This instance of PyTypeObject represents the Python dictionary type. This is the same object as dict in the Python layer.
Return true if p is a dict object or an instance of a subtype of the dict type.
Return true if p is a dict object, but not an instance of a subtype of the dict type.
Return a new empty dictionary, or NULL on failure.
Return a types.MappingProxyType object for a mapping which enforces read-only behavior. This is normally used to create a view to prevent modification of the dictionary for non-dynamic class types.
Determine if dictionary p contains key. If an item in p is matches key, return 1, otherwise return 0. On error, return -1. This is equivalent to the Python expression key in p.
Return a new dictionary that contains the same key-value pairs as p.
Insert value into the dictionary p with a key of key. key must be hashable; if it isn’t, TypeError will be raised. Return 0 on success or -1 on failure.
Insert value into the dictionary p using key as a key. key should be a char*. The key object is created using PyUnicode_FromString(key). Return 0 on success or -1 on failure.
Remove the entry in dictionary p with key key. key must be hashable; if it isn’t, TypeError is raised. Return 0 on success or -1 on failure.
Remove the entry in dictionary p which has a key specified by the string key. Return 0 on success or -1 on failure.
Return the object from dictionary p which has a key key. Return NULL if the key key is not present, but without setting an exception.
Variant of PyDict_GetItem() that does not suppress exceptions. Return NULL with an exception set if an exception occurred. Return NULL without an exception set if the key wasn’t present.
This is the same as PyDict_GetItem(), but key is specified as a char*, rather than a PyObject*.
This is the same as the Python-level dict.setdefault(). If present, it returns the value corresponding to key from the dictionary p. If the key is not in the dict, it is inserted with value defaultobj and defaultobj is returned. This function evaluates the hash function of key only once, instead of evaluating it independently for the lookup and the insertion.
Return a PyListObject containing all the items from the dictionary.
Return a PyListObject containing all the keys from the dictionary.
Return a PyListObject containing all the values from the dictionary p.
Return the number of items in the dictionary. This is equivalent to len(p) on a dictionary.
Iterate over all key-value pairs in the dictionary p. The Py_ssize_t referred to by ppos must be initialized to 0 prior to the first call to this function to start the iteration; the function returns true for each pair in the dictionary, and false once all pairs have been reported. The parameters pkey and pvalue should either point to PyObject* variables that will be filled in with each key and value, respectively, or may be NULL. Any references returned through them are borrowed. ppos should not be altered during iteration. Its value represents offsets within the internal dictionary structure, and since the structure is sparse, the offsets are not consecutive.
For example:
PyObject *key, *value;
Py_ssize_t pos = 0;
while (PyDict_Next(self->dict, &pos, &key, &value)) {
/* do something interesting with the values... */
...
}
The dictionary p should not be mutated during iteration. It is safe to modify the values of the keys as you iterate over the dictionary, but only so long as the set of keys does not change. For example:
PyObject *key, *value;
Py_ssize_t pos = 0;
while (PyDict_Next(self->dict, &pos, &key, &value)) {
long i = PyLong_AsLong(value);
if (i == -1 && PyErr_Occurred()) {
return -1;
}
PyObject *o = PyLong_FromLong(i + 1);
if (o == NULL)
return -1;
if (PyDict_SetItem(self->dict, key, o) < 0) {
Py_DECREF(o);
return -1;
}
Py_DECREF(o);
}
Iterate over mapping object b adding key-value pairs to dictionary a. b may be a dictionary, or any object supporting PyMapping_Keys() and PyObject_GetItem(). If override is true, existing pairs in a will be replaced if a matching key is found in b, otherwise pairs will only be added if there is not a matching key in a. Return 0 on success or -1 if an exception was raised.
This is the same as PyDict_Merge(a, b, 1) in C, and is similar to a.update(b) in Python except that PyDict_Update() doesn’t fall back to the iterating over a sequence of key value pairs if the second argument has no “keys” attribute. Return 0 on success or -1 if an exception was raised.
Update or merge into dictionary a, from the key-value pairs in seq2. seq2 must be an iterable object producing iterable objects of length 2, viewed as key-value pairs. In case of duplicate keys, the last wins if override is true, else the first wins. Return 0 on success or -1 if an exception was raised. Equivalent Python (except for the return value):
def PyDict_MergeFromSeq2(a, seq2, override):
for key, value in seq2:
if override or key not in a:
a[key] = value
Clear the free list. Return the total number of freed items.
New in version 3.3.