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Abstract. Detecting whether different variables have the same value
at a program point is generally undecidable. Though the subclass of
equalities, whose validity holds independently from the interpretation of
operators (Herbrand-equivalences), is decidable, the technique which is
most widely implemented in compilers, value numbering, is restricted
to basic blocks. Basically, there are two groups of algorithms aiming at
globalizations of value numbering: first, a group of algorithms based on
the algorithm of Kildall, which uses data flow analysis to gather infor-
mation on value equalities. These algorithms are complete in detecting
Herbrand-equivalences, however, expensive in terms of computational
complexity. Second, a group of algorithms influenced by the algorithm
of Alpern, Wegman and Zadeck. They do not fully interpret the control
flow, which allows them to be particularly efficient, however, at the price
of being significantly less precise than their Kildall-like counterparts. In
this article we discuss how to combine the best features of both groups by
aiming at a fair balance between computational complexity and precision.
We propose an algorithm, which extends the one of Alpern, Wegman and
Zadeck. The new algorithm is polynomial and, in practice, expected to be
almost as efficient as the original one. Moreover, for acyclic control flow
it is as precise as Kildall’s one, i. e. it detects all Herbrand-equivalences.

1 Motivation

Detecting whether different variables have the same value at a program point
is of major importance for program optimization, since equality information is
a prerequisite of a broad variety of optimizations like common subexpression
elimination, register allocation [10], movement of invariant code [13,16], branch
elimination and branch fusion [10]. An even more comprehensive list is given in
[1].

Unfortunately, the equality problem, i. e. the problem of determining whether
two variables have the same value at a program point is generally undecidable.
This holds even if control-flow branches are fully nondeterministically treated
[12]. On the other hand, the equality problem is decidable for the subclass of
equalities, whose validity holds independently from the interpretation of oper-
ators (Herbrand-equivalences1). In practice, however, the equality problem is
1 In [13] Herbrand-equivalence is called transparent equivalence.
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usually only tackled on program fragments like (extended) basic blocks. The
state-of-the-art is here characterized by the technique of value numbering [4],
which is implemented in many experimental and production compilers.

Basically, there are two groups of algorithms aiming at globalizations of value
numbering. First, there is a group of algorithms focusing on precision. They are
majorly influenced by Kildall’s pioneering work [8], which is based on data flow
analysis.2 Kildall’s method decides the equality problem of variables for the class
of Herbrand-equivalences. Its power, however, has its price in terms of compu-
tational complexity. This is probably one of the major obstacles opposing to its
widespread usage in program optimization. In [16,9] a variant of this algorithm
is used in the context of semantic code motion.

Second, there is a group of algorithms paying more attention to efficiency.
Typical examples are the algorithms of Alpern, Wegman and Zadeck [1] or its
precursors of Reif and Lewis [12]. Also the algorithm of Fong, Kam and Ullman
[6], whose results are less precise than those of the two mentioned before, falls
into this group. Characteristic for approaches of this group is a more restricted
treatment of the control flow of the program. In contrast to the algorithms of the
first group, where the control flow is fully interpreted, the branching structure
is treated to a large extent in a “syntactic” fashion. As a consequence, they
are significantly less precise, but, on the other hand, surprisingly efficient, i. e.
almost of linear time complexity. Like Kildall’s algorithm also the algorithm of
Alpern, Wegman and Zadeck has been used in the context of semantic code
motion [3,2,14].

In this article we are going to show how to combine the best of both worlds.
Our approach is based on the algorithm of Alpern, Wegman and Zadeck. It
extends their approach by a normalization process, which resolves anomalies
caused by the syntactic treatment of the control flow in the original algorithm.
Our algorithm is of polynomial worst-case time complexity and, in practice,
expected to be almost as efficient as the original one while, for acyclic control
flow, being as precise as Kildall’s one, i. e. it is complete for the class of Herbrand-
equivalences. We conjecture that our result can be extended to arbitrary control
flow. This would provide the first polynomial time algorithm for the detection
of all Herbrand-equivalences.3 For the sake of presentation, but without loss of
generality, we restrict ourselves in this article to the equality problem of variables
in a program. However, all approaches considered can easily be extended to the
equality problem of expressions.

The article is organized as follows. After introducing some basic notations
and definitions in Section 2, we briefly recall the two major alternate approaches
for detecting global value equalities in Section 3 and 4. Central is then Section 5,
where we present our extension to the partitioning approach of Alpern, Wegman,

2 In [15] Steffen shows how Kildall’s approach can be embedded into the framework
of abstract interpretation with respect to the Herbrand-semantics.

3 To our knowledge, the best known worst-case complexity estimation of advanced
Kildall-like algorithms is exponential. The estimation given in [8] is here misleading.
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and Zadeck. Finally, we present our conclusions and a discussion on future work
in Section 6.

2 Preliminaries

We consider procedures of imperative programs, which we represent by means of
directed flow graphs G = (N, E, s, e) with node set N , edge set E, a unique start
node s and end node e, which are assumed to have no incoming and outgoing
edges, respectively. The nodes of G represent the statements and the edges the
nondeterministic control flow of the underlying procedure. We assume that all
statements are either the empty statement “skip” or 3-address assignments of
the form x := y or x := y1 ω y2 where x, y, y1, y2 are variables and ω a binary
operator. By P[m, n] we denote the set of all finite paths from m to n. Without
loss of generality we assume that every node n ∈ N lies on a path from s to e.
A node m is dominated by a node n, if every path leading from s to m contains
an occurrence of n. A node n dominating m with n 6= m is a strict dominator of
m, and a strict dominator of m that is dominated by all other other dominators
of m is an immediate dominator.

The semantics of terms, which as usual are inductively composed of vari-
ables, constants, and operators, is considered with respect to the Herbrand
interpretation H = (T,H0). Here, T denotes the data domain given by the
set of terms, and H0 the interpretation function, which maps every constant
c to c and every operator ω to the total function H0(ω) : T × T → T de-
fined by H0(ω)(t1, t2)

def= t1ωt2. Denoting the set of all Herbrand states by
Σ = {σ |σ : V → T} and the distinct start state, which is the identity on
V, by σ0, the semantics of terms t ∈ T is given by the Herbrand semantics
H : T → (Σ → T). It is inductively defined by:

H(t)(σ) def=




σ(v) if t = v is a variable
H0(c) if t = c is a constant
H0(ω)(H(t1)(σ),H(t2)(σ)) if t = t1 ω t2

Every node of a flow graph is associated with a state transformation and a
backward-substitution function. If n ≡ x := t the corresponding state transfor-
mation is defined by θn(σ) def= σ[H(t)(σ)/x], and the backward-substitution of
n for a term t′ is defined by δn(t′) def= t′[t/x]. If n equals skip, both functions
are the identity on their domain. Both θn and δn can naturally be extended to
finite paths. This allows the following definition. Two expressions t1 and t2 are
called Herbrand-equivalent at the exit of node n iff4

∀p ∈ P[s, n]. H(t1)(θp(σ0)) =H(t2)(θp(σ0))

4 Entry equivalence can be defined analogously.
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3 Kildall-Like Algorithms at a Glance

Kildall’s algorithm [8] uses data flow analysis for tackling the equality problem of
variables in a program. In his original proposal equalities are represented as finite
structured partitions. Rather than going into the technical details we illustrate
the principal ideas by means of two meaningful examples, which are shown in
Figure 1 and in Figure 2.

In the program of Figure 1 the variables x and y have the same value at the
exit of node 4.

4 y := a+1

y := a+1

x := a+1x := a+1
a := 2 a := 3

4

32

1

a)

1

b)

x := a+1x := a+1
a := 2 a := 332

{[x, a+1]}

{[x, y, a+1]}

{[a, 3], [x, a+1, 3+1]}{[a, 2], [x, a+1, 2+1]}

Fig. 1. Illustrating Kildall’s algorithm: (a) the original program and (b) the program
annotated with structured partitions.

Kildall’s algorithm computes for every node entry and node exit in the pro-
gram a structured partition, which characterizes all Herbrand-equivalences in-
volving a variable. Formally, a (finite) structured partition π is a partition,5

which

1. comprises the set of variables and expressions occurring in the program and
2. and satisfies the following consistency constraint:

(e, e1 ω e2) ∈ π ∧ (e1, e
′
1) ∈ π ∧ (e2, e

′
2) ∈ π ⇒ (e, e′

1 ω e′
2) ∈ π

An assignment at a node n ≡ x := t is associated with a local flow function fn

defined by

fn(π) def= {(t1, t2) | (δn(t1), δn(t2)) ∈ π}.

The meet of two structured partitions π1 and π2 is given by their intersection.
Actually, it is sufficient to represent only those classes containing a variable

and at least one additional element. This “sparse” representation can inductively
be extended to cover an arbitrary large universe of expressions. An algorithm
constructing such a minimal representation has been proposed in [16].

5 Partitions can alternatively be considered equivalence relations on expressions. This
view is exploited in the following definitions.
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In order to cope with loops the annotation is computed as the greatest fixed
point of an iteration sequence. It starts with the optimistic assumption that all
expressions are equal (universal data flow information T) except for the start
node where the choice of the empty partition reflects that no value equalities are
known at the entry of the program (see Figure 2 for illustration).

x := x+1

x := 0
y := x+1

1

y := y+12 3

x := 0
y := x+1

1

T

T

T

T

T

a)

y := y+12 3

{[y, x+1]}

x := x+1

{[x, 0], [y, x+1, 0+1]}

{[x, y]}

{[y, x+1]}

{[x, y]}

b)

Fig. 2. Treatment of loops by Kildall’s algorithm: (a) program with optimistic partition
annotation and (b) the greatest fixed point annotation reveals the equality of x and y
at the exit of node 3.

3.1 Results

Kildall’s algorithm is precise for the class of Herbrand-equivalences. We have the
following soundness and completeness result [15]:

Theorem 1 (Soundness and Completeness). Two program variables x and
y are Herbrand-equivalent at a program point n if and only if (x, y) is contained
in the partition annotating n after termination of Kildall’s algorithm.

Unfortunately, the precision of Kildall’s algorithm has its price in terms of
computational complexity. In its original formulation the growth of the size of
partition classes is exponential in the number of classes in the partition. The
following structured partition makes this behaviour evident:

πexp
def= {[a, b], [c, d], [e, f ],[x, a + c, a + d, b + c, b + d],

[y, x + e, x + f, (a + c) + e, . . . , (b + d) + f ]}

Besides the size of the partition classes also their number is problematic. Ob-
viously, the meet of two partitions π1 and π2 is in the worst case of order
Ω(|π1| |π2|), where |πi| (i = 1, 2) refers to the number of classes in πi, respec-
tively. Unfortunately, even on an acyclic program path p, a partition might be
subjected to a number of meet operations of order Ω(|p|). Together, a naive
estimation yields an exponential growth of the number of classes of partitions
(though no program is known exhibiting this behaviour).
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In [16] we proposed a representation of structured
partitions in terms of structured partition DAGs, in
which common substructures are shared [6]. This
dramatically reduces the space requirements as can
be seen by the structured partition DAG to the right.
It represents the partition πexp considered above. c,d e,f

+

+

a,b

x

y

The usage of structured partition DAGs eliminates the exponential blow-up in
the representation of partition classes sketched above. However, the problem
of the growth of the number of classes is still present. Though as mentioned
above there is no example known exhibiting this exponential behaviour, one is
still faced with a quite extensive data structure where every program point is
annotated with a possibly large structured partition DAG. We suspect that this
is the main obstacle for the widespread usage of Kildall-like techniques.

4 Alpern, Wegman and Zadeck’s Algorithm at a Glance

Similar to the previous section we focus on the essential steps and ideas un-
derlying Alpern, Wegman and Zadeck’s algorithm, or for short AWZ-algorithm.
We illustrate its essence on an informal and intuitive level. For this purpose we
consider the example of Figure 3(a) which is a slight variant of Figure 2(a).6

As mentioned in Section 1, the AWZ-algorithm works on flow graphs in static
single assignment (SSA) form [5]. In essence, this means that the variables of
the original program are replaced by new versions such that every variable
has a unique initialization point. At merge points of the control flow pseudo-
assignments xk := φn(xi1, . . . , xik) are introduced meaning that xk gets the
value of xij if the join node is entered via the jth ingoing edge.7 The SSA form
of our running example is depicted in Figure 3(b).

x := 0 
y := 0

1

x := x+1
y := y+1

3

1 x  := 0 
y  := 0

0
0

2

a) b)

2

2

1

1y  :=
2 3 x  :=

Φ (y  ,
22

2

x  := 
y  := y +11

x +11 Φ (x  , 
2

0x  )
y  )0

Fig. 3. Illustrating the AWZ-algorithm: (a) the original program and (b) the program
transformed into SSA form.

Based on the SSA form of a program the value graph is constructed. It repre-
sents the value transfer of SSA variables along the control flow of the program.
6 Actually, the AWZ-algorithm fails on the example of Figure 2.
7 φ-operators are indexed by their corresponding join node.
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Following the description in [10] the value graph is defined as a labelled directed
graph where

– the nodes correspond to occurrences of nontrivial assignments, i. e. assign-
ments whose right-hand side contain at least one operator, and to occur-
rences of constants in the program. Every node is labelled with the corre-
sponding constant or operator symbol. Additionally, every node is annotated
by the set of variables whose value is generated by the corresponding con-
stant or assignment. An operator node is always annotated with the left-hand
side variable of its corresponding assignment. Moreover, for a trivial assign-
ment x := y the generating assignment of x is defined as the generating
assignment of y, and for a trivial assignment x := c the corresponding node
associated with c is annotated with x. For convenience, the constant or op-
erator label is drawn inside the circle visualizing the node, and the variable
annotation outside.

– Directed edges point to the operands of the right-hand side expression as-
sociated with the node. Moreover, edges are labelled with natural numbers
according to the position of operands.8

Figure 4(a) shows the value graph corresponding to Figure 3(b). It is worth
noting that the value graph is cyclic which is due to self-dependencies of variables
in the loop.

+

Φ2

1

x 2,y 2 0
y0x0 ,

x1,y1

+

Φ2

1

x 2,y 2 0
y0x0 ,

x1,y1

+

Φ2

0
x0

x1

x 2

1

+

Φ2

0
y0

y1

y 2

1

a) b)

Fig. 4. (a) The value graph corresponding to Figure 3(b), and (b) the collapsed value
graph of (a) after congruence partitioning.

The central step of the AWZ-algorithm is a partitioning procedure determining
congruent nodes in the value graph. Like Kildall’s algorithm the AWZ-algorithm
proceeds optimistically computing a greatest fixed point. To this end, it starts
with a coarse partition which is refined in the sequel. More precisely, the schedule
of the algorithm is as follows:

Start partition: all nodes of the value graph with identical constant or oper-
ator label are grouped into the same class of the partition.

8 We omit this labelling in our examples making the implicit assumption that edges
are ordered from left to right.
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Refining a partition: two nodes n and m, which belong to the same class
and are labelled with a k−ary operator are separated into different classes if
there is an i 6 k such that the ith operands of both nodes belong to different
classes.

For our illustrating example the AWZ-algorithm comes up with the collapsed
value graph depicted in Figure 4(b).

4.1 Results

As shown in [1] the AWZ-algorithm is sound. In terms of the original flow graph
the result of Alpern, Wegman and Zadeck would read as follows:

Theorem 2 (Soundness). Two variables are Herbrand-equivalent at a pro-
gram point n if there is a node in the collapsed value graph, which is annotated
by the current SSA-instances of both variables.

Here, the notion of a current SSA-instance refers to the SSA-version of the
variable, which immediately dominates the program point. Unfortunately, the
“only-if” direction does not hold. This means that the AWZ-algorithm is not
complete (cf. Section 4.2). However, it can very efficiently be implemented by
means of a technique, which resembles Hopcroft’s algorithm for the minimization
of finite automata [7]. For a value graph with e edges the AWZ-algorithm termi-
nates within O(e log(e)) steps. In contrast to Kildall-like approaches, which we
discussed in Section 3, it is pragmatically advantageous that the AWZ-algorithm
relies on a single global data structure only, which uniformly captures both the
control and the value flow.

4.2 Limitations

In this section we discuss limitations of the AWZ-algorithm and show that it is
not complete. To this end we discuss typical situations, in which it fails to detect
equalities of variables. Of course, according to Theorem 1 all these equalities are
detected by Kildall’s algorithm. The main weakness of the AWZ-algorithm is a
consequence of treating φ-operators like ordinary operators. This way, part of
the control flow is not fully interpreted, but treated in a “syntactical” way.

We elucidate this by means of the example in Figure 1(a). In this example
the AWZ-algorithm fails to detect the Herbrand-equivalence of x and y at the
exit of node 4. Figure 5(a) shows the SSA form of this program and Figure 5(b)
the collapsed value graph after congruence partitioning.

The reason of this failure, i.e., the failure of detecting the equality of x2 and
y0, is that the partitioning process treats φ-operators like ordinary operators.
Hence, even in the start partition an expression with, let’s say, top-level oper-
ator “+” is separated from one with top-level operator φ. In other words, the
AWZ-algorithm is highly sensitive to the position of φ-operators in composite
expressions. In Section 5 we will present a normalizing transformation remedying
this drawback, which is the key to our approach.
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a  := 30a  := 2
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1
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Φ4

0y  := a  +1
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2

0Φ
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2
x  := a +1

1

1

b)

(x  ,
0(a  , 1a  )

1x  )

Fig. 5. Concerning Figure 1(a): the value equality of x and y at the exit of node
4 is not detected by the AWZ-algorithm. (a) The program in SSA form and (b) the
collapsed value graph after congruence partitioning.

Next, we consider the looping example of Figure 2(a). Also in this example
the AWZ-algorithm fails to detect the equality of x and y at the exit of node 2.

Again the reason lies in the distinct positions of φ-operators, however, now
in a cyclic context of the value graph. Figure 6 shows the program in SSA form
and the corresponding collapsed value graph.

3Φ

3

1

2

+

x

2y

1y
+

0x

0y
Φ

x

10

+
x  := 

x  := x  +1

a)

y  := 
1

2

1 2

Φ3

2

1

00

0
y  := x  +1

1

y  := y  +1

x  := 0

1

b)

2
3

2 Φ3

(x  ,x  )0

0y  )(y  ,

Fig. 6. Concerning Figure 2(a): the AWZ-algorithm fails to detect the value equiv-
alence of x and y at the exit of node 4. (a) The program in SSA form and (b) the
collapsed value graph after congruence partitioning.

5 The AWZ-Algorithm with Integrated Normalization

In this section we will present our algorithm, which is an extension of the AWZ-
algorithm. It works by modifying collapsed value graphs according to a set of
graph rewrite rules. In order to give a precise formulation we introduce some
notations and conventions.

For a node n of a collapsed value graph we denote the set of variables an-
notating n by vars(n), its immediate successor nodes by succ(n) and the set of
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indirect successors by succ∗(n).9 A node n with vars(n) = ∅ is called an anony-
mous node. For the sake of presentation we assume that φ-operators are always
binary. Note that this can always be achieved by a “linearization” of join nodes,
which have more than two incoming edges. The construction of this section,
however, is not tied to this assumption and can easily be extended to capture
k-ary φ-operators as well.

5.1 The Normalization Rules

The normalization process is driven by the two graph rewrite rules depicted in
Figure 7. In these rules the left-hand side of the large arrow denotes a pattern
occurring in the collapsed value graph, which is replaced by the graph pattern
on the right-hand side. Incoming and outgoing edges of nodes in the argument
pattern which are not part of the pattern are not touched by the applications
of the rules. It should be noted that separate nodes of the pattern may match
the same node in the collapsed value graph. Operator labels in the pattern are
matched according to the following convention: labels φn, ω in the pattern match
with φ-operators and ordinary operators, respectively. Unlabelled nodes of the
pattern match any node in the collapsed value graph.

Rule (1) is already mentioned in [1], however, only as a one-step postprocess
for simplifying the value graph after termination of the congruence partitioning.
In our approach Rule (1) is an integral part of the iteration process. It eliminates
unnecessary φ-operators which can either occur as the result of the partitioning
process or of applications of Rule (2). Rule (1) is applicable whenever a node
n with φ-operator is present whose operands refer to the same node. In this
case any edge pointing to n is redirected to m, the variable annotations of n are
added to m, and finally, node n is eliminated.

Rule (2) is a new normalization rule. Essentially, it can be regarded as a
directed distributivity rule. “Expressions” with φ-operators are rewritten to have
φ-operators innermost whenever this is possible. More laxly, this rule reads as:

φm(a ω b, c ω d) ⇒ φm(a, c) ω φm(b, d)

Rule (2) is applicable, if there is a node n with a φ-operator whose both operands
have the same ordinary operator label, say ω, at top-level. Moreover, n must not
be strictly followed by an anonymous node. The pattern is then modified as
displayed on the right side of the arrow:

– Two new nodes labelled with the φ-operator of n are introduced and con-
nected with the operands of l and r as depicted in Figure 7.

– Node n gets ω as its operator label.
– Finally, the outgoing edges of n are redirected to the new nodes.

Proposing a rule system directly raises questions on termination and conflu-
ence of the rewrite process where we consider congruence partitioning a graph
rewriting step, too. Fortunately, both properties are satisfied.
9 Formally, succ∗(n) is the smallest set with succ(n) ⊆ succ∗(n) and ∀ m ∈

succ∗(n). succ(m) ⊆ succ∗(n).
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vars(m) := vars(m)     vars(n)

∋m   succ ({l,r}). vars(m)*
vars(l    ) = vars(r    )  := new new

=

Rule 2

Rule 1

Fig. 7. Graph rewrite rules for normalizing collapsed value graphs.

Lemma 1 (Confluence and Termination). The graph rewrite system con-
sisting of the rules in Figure 7 together with congruence partitioning is termi-
nating and confluent.

Proof (Sketch): Termination is proved in the complexity section of Section
13, where the complexity of the algorithm is estimated. Thus, we concentrate
here on the proof of confluence. According to Newman’s Theorem [11] it suf-
fices to prove local confluence. Obviously, congruence partitioning preserves the
potential of applications of Rule (1) and Rule (2). A rule which can be applied
before collapsing can also be applied after collapsing. To gain local confluence
the rule has then further to be applied on all parts which are merged into the
common structure. Moreover, it is easy to see that two possible applications of
either Rule (1) or Rule (2) can be performed in any order. Thus, the only in-
teresting case where two rules may overlap is a conflict between applications of
Rule (1) and Rule (2). The diagram resulting from this situation together with
the way of how it can be completed is shown Figure 8. 2

5.2 The Iteration Strategy

The rules heavily interact which each other. For instance, Rule (1) may eliminate
a φ-node above an operator node. This enables Rule (2). Vice versa Rule (2) may
enable Rule (1) as already seen in Figure 8. In addition, Rule (1) and Rule (2)
may open further opportunities for the partitioning algorithm, and vice versa it
may trigger further rule applications.

In order to fully capture the interdependencies we thus propose the following
schedule of the application order:
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Rule 1Rule
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Rule 1
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art.

Fig. 8. Local confluence of the rewrite rules.

BEGIN
Start with the value graph as collapsed value graph.
REPEAT

1. Perform the partitioning step of the AWZ-algorithm on the
collapsed value graph.

2. Apply Rule (1) and Rule (2) exhaustively.10

UNTIL the collapsed value graph is stable
END

The power of these rules are demonstrated by the examples of Section 4.2
which are out of the scope of the classical AWZ-algorithm. Starting with the
collapsed value graph of Figure 5(b), application of Rule (2) followed by Rule
(1) results in the value graph of Figure 9(a). A successive partitioning step leads
to the value graph of Figure 9(b), where the equality of x and y is revealed as
desired.

Also for the cyclic situation of Figure 6(b) our approach succeeds. Figure
10(a) depicts the value graph after an application of Rule (2) and Rule (1).
Starting with this situation the partitioning algorithm detects the equality of x1
and y2 as shown in Figure 10(b).

5.3 Results

Together with the soundness of the congruence partitioning, which has been
proved in [1], and the obvious soundness of Rule (1) and Rule (2) we have:
10 After application of Rule (2) the created φ-nodes have to be immediately checked

for applicability of Rule (1).
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Fig. 9. The algorithm succeeds on the example of Figure 5. The collapsed value graph
after (a) the application of normalization rules and (b) after a further partitioning step.
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Fig. 10. The algorithm succeeds on the example of Figure 6. The collapsed value graph
after (a) the application of normalization rules and (b) after a further partitioning step.

Theorem 3 (Soundness). Two variables are Herbrand-equivalent at a pro-
gram point n if there is a node in the collapsed value graph which is annotated
by the current SSA-instances of both variables.

For acyclic programs our algorithm is even complete, i.e., it detects all
Herbrand-equalities. We have:

Theorem 4 (Completeness (Acyclic Case)). In an acyclic program two
program variables are Herbrand-equivalent at a program point n if and only if
there is a node in the collapsed value graph which is annotated by the current
SSA-instances of both variables.

Proof (Sketch): The if-direction holds because of Theorem 3. The only-if direc-
tion, and hence completeness, can be shown by an induction on the structure of
collapsed value graphs (DAGs in this case).

Let us consider two nodes n and m of a collapsed value graph11 denoting
Herbrand-equivalent terms such that n and m are not strictly followed by an
anonymous node. Then we are going to show by induction on the sum of the
depths of m and n that the two nodes are collapsed into a single one by our
11 Possibly at some arbitrary intermediate stage of the transformation.
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algorithm.12 The induction base where n and m are labelled with constants is
trivial. Obviously, Herbrand-equivalence forces that n and m are labelled with
the same constant and thus are collapsed by the congruence partitioning step.

For the induction step we may assume that n and m refer to Herbrand-
equivalent terms opn(u1, u2) and and opm(v1, v2).13 Here we have to distinguish
three different situations:

Case 1: If opn and opm are ordinary operators the definition of Herbrand-
equivalence implies that opn = opm, say ω, and u1 is Herbrand-equivalent
with v1 and u2 with v2. By the induction hypothesis the nodes belonging to
u1 and v1 and to u2 and v2, respectively, are collapsed. Hence n and m are
finally collapsed by congruence partitioning.

Case 2: If opn and opm are both φ-operators the situation is analogously to
Case 1, if they are identical. Otherwise, let opn =φr and opm =φs. Without
loss of generality we may assume that r strictly dominates s.14 Then both
v1 and v2 are also Herbrand-equivalent with φr(u1, u2). According to the
induction hypothesis m’s immediate successors can be merged into a single
node m′. Thus m can be eliminated by applying Rule (1) which makes the
induction hypothesis applicable to n and m′.

Case 3: If opn is an ordinary operator ω and opm =φr, then we may assume
that r strictly dominates the definition site of ω(u1, u2) (otherwise the φ-
node can be eliminated with the same reasoning as in Case 2). Moreover,
one may assume that ω(u1, u2) is immediately dominated by r as the back-
ward substitution15 δp(ω(u1, u2)) along an arbitrary path between r and
the definition site of ω(u1, u2) is also charaterized by n. In order to show
that both nodes belonging to v1 and v2 are labelled by ω one may assume
that δp(ω(u1, u2)) is further backward substituted along the ingoing braches
of r. Virtually extending the value graph such that these expressions are
contained, the induction hypothesis becomes applicable yielding the desired
labelling of v1 and v2. This makes Rule (2) applicable which turns m into
a node labelled with ω, too. Moreover, another application of the induction
hypothesis yields that the newly introduced φ-operators are collapsed with
u1 and u2 which guarantees that no anonymous φ-operators are introduced.
Thus this case finally reduces to a situation where the reasoning of Case 1
becomes applicable. 2

12 The depth d(n) of a node n is 0, if n is a leaf node, and otherwise inductively defined
by max(d(l(n)), d(r(n))) + 1, where l(n) and r(n) refer to the left and right child
node of n.

13 Note that these expressions are contained in the collapsed value graph under con-
sideration.

14 Note that by our assumption that n and m are Herbrand-equivalent at a certain
program point r must strictly dominate s or vice versa.

15 The backward substitution has to be slightly modified in order to take φ-operators
into account.
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Complexity By construction, φ-nodes added by Rule (2) only point to nodes
labelled by some variable. Thus the number of newly generated nodes is bound by
n2, where n denotes the number of nodes in the original value graph. As successful
applications of Rule (1) and congruence partitioning steps are guaranteed to
delete nodes, the total number of successful rule applications is of order O(n2).
With the fact that congruence partitioning is the most expensive of the rewrite
steps this amounts to an overall complexity of order O(n4 log(n)). It should
be noted that this is an extreme worst-case scenario. In practice, we rather
expect the collapsed value graph to be linear in size of the original value graph
which would reduce the computational complexity to a reasonable bound of
O(n2 log(n)).

6 Conclusions

Detecting the equality of variables (and based thereon those of expressions) is a
prerequisite of a large variety of program optimizations ranging from partial re-
dundancy elimination over common subexpression elimination to constant prop-
agation. Since the general problem is undecidable, it is usually considered with
respect to the Herbrand interpretation. With respect to this interpretation, flow
graphs, the representation of programs most commonly used in optimization,
represent value equivalences and the value flow locally, i. e. statementwise: the
left-hand-side variable of an assignment equals the value of its right-hand-side
expression. Value flow graphs (cf. [16]) represent the opposite pole: value equiv-
alences of variables and expressions and the value flow are represented globally,
i. e. across the complete program. In this scenario value graphs (cf. [1]) stand
between flow graphs and value flow graphs with respect to performance and
precision: the equivalence and value flow information represented can efficiently
be computed, however, at the price of losing precision. In this article we showed
how to enhance the value-graph approach in order to arrive at an algorithm
which for acyclic control flow fairly combines the efficiency of the value-graph
approach with the precision of the value-flow-graph approach. The resulting al-
gorithm is optimal for acyclic programs, i. e. it detects all value equivalences with
respect to the Herbrand interpretation. We are currently exploring an extension
to arbitrary control flow. In particular, we are investigating an adaption of the
presented strategy, in which Rule (1) and the congruence partitioning process
are merged, and Rule (2) (together with Rule (1)) is exhaustively exploited in
a preprocess stage. To the best of our knowledge this would provide the first
algorithm for the detection of Herbrand equivalences with proven polynomial
time complexity.

In addition to the theoretical perception of what is the essence of value
equivalence detection, we expect that our approach has an important impact in
practice as the considerably weaker basic value-graph approach of [1] is widely
used in practice.
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