
Name: Roll No:

Programming Language Concepts

Quiz 2, II Semester, 2024–2025
13 February, 2025

1. Consider the following Rust functions.

(i) fn quiz1a(){

let s1 = "hello";

let s2 = "world";

let a = [s1,s2];

let head = a[0];

let b = (head == a[0]);

println!("{}",b)

}

(ii) fn quiz1b(){

let s1 = String::from("hello");

let s2 = String::from("world");

let a = [s1,s2];

let head = a[0];

let b = (head == a[0]);

println!("{}",b)

}

(iii) fn quiz1c(){

let s1 = String::from("hello");

let s2 = String::from("world");

let a = [s1,s2];

let head = &a[0];

let b = (head == a[0]);

println!("{}",b)

}

(iv) fn quiz1d(){

let s1 = String::from("hello");

let s2 = String::from("world");

let a = [s1,s2];

let head = &a[0];

let b = (head == &a[0]);

println!("{}",b)

}

Fill in each entry in the following table with Yes or No.

Compiles Runs

quiz1a Yes Yes
quiz1b No No

quiz1c No No

quiz1d Yes Yes



Explanation for Question 1

quiz1a The elements of array a are string constants, so the assignment let head = a[0]

copies the value and there is no problem.

quiz1b The elements of array a are strings allocated on the heap, so the assignment let

head = a[0] borrows the value, which means a[0] is no longer valid.

quiz1c The assignment let head = &a[0] creates a reference. The comparison head ==

a[0] fails because head is a reference and a[0] is a string.

quiz1d The assignment let head = &a[0] creates a reference. The comparison head ==

&a[0] succeeds because both sides are references.

. . .Question 2 on reverse



2. Consider the following Rust functions.

(i) fn quiz2a(){

let mut s = String::from("PLC 2025");

let a = &s[..4];

let b = &s[4..];

s = String::from("Hello world");

}

(ii) fn quiz2b(){

let mut s = String::from("PLC 2025");

let a = &s[..4];

let b = &s[4..];

s = String::from("Hello world");

println!("s:{}, a:{}, b:{}",s,a,b);

}

(iii) fn quiz2c(){

let mut s = String::from("PLC 2025");

let a = &mut s[..4];

let b = &mut s[4..];

s = String::from("Hello");

}

(iv) fn quiz2d(){

let mut s = String::from("PLC 2025");

let a = &mut s[..4];

let b = &mut s[4..];

s = String::from("Hello");

println!("s:{}, a:{}, b:{}",s,a,b)

}

Fill in each entry in the following table with Yes or No.

Compiles Runs

quiz2a Yes Yes
quiz2b No No

quiz2c Yes Yes

quiz2d No No



Explanation for Question 1

quiz2a Slices a and b reference the original string s. Reassigning s would normally create a
problem with these references to the original s, but the lifetime of Rust references end
with their last use. Since a and b are not used after they are defined, their lifetime has
ended when s is reeassigned, and the code compiles.

quiz2b Slices a and b reference the original string s. Reassigning s creates a problem
with these references to the original s. The final println! extends the lifetime of the
references a and b beyond the reassignment of s, so the code does not compile.

quiz2c Slices a and b are mutable references to the original string s. Rust does not allow
more than one mutable reference to be live. Since a and b are not used after they are
defined, the lifetime of a ends before b is assigned, and the code compiles.

quiz2d Slices a and b are mutable references to the original string s. Rust does not allow
more than one mutable reference to be live. The final println! extends the lifetime of
the references a and b to the end of the block, so there are multiple live references to
the same string s, and the code does not compile.


