
pub retweet: bool,

}

impl Summary for Tweet {
fn summarize(&self) -> String {
format! ("{}: {}", self.username, self.content)
}

fn main() {

let tweet = Tweet {
username: String::from("horse ebooks"),
content: String::from(

"of course, as you probably already know, people",

) o
reply: false,
retweet: false,

};

println! ("1 new tweet: {}", tweet.summarize());
}
main()

1 new tweet: horse_ebooks: of course, as you probably already know, people

()

e Can provide a default implementationina trait definition

trait Summary {
fn summarize(&self) -> String {
String::from("(Read more...)")

}

¢ To use default implementation, implement a trait without providing a function definition

struct NewsArticle {
pub headline: String,
pub location: String,
pub author: String,
pub content: String,
}

impl Summary for NewsArticle {}

fn main(){
let article = NewsArticle {
headline: String::from("Penguins win the Stanley Cup Championship!"),
location: String::from("Pittsburgh, PA, USA"),
author: String::from("Iceburgh"),
content: String::from(
"The Pittsburgh Penguins once again are the best \

hockey team in the NHL.",
Do
b3

println! ("New article available! {}", article.summarize());

main()

New article available! (Read more...)

0

e Can qualify a type parameter with a trait to limit its scope

fn notify<T: Summary>(item: &T) {
println! ("Breaking news! {}", item.summarize());

}

e Combine multiple trait constraints using + (note that + stands for and)

fn notify<T: Summary + Display>(item: &T) {}

[E0405] Error: cannot find trait "Display” in this scope
—[command 47:1:1]

1| Display
| T
| —— not found in this scope
|
| : help: consider importing this trait: ‘use std::fmt::Display;
—J

fn some function<T: Display + Clone, U: Clone + Debug>(t: &T, u: &U) -> i32 {}

[EO405] Error: cannot find trait "Display’ in this scope
—[command 48:1:1]

1| Display
| —T
| L—— not found in this scope
|
| : help: consider importing this trait: ‘use std::fmt::Display;
—

[EQ404] Error: expected trait, found derive macro “Debug"
—[command 48:1:1]

1| Debug
| -1
| L— not a trait
|
| : help: consider importing this trait instead: “use std::fmt::Debug;
—

e Syntactic sugar for type constraints

fn some function<T, U>(t: &T, u: &U) -> 132
where

T: Display + Clone,

U: Clone + Debug,
{}

[E0405] Error: cannot find trait "Display” in this scope
—[command 49:1:1]

3 | Display

| —T

| —— not found in this scope

|

| : help: consider importing this trait: ‘use std::fmt::Display;
—J

[E0404] Error: expected trait, found derive macro "Debug"
—[command 49:1:1]

4 Debug

L— not a trait

: help: consider importing this trait instead: “use std::fmt::Debug;

e Can use a trait directly as a type

fn returns summarizable() -> impl Summary {
Tweet {
username: String::from("horse ebooks"),
content: String::from(
"of course, as you probably already know, people",
) o
reply: false,
retweet: false,

e Now we can fix our original example of a generic function for the largest element in an array

fn largest<T:PartialOrd>(list: &[T]) -> &T {
let mut largest = &list[0];

for item in list {
if item > largest {
largest = item;
}
}

largest

fn main() {
let number _array = [34, 50, 25, 100, 65];
let number list = &number array[..];

let result = largest(&number list);
println!("The largest number is {}", result);

let char_array = ['y', 'm', 'a', 'q'l];
let char list = &char array[..];

let result = largest(&char list);
println! ("The largest char is {}", result);

main()

The largest number is 100
The largest char is y

0

Lifetimes

e Recall example last time where Rust caught a dangling reference
¢ In general, a reference cannot outlive the lifetime of the item it refers to

fn main() {

let r;

{
let x = 5;
r = &x;

}

printin!("r: {}", r);
}

[EO597] Error: “x° does not live long enough
—[command 54:1:1]

5 X

=
L— binding ‘x' declared here
6 &x

— borrowed value does not live long enough

L— *x* dropped here while still borrowed
9 r

-
— borrow later used here

fn main() {

let r; /] - +-- 'a
// |
{ // |
let x = 5; // -+--'b |
r = &x; /7| |
|

//
println!("r: {}", r); // [
}

[EO597] Error: “x° does not live long enough
—[command_55:1:1]

5 X

=
L— binding ‘x* declared here
6 &x

=

L— borrowed value does not live long enough
7 }

-
L— *x* dropped here while still borrowed

9 r

-
— borrow later used here

e In the following example, what does the return value refer to?
e From the code, it either tracks X or y , but which one?

fn longest(x: &str, y: &str) -> &str {
if x.len() > y.len() {
X
} else {
y
}
}

[E0106] Error: missing lifetime specifier
—[command 56:1:1]

1 | &
-
L— expected named lifetime parameter

|
|
—J

e Can use variables to tag lifetimes
o Like type variables, but preceded by a '
e Convention is to use lowercase for lifetime variables, uppercase for type variables
¢ This does not change the lifetime, merely tells Rust what to check
= In the example below, the return value must share a lifetime with both x and y

fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
if x.len() > y.len() {
X
} else {
y
}

e Now the following code works
= stringl.as str() issameas &stringl[..]

fn main() {
let stringl = String::from("long string is long");
let string2 = String::from("xyz");
let result = longest(stringl.as str(), string2.as str());
println! ("The longest string is {}", result);

main()
The longest string is long string is long

()

¢ This also works, though the lifetime of string2 islessthan stringl
e When the function runs, both arguments are valid

fn main() {
let stringl = String::from("long string is long");

{
let string2 = String::from("xyz");
let result = longest(stringl.as str(), string2.as str());
println!("The longest string is {}", result);
b
¥
main()

The longest string is long string is long

()

e However, if we refer to result outside the lifetime of string2 , the compiler complains

fn main() {
let stringl = String::from("long string is long");
let result;

{
let string2 = String::from("xyz");
result = longest(stringl.as str(), string2.as str());

}

println! ("The longest string is {}", result);
}

[EO597] Error: “string2’ does not live long enough
—[command 62:1:1]

6 string2

L—— binding ‘string2’ declared here
7 string2

L—— borrowed value does not live long enough
8 }

=
L— “string2’ dropped here while still borrowed

10 result

L—— borrow later used here

o If we know that only one argument matters, we need not tag the other with a lifetime

fn longest<'a>(x: &'a str, y: &str) -> &'a str {
X

b

e However, no lifetime tagging does not work here either

fn longest(x: &str, y: &str) -> &str {
X

I

[E0106] Error: missing lifetime specifier
—[command 64:1:1]

1| &

| T
| L— expected named lifetime parameter
_

