Principles of Program Analysis:

Data Flow Analysis

Transparencies based on Chapter 2 of the book: Flemming Nielson, Hanne Riis Nielson and Chris Hankin: Principles of Program Analysis. Springer Verlag 2005. (C)Flemming Nielson \& Hanne Riis Nielson \& Chris Hankin.

Example Language

Syntax of While-programs

$$
\begin{aligned}
& a::= \\
& b|n| a_{1} o p_{a} a_{2} \\
& b: \text { true } \mid \text { false } \mid \text { not } b \mid b_{1} \text { op } b_{2} \mid a_{1} \text { op } a_{2} \\
& S: {[x:=a]^{\ell} \mid[\text { skip }]^{\ell}\left|S_{1} ; S_{2}\right| } \\
& \text { if }[b]^{\ell} \text { then } S_{1} \text { else } S_{2} \mid \text { while }[b]^{\ell} \text { do } S
\end{aligned}
$$

Example: $[z:=1]^{1}$; while $[x>0]^{2}$ do $\left([z:=z * y]^{3} ;[x:=x-1]^{4}\right)$

Abstract syntax - parentheses are inserted to disambiguate the syntax

Building an "Abstract Flowchart"
Example: $[z:=1]^{1}$; while $[x>0]^{2}$ do $\left([z:=z * y]^{3} ;[x:=x-1]^{4}\right)$

$$
\begin{aligned}
\text { init }(\cdots)= & 1 \\
\text { final }(\cdots)= & \{2\} \\
\text { labels }(\cdots)= & \{1,2,3,4\} \\
\text { flow }(\cdots)= & \{(1,2),(2,3) \\
& (3,4),(4,2)\} \\
\operatorname{flow}^{R}(\cdots)= & \{(2,1),(2,4) \\
& (3,2),(4,3)\}
\end{aligned}
$$

Initial labels

init(S) is the label of the first elementary block of S :

$$
\begin{aligned}
\text { init : Stmt } \rightarrow \text { Lab } & \\
\operatorname{init}\left([x:=a]^{\ell}\right) & =\ell \\
\operatorname{init}\left([\text { skip }]^{\ell}\right) & =\ell \\
\operatorname{init}\left(S_{1} ; S_{2}\right) & =\operatorname{init}\left(S_{1}\right) \\
\operatorname{init}\left(\text { if }[b]^{\ell} \text { then } S_{1} \text { else } S_{2}\right) & =\ell \\
\text { init }\left(\text { while }[b]^{\ell} \text { do } S\right) & =\ell
\end{aligned}
$$

Example:

$$
\operatorname{init}\left([z:=1]^{1} ; \text { while }[x>0]^{2} \text { do }\left([z:=z * y]^{3} ;[x:=x-1]^{4}\right)\right)=1
$$

Final labels

final (S) is the set of labels of the last elementary blocks of S :

$$
\begin{aligned}
& \text { final }: \text { Stmt } \rightarrow \mathcal{P}(\text { Lab }) \\
& \text { final }\left([x:=a]^{\ell}\right)=\{\ell\} \\
& \text { final }\left([\text { skip }]^{\ell}\right)=\{\ell\} \\
& \text { final }\left(S_{1} ; S_{2}\right)=\text { final }\left(S_{2}\right) \\
&\text { final } \left.\text { if }[b]^{\ell} \text { then } S_{1} \text { else } S_{2}\right)=\text { final }\left(S_{1}\right) \cup \text { final }\left(S_{2}\right) \\
& \text { final }\left(\text { while }[b]^{\ell} \text { do } S\right)=\{\ell\}
\end{aligned}
$$

Example:

final $\left([z:=1]^{1} ;\right.$ while $[x>0]^{2}$ do $\left.\left([z:=z * y]^{3} ;[x:=x-1]^{4}\right)\right)=\{2\}$

Labels

labels (S) is the entire set of labels in the statement S :

$$
\begin{aligned}
\text { labels }: \text { Stmt } & \rightarrow \mathcal{P}(\text { Lab }) \\
\text { labels }\left([x:=a]^{\ell}\right) & =\{\ell\} \\
\operatorname{labels}\left([\text { skip }]^{\ell}\right) & =\{\ell\} \\
\text { labels }\left(S_{1} ; S_{2}\right) & =\text { labels }\left(S_{1}\right) \cup \operatorname{labels}\left(S_{2}\right) \\
\text { labels }\left(\text { if }[b]^{\ell} \text { then } S_{1} \text { else } S_{2}\right) & =\{\ell\} \cup \operatorname{labels}\left(S_{1}\right) \cup \operatorname{labels}\left(S_{2}\right) \\
\text { labels }\left(\text { while }[b]^{\ell} \text { do } S\right) & =\{\ell\} \cup \operatorname{labels}(S)
\end{aligned}
$$

Example

labels $\left([\mathrm{z}:=1]^{1}\right.$; while $[\mathrm{x}>0]^{2}$ do $\left.\left([\mathrm{z}:=\mathrm{z} * \mathrm{y}]^{3} ;[\mathrm{x}:=\mathrm{x}-1]^{4}\right)\right)=\{1,2,3,4\}$

Flows and reverse flows

flow (S) and flow ${ }^{R}(S)$ are representations of how control flows in S :

$$
\begin{aligned}
\text { flow, flow }{ }^{R}: \text { Stmt } & \rightarrow \mathcal{P}(\text { Lab } \times \text { Lab }) \\
\text { flow }\left([x:=a]^{\ell}\right)= & \emptyset \\
\text { flow }\left([\text { skip }]^{\ell}\right)= & \emptyset \\
\text { flow }\left(S_{1} ; S_{2}\right)= & \operatorname{flow}\left(S_{1}\right) \cup \text { flow }\left(S_{2}\right) \\
& \cup\left\{\left(\ell, \text { init }\left(S_{2}\right)\right) \mid \ell \in \text { final }\left(S_{1}\right)\right\} \\
\text { flow } \left.i f[b]^{\ell} \text { then } S_{1} \text { else } S_{2}\right)= & \operatorname{flow}\left(S_{1}\right) \cup \text { flow }\left(S_{2}\right) \\
& \cup\left\{\left(\ell, \text { init }\left(S_{1}\right)\right),\left(\ell, \text { init }\left(S_{2}\right)\right)\right\} \\
\text { flow }\left(\text { while }[b]^{\ell} \text { do } S\right)= & \text { flow }(S) \cup\{(\ell, \text { init }(S))\} \\
& \cup\left\{\left(\ell^{\prime}, \ell\right) \mid \ell^{\prime} \in \operatorname{final}(S)\right\} \\
\operatorname{flow}^{R}(S)= & \left\{\left(\ell, \ell^{\prime}\right) \mid\left(\ell^{\prime}, \ell\right) \in \operatorname{flow}(S)\right\}
\end{aligned}
$$

Elementary blocks

A statement consists of a set of elementary blocks

$$
\begin{aligned}
\text { blocks:Stmt } & \rightarrow \mathcal{P}(\text { Blocks }) \\
\operatorname{blocks}\left([\mathrm{x}:=a]^{\ell}\right) & =\left\{[\mathrm{x}:=a]^{\ell}\right\} \\
\operatorname{blocks}\left([\text { skip }]^{\ell}\right) & =\left\{[\text { skip] }]^{\ell}\right\} \\
\operatorname{blocks}\left(S_{1} ; S_{2}\right) & ={\operatorname{blocks}\left(S_{1}\right) \cup \operatorname{blocks}\left(S_{2}\right)}^{\text {blocks }\left(\text { if }[b]^{\ell} \text { then } S_{1} \operatorname{else} S_{2}\right)}
\end{aligned}=\left\{[b]^{\ell}\right\} \cup \operatorname{blocks}\left(S_{1}\right) \cup \operatorname{blocks}\left(S_{2}\right) .
$$

A statement S is label consistent if and only if any two elementary statements $\left[S_{1}\right]^{\ell}$ and $\left[S_{2}\right]^{\ell}$ with the same label in S are equal: $S_{1}=S_{2}$

A statement where all labels are unique is automatically label consistent

Intraprocedural Analysis

Classical analyses:

- Available Expressions Analysis
- Reaching Definitions Analysis
- Very Busy Expressions Analysis
- Live Variables Analysis

Derived analysis:

- Use-Definition and Definition-Use Analysis

Available Expressions Analysis

The aim of the Available Expressions Analysis is to determine

For each program point, which expressions must have already been computed, and not later modified, on all paths to the program point.

Example:

point of interest

$$
[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{1} ;[\mathrm{y}:=\mathrm{a} * \mathrm{~b}]^{2} ; \text { while }[\mathrm{y}>\mathrm{a}+\mathrm{b}]^{3} \text { do }\left([\mathrm{a}:=\mathrm{a}+1]^{4} ;[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{5}\right)
$$

The analysis enables a transformation into

$$
[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{1} ;[\mathrm{y}:=\mathrm{a} * \mathrm{~b}]^{2} ; \text { while }[\mathrm{y}>\mathrm{x}]^{3} \text { do }\left([\mathrm{a}:=\mathrm{a}+1]^{4} ;[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{5}\right)
$$

Available Expressions Analysis - the basic idea

Available Expressions Analysis

kill and gen functions

$$
\begin{aligned}
\text { kill }_{\mathrm{AE}}\left([x:=a]^{\ell}\right) & =\left\{a^{\prime} \in \operatorname{AExp}_{\star} \mid x \in F V\left(a^{\prime}\right)\right\} \\
\text { kil }_{\mathrm{AE}}\left([\mathrm{skip}]^{\ell}\right) & =\emptyset \\
\text { kil }_{\mathrm{AE}}\left([b]^{\ell}\right) & =\emptyset \\
\operatorname{gen}_{\mathrm{AE}}\left([x:=a]^{\ell}\right) & =\left\{a^{\prime} \in \operatorname{AExp}(a) \mid x \notin F V\left(a^{\prime}\right)\right\} \\
\operatorname{gen}_{\mathrm{AE}}\left([\mathrm{skip}]^{\ell}\right) & =\emptyset \\
\operatorname{gen}_{\mathrm{AE}}\left([b]^{\ell}\right) & =\operatorname{AExp}(b)
\end{aligned}
$$

data flow equations: $A E=$

$$
\begin{aligned}
\mathrm{AE}_{\text {entry }}(\ell)= & \begin{cases}\emptyset & \text { if } \ell=\operatorname{init}\left(S_{\star}\right) \\
\bigcap\left\{\mathrm{AE}_{\text {exit }}\left(\ell^{\prime}\right) \mid\left(\ell^{\prime}, \ell\right) \in \operatorname{flow}\left(S_{\star}\right)\right\} & \text { otherwise }\end{cases} \\
\mathrm{AE}_{\text {exit }}(\ell)= & \left(\mathrm{AE}_{\text {entry }}(\ell) \backslash \operatorname{kill}_{\mathrm{AE}}\left(B^{\ell}\right)\right) \cup \operatorname{gen}_{\mathrm{AE}}\left(B^{\ell}\right) \\
& \text { where } B^{\ell} \in \operatorname{blocks}\left(S_{\star}\right)
\end{aligned}
$$

Example:

$$
[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{1} ;[\mathrm{y}:=\mathrm{a} * \mathrm{~b}]^{2} \text {; while }[\mathrm{y}>\mathrm{a}+\mathrm{b}]^{3} \text { do }\left([\mathrm{a}:=\mathrm{a}+1]^{4} ;[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{5}\right)
$$

kill and gen functions:

ℓ	kill $_{\mathrm{AE}}(\ell)$	gen $_{\mathrm{AE}}(\ell)$
1	\emptyset	$\{\mathrm{a}+\mathrm{b}\}$
2	\emptyset	$\{\mathrm{a} * \mathrm{~b}\}$
3	\emptyset	$\{\mathrm{a}+\mathrm{b}\}$
4	$\{\mathrm{a}+\mathrm{b}, \mathrm{a} * \mathrm{~b}, \mathrm{a}+1\}$	\emptyset
5	\emptyset	$\{\mathrm{a}+\mathrm{b}\}$

Example (cont.):

$$
[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{1} ;[\mathrm{y}:=\mathrm{a} * \mathrm{~b}]^{2} \text {; while }[\mathrm{y}>\mathrm{a}+\mathrm{b}]^{3} \text { do }\left([\mathrm{a}:=\mathrm{a}+1]^{4} ;[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{5}\right)
$$

Equations:

$$
\begin{aligned}
\mathrm{AE}_{\text {entry }}(1) & =\emptyset \\
\mathrm{AE}_{\text {entry }}(2) & =A \mathrm{E}_{\text {exit }}(1) \\
A \mathrm{E}_{\text {entry }}(3) & =A \mathrm{E}_{\text {exit }}(2) \cap A \mathrm{E}_{\text {exit }}(5) \\
\mathrm{AE}_{\text {entry }}(4) & =A \mathrm{E}_{\text {exit }}(3) \\
\mathrm{AE}_{\text {entry }}(5) & =A \mathrm{E}_{\text {exit }}(4) \\
\mathrm{AE}_{\text {exit }}(1) & =A \mathrm{E}_{\text {entry }}(1) \cup\{\mathrm{a}+\mathrm{b}\} \\
\mathrm{AE}_{\text {exit }}(2) & =A \mathrm{E}_{\text {entry }}(2) \cup\{\mathrm{a} * \mathrm{~b}\} \\
\mathrm{AE}_{\text {exit }}(3) & =A \mathrm{E}_{\text {entry }}(3) \cup\{\mathrm{a}+\mathrm{b}\} \\
\mathrm{AE}_{\text {exit }}(4) & =A \mathrm{E}_{\text {entry }}(4) \backslash\{\mathrm{a}+\mathrm{b}, \mathrm{a} * \mathrm{~b}, \mathrm{a}+1\} \\
\mathrm{AE}_{\text {exit }}(5) & =A \mathrm{E}_{\text {entry }}(5) \cup\{\mathrm{a}+\mathrm{b}\}
\end{aligned}
$$

Example (cont.):

$$
[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{1} ;[\mathrm{y}:=\mathrm{a} * \mathrm{~b}]^{2} ; \text { while }[\mathrm{y}>\mathrm{a}+\mathrm{b}]^{3} \text { do }\left([\mathrm{a}:=\mathrm{a}+1]^{4} ;[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{5}\right)
$$

Largest solution:

ℓ	$\mathrm{AE}_{\text {entry }}(\ell)$	$\mathrm{AE}_{\text {exit }}(\ell)$
1	\emptyset	$\{\mathrm{a}+\mathrm{b}\}$
2	$\{\mathrm{a}+\mathrm{b}\}$	$\{\mathrm{a}+\mathrm{b}, \mathrm{a} * \mathrm{~b}\}$
3	$\{\mathrm{a}+\mathrm{b}\}$	$\{\mathrm{a}+\mathrm{b}\}$
4	$\{\mathrm{a}+\mathrm{b}\}$	\emptyset
5	\emptyset	$\{\mathrm{a}+\mathrm{b}\}$

Why largest solution?

$$
[\mathrm{z}:=\mathrm{x}+\mathrm{y}]^{\ell} \text {; while }[\text { true }]^{\ell^{\prime}} \text { do }[\text { skip }]{ }^{l^{\prime \prime}}
$$

Equations:

$$
\begin{aligned}
\mathrm{AE}_{\text {entry }}(\ell) & =\emptyset \\
\mathrm{AE}_{\text {entry }}\left(\ell^{\prime}\right) & =\mathrm{AE}_{\text {exit }}(\ell) \cap \mathrm{AE}_{\text {exit }}\left(\ell^{\prime \prime}\right) \\
\mathrm{AE}_{\text {entry }}\left(\ell^{\prime \prime}\right) & =\mathrm{AE}_{\text {exit }}\left(\ell^{\prime}\right) \\
\mathrm{AE}_{\text {exit }}(\ell) & =\mathrm{AE}_{\text {entry }}(\ell) \cup\{\mathrm{x}+\mathrm{y}\} \\
\mathrm{AE}_{\text {exit }}\left(\ell^{\prime}\right) & =\mathrm{AE}_{\text {entry }}\left(\ell^{\prime}\right) \\
\mathrm{AE}_{\text {exit }}\left(\ell^{\prime \prime}\right) & =\mathrm{AE}_{\text {entry }}\left(\ell^{\prime \prime}\right)
\end{aligned}
$$

After some simplification: $\mathrm{AE}_{\text {entry }}\left(\ell^{\prime}\right)=\{\mathrm{x}+\mathrm{y}\} \cap \mathrm{AE}_{\text {entry }}\left(\ell^{\prime}\right)$
Two solutions to this equation: $\{x+y\}$ and \emptyset

Reaching Definitions Analysis

The aim of the Reaching Definitions Analysis is to determine

For each program point, which assignments may have been made and not overwritten, when program execution reaches this point along some path.

Example:

point of interest

$$
[x:=5]^{1} ;[y:=1]^{2} ; \text { while }[x>1]^{3} \text { do }\left([y:=x * y]^{4} ;[x:=x-1]^{5}\right)
$$

useful for definition-use chains and use-definition chains

Reaching Definitions Analysis - the basic idea

Reaching Definitions Analysis

kill and gen functions

$$
\begin{aligned}
& \text { kill } \mathrm{RD}\left([x:=a]^{\ell}\right)=\{(x, ?)\} \\
& \cup\left\{\left(x, \ell^{\prime}\right) \mid B^{\ell^{\prime}} \text { is an assignment to } x \text { in } S_{\star}\right\} \\
& k i l_{\mathrm{RD}}\left([\text { skip }]^{\ell}\right)=\emptyset \\
& \operatorname{kil}_{\mathrm{RD}}\left([b]^{\ell}\right)=\emptyset \\
& \operatorname{gen}_{\mathrm{RD}}\left([x:=a]^{\ell}\right)=\{(x, \ell)\} \\
& g e n_{\mathrm{RD}}\left([\text { skip }]^{\ell}\right)=\emptyset \\
& g e n_{\mathrm{RD}}\left([b]^{\ell}\right)=\emptyset \\
& \text { data flow equations: } \mathrm{RD}^{=} \\
& \operatorname{RD}_{\text {entry }}(\ell)= \begin{cases}\left\{(x, ?) \mid x \in F V\left(S_{\star}\right)\right\} & \text { if } \ell=\operatorname{init}\left(S_{\star}\right) \\
\bigcup\left\{\mathrm{RD}_{\text {exit }}\left(\ell^{\prime}\right) \mid\left(\ell^{\prime}, \ell\right) \in \text { flow }\left(S_{\star}\right)\right\} & \text { otherwise }\end{cases} \\
& \mathrm{RD}_{\text {exit }}(\ell)=\left(\mathrm{RD}_{\text {entry }}(\ell) \backslash k i \|_{\mathrm{RD}}\left(B^{\ell}\right)\right) \cup \text { gen }_{\mathrm{RD}}\left(B^{\ell}\right) \\
& \text { where } B^{\ell} \in \operatorname{blocks}\left(S_{\star}\right)
\end{aligned}
$$

Example:

$$
[x:=5]^{1} ;[y:=1]^{2} ; \text { while }[x>1]^{3} \text { do }\left([y:=x * y]^{4} ;[x:=x-1]^{5}\right)
$$

kill and gen functions:

ℓ	kill $_{\mathrm{RD}}(\ell)$	gen $_{\mathrm{RD}}(\ell)$
1	$\{(\mathrm{x}, ?),(\mathrm{x}, 1),(\mathrm{x}, 5)\}$	$\{(\mathrm{x}, 1)\}$
2	$\{(\mathrm{y}, ?),(\mathrm{y}, 2),(\mathrm{y}, 4)\}$	$\{(\mathrm{y}, 2)\}$
3	\emptyset	\emptyset
4	$\{(\mathrm{y}, ?),(\mathrm{y}, 2),(\mathrm{y}, 4)\}$	$\{(\mathrm{y}, 4)\}$
5	$\{(\mathrm{x}, ?),(\mathrm{x}, 1),(\mathrm{x}, 5)\}$	$\{(\mathrm{x}, 5)\}$

Example (cont.):

$$
[\mathrm{x}:=5]^{1} ;[\mathrm{y}:=1]^{2} ; \text { while }[\mathrm{x}>1]^{3} \text { do }\left([\mathrm{y}:=\mathrm{x} * \mathrm{y}]^{4} ;[\mathrm{x}:=\mathrm{x}-1]^{5}\right)
$$

Equations:

$$
\begin{aligned}
\mathrm{RD}_{\text {entry }}(1) & =\{(\mathrm{x}, ?),(\mathrm{y}, ?)\} \\
\mathrm{RD}_{\text {entry }}(2) & =\mathrm{RD}_{\text {exit }}(1) \\
\mathrm{RD}_{\text {entry }}(3) & =\mathrm{RD}_{\text {exit }}(2) \cup \mathrm{RD}_{\text {exit }}(5) \\
\mathrm{RD}_{\text {entry }}(4) & =\mathrm{RD}_{\text {exit }}(3) \\
\mathrm{RD}_{\text {entry }}(5) & =\mathrm{RD}_{\text {exit }}(4) \\
\mathrm{RD}_{\text {exit }}(1) & =\left(\mathrm{RD}_{\text {entry }}(1) \backslash\{(\mathrm{x}, ?),(\mathrm{x}, 1),(\mathrm{x}, 5)\}\right) \cup\{(\mathrm{x}, 1)\} \\
\mathrm{RD}_{\text {exit }}(2) & =\left(\mathrm{RD}_{\text {entry }}(2) \backslash\{(\mathrm{y}, ?),(\mathrm{y}, 2),(\mathrm{y}, 4)\}\right) \cup\{(\mathrm{y}, 2)\} \\
\mathrm{RD}_{\text {exit }}(3) & =\mathrm{RD}_{\text {entry }}(3) \\
\mathrm{RD}_{\text {exit }}(4) & =\left(\mathrm{RD}_{\text {entry }}(4) \backslash\{(\mathrm{y}, ?),(\mathrm{y}, 2),(\mathrm{y}, 4)\}\right) \cup\{(\mathrm{y}, 4)\} \\
\mathrm{RD}_{\text {exit }}(5) & =\left(\mathrm{RD}_{\text {entry }}(5) \backslash\{(\mathrm{x}, ?),(\mathrm{x}, 1),(\mathrm{x}, 5)\}\right) \cup\{(\mathrm{x}, 5)\}
\end{aligned}
$$

Example (cont.):

$$
[\mathrm{x}:=5]^{1} ;[\mathrm{y}:=1]^{2} ; \text { while }[\mathrm{x}>1]^{3} \text { do }\left([\mathrm{y}:=\mathrm{x} * \mathrm{y}]^{4} ;[\mathrm{x}:=\mathrm{x}-1]^{5}\right)
$$

Smallest solution:

ℓ	$\mathrm{RD}_{\text {entry }}(\ell)$	$\mathrm{RD}_{\text {exit }}(\ell)$
1	$\{(\mathrm{x}, ?),(\mathrm{y}, ?)\}$	$\{(\mathrm{y}, ?),(\mathrm{x}, 1)\}$
2	$\{(\mathrm{y}, ?),(\mathrm{x}, 1)\}$	$\{(\mathrm{x}, 1),(\mathrm{y}, 2)\}$
3	$\{(\mathrm{x}, 1),(\mathrm{y}, 2),(\mathrm{y}, 4),(\mathrm{x}, 5)\}$	$\{(\mathrm{x}, 1),(\mathrm{y}, 2),(\mathrm{y}, 4),(\mathrm{x}, 5)\}$
4	$\{(\mathrm{x}, 1),(\mathrm{y}, 2),(\mathrm{y}, 4),(\mathrm{x}, 5)\}$	$\{(\mathrm{x}, 1),(\mathrm{y}, 4),(\mathrm{x}, 5)\}$
5	$\{(\mathrm{x}, 1),(\mathrm{y}, 4),(\mathrm{x}, 5)\}$	$\{(\mathrm{y}, 4),(\mathrm{x}, 5)\}$

Why smallest solution?

$$
[\mathrm{z}:=\mathrm{x}+\mathrm{y}]^{\ell} ; \text { while }[\text { true }]^{\ell^{\prime}} \text { do }[\text { skip }]^{\ell^{\prime \prime}}
$$

Equations:

$$
\begin{aligned}
\mathrm{RD}_{\text {entry }}(\ell) & =\{(\mathrm{x}, ?),(\mathrm{y}, ?),(\mathrm{z}, ?)\} \\
\mathrm{RD}_{\text {entry }}\left(\ell^{\prime}\right) & =\mathrm{RD}_{\text {exit }}(\ell) \cup \mathrm{RD}_{\text {exit }}\left(\ell^{\prime \prime}\right) \\
\mathrm{RD}_{\text {entry }}\left(\ell^{\prime \prime}\right) & =\mathrm{RD}_{\text {exit }}\left(\ell^{\prime}\right) \\
\mathrm{RD}_{\text {exit }}(\ell) & =\left(\mathrm{RD}_{\text {entry }}(\ell) \backslash\{(\mathrm{z}, ?)\}\right) \cup\{(\mathrm{z}, \ell)\} \\
\mathrm{RD}_{\text {exit }}\left(\ell^{\prime}\right) & =\mathrm{RD}_{\text {entry }}\left(\ell^{\prime}\right) \\
\mathrm{RD}_{\text {exit }}\left(\ell^{\prime \prime}\right) & =\mathrm{RD}_{\text {entry }}\left(\ell^{\prime \prime}\right)
\end{aligned}
$$

After some simplification: $\operatorname{RD}_{\text {entry }}\left(\ell^{\prime}\right)=\{(\mathrm{x}, ?),(\mathrm{y}, ?),(\mathrm{z}, \ell)\} \cup \mathrm{RD}_{\text {entry }}\left(\ell^{\prime}\right)$
Many solutions to this equation: any superset of $\{(x, ?),(y, ?),(z, \ell)\}$

Very Busy Expressions Analysis

An expression is very busy at the exit from a label if, no matter what path is taken from the label, the expression is always used before any of the variables occurring in it are redefined.

The aim of the Very Busy Expressions Analysis is to determine For each program point, which expressions must be very busy at the exit from the point.

Example:

point of interest

$\psi_{\text {if }}[a>b]^{1}$ then $\left([x:=b-a]^{2} ;[y:=a-b]^{3}\right)$ else $\left([y:=b-a]^{4} ;[x:=a-b]^{5}\right)$
The analysis enables a transformation into

$$
\begin{aligned}
& {[\mathrm{t} 1:=\mathrm{b}-\mathrm{a}]^{A} ;[\mathrm{t} 2:=\mathrm{b}-\mathrm{a}]^{B} ;} \\
& \text { if }[\mathrm{a}>\mathrm{b}]^{1} \text { then }\left([\mathrm{x}:=\mathrm{t} 1]^{2} ;[\mathrm{y}:=\mathrm{t} 2]^{3}\right) \text { else }\left([\mathrm{y}:=\mathrm{t} 1]^{4} ;[\mathrm{x}:=\mathrm{t} 2]^{5}\right)
\end{aligned}
$$

Very Busy Expressions Analysis - the basic idea

Very Busy Expressions Analysis

kill and gen functions

$$
\begin{aligned}
& \text { kil/VB }\left([x:=a]^{\ell}\right)=\left\{a^{\prime} \in \operatorname{AExp}_{\star} \mid x \in F V\left(a^{\prime}\right)\right\} \\
& \operatorname{kil}_{\mathrm{VB}}\left([\text { skip }]^{\ell}\right)=\emptyset \\
& \text { kil/ }_{\mathrm{VB}}\left([b]^{\ell}\right)=\emptyset \\
& g e n_{\mathrm{VB}}\left([\mathrm{x}:=a]^{\ell}\right)=\operatorname{AExp}(a) \\
& \operatorname{gen}_{\mathrm{VB}}\left([\text { skip }]^{\ell}\right)=\emptyset \\
& \operatorname{gen}_{\mathrm{VB}}\left([b]^{\ell}\right)=\operatorname{AExp}(b) \\
& \text { data flow equations: } V B= \\
& \operatorname{VB}_{\text {erit }}(\ell)=\left\{\emptyset \quad \text { if } \ell \in \text { final }\left(S_{\star}\right)\right. \\
& \left\{\cap\left\{\mathrm{VB}_{\text {entry }}\left(\ell^{\prime}\right) \mid\left(\ell^{\prime}, \ell\right) \in \operatorname{flow}^{R}\left(S_{\star}\right)\right\}\right. \text { otherwise } \\
& \mathrm{VB}_{\text {entry }}(\ell)=\left(\mathrm{VB}_{\text {exit }}(\ell) \backslash k i l_{\mathrm{VB}}\left(B^{\ell}\right)\right) \cup \operatorname{gen}_{\mathrm{VB}}\left(B^{\ell}\right) \\
& \text { where } B^{\ell} \in \operatorname{blocks}\left(S_{\star}\right)
\end{aligned}
$$

Example:

$$
\text { if }[\mathrm{a}>\mathrm{b}]^{1} \text { then }\left([\mathrm{x}:=\mathrm{b}-\mathrm{a}]^{2} ;[\mathrm{y}:=\mathrm{a}-\mathrm{b}]^{3}\right) \text { else }\left([\mathrm{y}:=\mathrm{b}-\mathrm{a}]^{4} ;[\mathrm{x}:=\mathrm{a}-\mathrm{b}]^{5}\right)
$$

kill and gen function:

ℓ	kill $_{\mathrm{VB}}(\ell)$	gen $_{\mathrm{VB}}(\ell)$
1	\emptyset	\emptyset
2	\emptyset	$\{\mathrm{~b}-\mathrm{a}\}$
3	\emptyset	$\{\mathrm{a}-\mathrm{b}\}$
4	\emptyset	$\{\mathrm{~b}-\mathrm{a}\}$
5	\emptyset	$\{\mathrm{a}-\mathrm{b}\}$

Example (cont.):

$$
\text { if }[\mathrm{a}>\mathrm{b}]^{1} \text { then }\left([\mathrm{x}:=\mathrm{b}-\mathrm{a}]^{2} ;[\mathrm{y}:=\mathrm{a}-\mathrm{b}]^{3}\right) \text { else }\left([\mathrm{y}:=\mathrm{b}-\mathrm{a}]^{4} ;[\mathrm{x}:=\mathrm{a}-\mathrm{b}]^{5}\right)
$$

Equations:

$$
\begin{align*}
& \mathrm{VB}_{\text {entry }}(1)=\mathrm{VB}_{\text {exit }}(1) \\
& \mathrm{VB}_{\text {entry }}(2)=\mathrm{VB}_{\text {exit }}(2) \cup\{\mathrm{b}-\mathrm{a}\} \\
& V B_{\text {entry }}(3)=\{a-b\} \\
& \mathrm{VB}_{\text {entry }}(4)=\mathrm{VB}_{\text {exit }}(4) \cup\{\mathrm{b}-\mathrm{a}\} \\
& \mathrm{VB}_{\text {entry }}(5)=\{\mathrm{a}-\mathrm{b}\} \\
& \mathrm{VB}_{\text {exit }}(1)=\mathrm{VB}_{\text {entry }}(2) \cap \mathrm{VB}_{\text {entry }} \text { (4) } \\
& \mathrm{VB}_{\text {exit }}(2)=\mathrm{VB}_{\text {entry }}(3) \\
& V B_{\text {exit }}(3)=\emptyset \\
& \mathrm{VB}_{\text {exit }}(4)=\mathrm{VB}_{\text {entry }} \tag{5}\\
& V B_{\text {exit }}(5)=\emptyset
\end{align*}
$$

Example (cont.):

$$
\text { if }[\mathrm{a}>\mathrm{b}]^{1} \text { then }\left([\mathrm{x}:=\mathrm{b}-\mathrm{a}]^{2} ;[\mathrm{y}:=\mathrm{a}-\mathrm{b}]^{3}\right) \text { else }\left([\mathrm{y}:=\mathrm{b}-\mathrm{a}]^{4} ;[\mathrm{x}:=\mathrm{a}-\mathrm{b}]^{5}\right)
$$

Largest solution:

ℓ	$V B_{\text {entry }}(\ell)$	$V B_{\text {exit }}(\ell)$
1	$\{\mathrm{a}-\mathrm{b}, \mathrm{b}-\mathrm{a}\}$	$\{\mathrm{a}-\mathrm{b}, \mathrm{b}-\mathrm{a}\}$
2	$\{\mathrm{a}-\mathrm{b}, \mathrm{b}-\mathrm{a}\}$	$\{\mathrm{a}-\mathrm{b}\}$
3	$\{\mathrm{a}-\mathrm{b}\}$	\emptyset
4	$\{\mathrm{a}-\mathrm{b}, \mathrm{b}-\mathrm{a}\}$	$\{\mathrm{a}-\mathrm{b}\}$
5	$\{\mathrm{a}-\mathrm{b}\}$	\emptyset

Why largest solution?

$$
\left(\text { while }[\mathrm{x}>1]^{\ell} \text { do }[\text { skip }]^{\ell^{\prime}}\right) ;[\mathrm{x}:=\mathrm{x}+1]^{\ell^{\prime \prime}}
$$

Equations:

$$
\begin{aligned}
\mathrm{VB}_{\text {entry }}(\ell) & =\mathrm{VB}_{\text {exit }}(\ell) \\
\mathrm{VB}_{\text {entry }}\left(\ell^{\prime}\right) & =\mathrm{VB}_{\text {exit }}\left(\ell^{\prime}\right) \\
\mathrm{VB}_{\text {entry }}\left(\ell^{\prime \prime}\right) & =\{\mathrm{x}+1\} \\
\operatorname{VB}_{\text {exit }}(\ell) & =\mathrm{VB}_{\text {entry }}\left(\ell^{\prime}\right) \cap \mathrm{VB}_{\text {entry }}\left(\ell^{\prime \prime}\right) \\
\operatorname{VB}_{\text {exit }}\left(\ell^{\prime}\right) & =\mathrm{VB}_{\text {entry }}(\ell) \\
\operatorname{VB}_{\text {exit }}\left(\ell^{\prime \prime}\right) & =\emptyset
\end{aligned}
$$

After some simplifications: $\mathrm{VB}_{\text {exit }}(\ell)=\mathrm{VB}_{\text {exit }}(\ell) \cap\{\mathrm{x}+1\}$

Two solutions to this equation: $\{x+1\}$ and \emptyset

Live Variables Analysis

A variable is live at the exit from a label if there is a path from the label to a use of the variable that does not re-define the variable.

The aim of the Live Variables Analysis is to determine

For each program point, which variables may be live at the exit from the point.

Example:

point of interest

$$
[\mathrm{x}:=2]^{1} ;[\mathrm{y}:=4]^{2} ;[\mathrm{x}:=1]^{3} ;\left(\text { if }[\mathrm{y}>\mathrm{x}]^{4} \text { then }[\mathrm{z}:=\mathrm{y}]^{5} \text { else }[\mathrm{z}:=\mathrm{y} * \mathrm{y}]^{6}\right) ;[\mathrm{x}:=\mathrm{z}]^{7}
$$

The analysis enables a transformation into

$$
[y:=4]^{2} ;[\mathrm{x}:=1]^{3} ;\left(\text { if }[\mathrm{y}>\mathrm{x}]^{4} \text { then }[\mathrm{z}:=\mathrm{y}]^{5} \text { else }[\mathrm{z}:=\mathrm{y} * \mathrm{y}]^{6}\right) ;[\mathrm{x}:=\mathrm{z}]^{7}
$$

Live Variables Analysis - the basic idea

Live Variables Analysis

kill and gen functions

$$
\begin{aligned}
\text { kil }_{\mathrm{LV}}\left([x:=a]^{\ell}\right) & =\{x\} \\
\text { kil }_{\mathrm{LV}}\left([\text { skip }]^{\ell}\right) & =\emptyset \\
\text { kil }_{\mathrm{LV}}\left([b]^{\ell}\right) & =\emptyset \\
\operatorname{gen}_{\mathrm{LV}}\left([x:=a]^{\ell}\right) & =F V(a) \\
g e n_{\mathrm{LV}}\left([\operatorname{skip}]^{\ell}\right) & =\emptyset \\
\operatorname{gen} n_{\mathrm{LV}}\left([b]^{\ell}\right) & =F V(b)
\end{aligned}
$$

data flow equations: LV=

$$
\begin{aligned}
\mathrm{LV}_{\text {exit }}(\ell)= & \begin{cases}\emptyset & \text { if } \ell \in \text { final }\left(S_{\star}\right) \\
\bigcup\left\{\mathrm{LV}_{\text {entry }}\left(\ell^{\prime}\right) \mid\left(\ell^{\prime}, \ell\right) \in \text { flow }^{R}\left(S_{\star}\right)\right\} & \text { otherwise }\end{cases} \\
\mathrm{LV}_{\text {entry }}(\ell)= & \left(\mathrm{LV}_{\text {exit }}(\ell) \backslash \operatorname{kill}_{\mathrm{LV}}\left(B^{\ell}\right)\right) \cup \operatorname{gen}_{\mathrm{LV}}\left(B^{\ell}\right) \\
& \text { where } B^{\ell} \in \operatorname{blocks}\left(S_{\star}\right)
\end{aligned}
$$

Example:

$$
[\mathrm{x}:=2]^{1} ;[\mathrm{y}:=4]^{2} ;[\mathrm{x}:=1]^{3} ;\left(\text { if }[\mathrm{y}>\mathrm{x}]^{4} \text { then }[\mathrm{z}:=\mathrm{y}]^{5} \text { else }[\mathrm{z}:=\mathrm{y} * \mathrm{y}]^{6}\right) ;[\mathrm{x}:=\mathrm{z}]^{7}
$$

kill and gen functions:

ℓ	kil $_{\mathrm{LV}}(\ell)$	gen $_{\mathrm{LV}}(\ell)$
1	$\{\mathrm{x}\}$	\emptyset
2	$\{\mathrm{y}\}$	\emptyset
3	$\{\mathrm{x}\}$	\emptyset
4	\emptyset	$\{\mathrm{x}, \mathrm{y}\}$
5	$\{\mathrm{z}\}$	$\{\mathrm{y}\}$
6	$\{\mathrm{z}\}$	$\{\mathrm{y}\}$
7	$\{\mathrm{x}\}$	$\{\mathrm{z}\}$

Example (cont.):

$$
\left.[\mathrm{x}:=2]^{1} ;[\mathrm{y}:=4]^{2} ;[\mathrm{x}:=1]^{3} ;\left(\text { if }[\mathrm{y}>\mathrm{x}]^{4} \text { then }[\mathrm{z}:=\mathrm{y}]^{5} \text { else }[\mathrm{z}:=\mathrm{y} * \mathrm{y}]\right]^{6}\right) ;[\mathrm{x}:=z]^{7}
$$

Equations:

```
\(\mathrm{LV}_{\text {entry }}(1)=\mathrm{LV}_{\text {exit }}(1) \backslash\{\mathrm{x}\}\)
\(\mathrm{LV}_{\text {exit }}(1)=\mathrm{LV}_{\text {entry }}(2)\)
\(\mathrm{LV}_{\text {entry }}(2)=\mathrm{LV}_{\text {exit }}(2) \backslash\{\mathrm{y}\}\)
\(\mathrm{LV}_{\text {entry }}(3)=\mathrm{LV}_{\text {exit }}(3) \backslash\{\mathrm{x}\}\)
\(\mathrm{LV}_{\text {entry }}(4)=\mathrm{LV}_{\text {exit }}(4) \cup\{\mathrm{x}, \mathrm{y}\}\)
LV entry \((5)=\left(\mathrm{LV}_{\text {exit }}(5) \backslash\{\mathrm{z}\}\right) \cup\{\mathrm{y}\}\)
\(\mathrm{LV}_{\text {entry }}(6)=\left(\mathrm{LV}_{\text {exit }}(6) \backslash\{\mathrm{z}\}\right) \cup\{\mathrm{y}\} \quad \mathrm{LV}_{\text {exit }}(6)=\mathrm{LV}_{\text {entry }}(7)\)
\(\mathrm{LV}_{\text {entry }}(7)=\{\mathbf{z}\}\)
\(\mathrm{LV}_{\text {exit }}(7)=\emptyset\)
\(\mathrm{LV}_{\text {entry }}(5)=\left(\mathrm{LV}_{\text {exit }}(5) \backslash\{\mathrm{z}\}\right) \cup\{\mathrm{y}\} \quad \mathrm{LV}_{\text {exit }}(5)=\mathrm{LV}_{\text {entry }}(7)\)
\(\mathrm{LV}_{\text {entry }}(6)=\left(\mathrm{LV}_{\text {exit }}(6) \backslash\{\mathrm{z}\}\right) \cup\{\mathrm{y}\} \quad \mathrm{LV}_{\text {exit }}(6)=\mathrm{LV}_{\text {entry }}(7)\)
\(\mathrm{LV}_{\text {entry }}(7)=\{\mathbf{z}\}\)
\(\mathrm{LV}_{\text {exit }}(7)=\emptyset\)
```


Example (cont.):

$$
[\mathrm{x}:=2]^{1} ;[\mathrm{y}:=4]^{2} ;[\mathrm{x}:=1]^{3} ;\left(\text { if }[\mathrm{y}>\mathrm{x}]^{4} \text { then }[\mathrm{z}:=\mathrm{y}]^{5} \text { else }[\mathrm{z}:=\mathrm{y} * \mathrm{y}]^{6}\right) ;[\mathrm{x}:=\mathrm{z}]^{7}
$$

Smallest solution:

ℓ	$\mathrm{LV}_{\text {entry }}(\ell)$	$\mathrm{LV}_{\text {exit }}(\ell)$
1	\emptyset	\emptyset
2	\emptyset	$\{\mathrm{y}\}$
3	$\{\mathrm{y}\}$	$\{\mathrm{x}, \mathrm{y}\}$
4	$\{\mathrm{x}, \mathrm{y}\}$	$\{\mathrm{y}\}$
5	$\{\mathrm{y}\}$	$\{\mathrm{z}\}$
6	$\{\mathrm{y}\}$	$\{\mathrm{z}\}$
7	$\{\mathrm{z}\}$	\emptyset

Why smallest solution?

$$
\left(\text { while }[\mathrm{x}>1]^{\ell} \text { do }[\text { skip }]^{\ell^{\prime}}\right) ;[\mathrm{x}:=\mathrm{x}+1]^{\ell^{\prime \prime}}
$$

Equations:

$$
\begin{aligned}
\mathrm{LV}_{\text {entry }}(\ell) & =\mathrm{LV}_{\text {exit }}(\ell) \cup\{\mathrm{x}\} \\
\mathrm{LV}_{\text {entry }}\left(\ell^{\prime}\right) & =\mathrm{LV} \text { exit }\left(\ell^{\prime}\right) \\
\mathrm{LV}_{\text {entry }}\left(\ell^{\prime \prime}\right) & =\{\mathrm{x}\} \\
\mathrm{LV}_{\text {exit }}(\ell) & =\mathrm{LV}_{\text {entry }}\left(\ell^{\prime}\right) \cup \mathrm{LV}_{\text {entry }}\left(\ell^{\prime \prime}\right) \\
\mathrm{LV}_{\text {exit }}\left(\ell^{\prime}\right) & =\mathrm{LV}_{\text {entry }}(\ell) \\
\mathrm{LV}_{\text {exit }}\left(\ell^{\prime \prime}\right) & =\emptyset
\end{aligned}
$$

After some calculations: $\mathrm{LV}_{\text {exit }}(\ell)=\mathrm{LV}_{\text {exit }}(\ell) \cup\{\mathrm{x}\}$

Many solutions to this equation: any superset of $\{x\}$

Monotone Frameworks

- Monotone and Distributive Frameworks
- Instances of Frameworks
- Constant Propagation Analysis

The Overall Pattern

Each of the four classical analyses take the form

$$
\begin{aligned}
& \text { Analysis }_{\circ}(\ell)= \begin{cases}\iota & \text { if } \ell \in E \\
\bigsqcup\left\{\text { Analysis }_{\bullet}\left(\ell^{\prime}\right) \mid\left(\ell^{\prime}, \ell\right) \in F\right\} & \text { otherwise }\end{cases} \\
& \text { Analysis }_{\bullet}(\ell)=f_{\ell}\left(\text { Analysis }_{\circ}(\ell)\right)
\end{aligned}
$$

where
$-\sqcup$ is \cap or \cup (and \sqcup is \cup or \cap),
$-F$ is either flow $\left(S_{\star}\right)$ or flow $^{R}\left(S_{\star}\right)$,
$-E$ is $\left\{\operatorname{init}\left(S_{\star}\right)\right\}$ or final $\left(S_{\star}\right)$,

- ι specifies the initial or final analysis information, and
$-f_{\ell}$ is the transfer function associated with $B^{\ell} \in \operatorname{blocks}\left(S_{\star}\right)$.

The Principle: forward versus backward

- The forward analyses have F to be flow $\left(S_{\star}\right)$ and then Analysiso concerns entry conditions and Analysis. concerns exit conditions; the equation system presupposes that S_{\star} has isolated entries.
- The backward analyses have F to be flow $^{R}\left(S_{\star}\right)$ and then Analysis。 concerns exit conditions and Analysis. concerns entry conditions; the equation system presupposes that S_{\star} has isolated exits.

The Principle: union versus intersecton

- When \downarrow is \cap we require the greatest sets that solve the equations and we are able to detect properties satisfied by all execution paths reaching (or leaving) the entry (or exit) of a label; the analysis is called a must-analysis.
- When \sqcup is U we require the smallest sets that solve the equations and we are able to detect properties satisfied by at least one execution path to (or from) the entry (or exit) of a label; the analysis is called a may-analysis.

Property Spaces

The property space, L, is used to represent the data flow information, and the combination operator, $\sqcup: \mathcal{P}(L) \rightarrow L$, is used to combine information from different paths.

- L is a complete lattice, that is, a partially ordered set, (L, \sqsubseteq), such that each subset, Y, has a least upper bound, $\sqcup Y$.
- L satisfies the Ascending Chain Condition; that is, each ascending chain eventually stabilises (meaning that if $\left(l_{n}\right)_{n}$ is such that $l_{1} \sqsubseteq$ $l_{2} \sqsubseteq l_{3} \sqsubseteq \cdots$, then there exists n such that $l_{n}=l_{n+1}=\cdots$).

Example: Reaching Definitions

- $L=\mathcal{P}\left(\operatorname{Var}_{\star} \times \mathrm{Lab}_{\star}\right)$ is partially ordered by subset inclusion so \sqsubseteq is \subseteq
- the least upper bound operation \sqcup is U and the least element \perp is \emptyset
- L satisfies the Ascending Chain Condition because $\operatorname{Var}_{\star} \times \mathrm{Lab}_{\star}$ is finite (unlike Var \times Lab)

Example: Available Expressions

- $L=\mathcal{P}\left(\mathbf{A E x p}_{\star}\right)$ is partially ordered by superset inclusion so \sqsubseteq is \supseteq
- the least upper bound operation \sqcup is \bigcap and the least element \perp is $\operatorname{AExp}_{\star}$
- L satisfies the Ascending Chain Condition because $\operatorname{AExp}_{\star}$ is finite (unlike AExp)

Transfer Functions

The set of transfer functions, \mathcal{F}, is a set of monotone functions over L, meaning that

$$
l \sqsubseteq l^{\prime} \text { implies } f_{\ell}(l) \sqsubseteq f_{\ell}\left(l^{\prime}\right)
$$

and furthermore they fulfil the following conditions:

- \mathcal{F} contains all the transfer functions $f_{\ell}: L \rightarrow L$ in question (for $\ell \in \mathrm{Lab}_{\star}$)
- \mathcal{F} contains the identity function
- \mathcal{F} is closed under composition of functions

Frameworks

A Monotone Framework consists of:

- a complete lattice, L, that satisfies the Ascending Chain Condition; we write \downarrow for the least upper bound operator
- a set \mathcal{F} of monotone functions from L to L that contains the identity function and that is closed under function composition

A Distributive Framework is a Monotone Framework where additionally all functions f in \mathcal{F} are required to be distributive:

$$
f\left(l_{1} \sqcup l_{2}\right)=f\left(l_{1}\right) \sqcup f\left(l_{2}\right)
$$

Instances

An instance of a Framework consists of:

- the complete lattice, L, of the framework
- the space of functions, \mathcal{F}, of the framework
- a finite flow, F (typically flow $\left(S_{\star}\right)$ or flow ${ }^{R}\left(S_{\star}\right)$)
- a finite set of extremal labels, E (typically $\left\{\operatorname{init}\left(S_{\star}\right)\right\}$ or final $\left(S_{\star}\right)$)
- an extremal value, $\iota \in L$, for the extremal labels
- a mapping, f., from the labels Lab $_{\star}$ to transfer functions in \mathcal{F}

Equations of the Instance:

$$
\left.\left.\begin{array}{rl}
\text { Analysis }_{\circ}(\ell)= & \bigsqcup\{\text { Analysis }
\end{array}\left(\ell^{\prime}\right) \right\rvert\,\left(\ell^{\prime}, \ell\right) \in F\right\} \sqcup \iota_{E}^{\ell}, ~\left(\begin{array}{ll}
\iota & \text { if } \ell \in E \\
\perp & \text { if } \ell \notin E
\end{array}\right\}
$$

Constraints of the Instance:

$$
\begin{aligned}
\text { Analysis }_{\circ}(\ell) \sqsupseteq & \bigsqcup\left\{\text { Analysis. }\left(\ell^{\prime}\right) \mid\left(\ell^{\prime}, \ell\right) \in F\right\} \sqcup \iota_{E}^{\ell} \\
& \text { where } \iota_{E}^{\ell}= \begin{cases}\iota & \text { if } \ell \in E \\
\perp & \text { if } \ell \notin E\end{cases} \\
\text { Analysis }_{\bullet}(\ell) \sqsupseteq & f_{\ell}\left(\text { Analysis }_{\circ}(\ell)\right)
\end{aligned}
$$

The Examples Revisited

	Available Expressions	Reaching Definitions	Very Busy Expressions	Live Variables
L	$\mathcal{P}\left(\mathbf{A E x p}_{\star}\right)$	$\mathcal{P}\left(\right.$ Var $\left._{\star} \times \mathbf{L a b}_{\star}\right)$	$\mathcal{P}\left(\mathbf{A E x p}_{\star}\right)$	$\mathcal{P}\left(\right.$ Var $\left._{\star}\right)$
\sqsubseteq	\supseteq	\subseteq	\supseteq	\subseteq
\sqcup	\cap	\cup	\cap	\cup
\perp	$\mathbf{A E x p}_{\star}$	\emptyset	AExp $_{\star}$	\emptyset
ι	\emptyset	$\left\{(x, ?) \mid x \in F V\left(S_{\star}\right)\right\}$	\emptyset	\emptyset
E	$\left\{\operatorname{init}\left(S_{\star}\right)\right\}$	$\left\{\operatorname{init}\left(S_{\star}\right)\right\}$	final $\left(S_{\star}\right)$	final $\left(S_{\star}\right)$
F	$f l o w\left(S_{\star}\right)$	flow $\left(S_{\star}\right)$	flow ${ }^{R}\left(S_{\star}\right)$	flow ${ }^{R}\left(S_{\star}\right)$
\mathcal{F}	$f: L \rightarrow L \mid \exists l_{k}, l_{g}: f(l)=\left(l \backslash l_{k}\right) \cup l_{g}$			
f_{ℓ}	$f_{\ell}(l)=\left(l \backslash k i l /\left(B^{\ell}\right)\right) \cup g e n\left(B^{\ell}\right)$ where $B^{\ell} \in \operatorname{blocks}\left(S_{\star}\right)$			

Bit Vector Frameworks

A Bit Vector Framework has

- $L=\mathcal{P}(D)$ for D finite
- $\mathcal{F}=\left\{f \mid \exists l_{k}, l_{g}: f(l)=\left(l \backslash l_{k}\right) \cup l_{g}\right\}$

Examples:

- Available Expressions
- Live Variables
- Reaching Definitions
- Very Busy Expressions

Lemma: Bit Vector Frameworks are always Distributive Frameworks

Proof

$$
\begin{aligned}
f\left(l_{1} \sqcup l_{2}\right) & =\left\{\begin{array}{l}
f\left(l_{1} \cup l_{2}\right) \\
f\left(l_{1} \cap l_{2}\right) \\
\left(\left(l_{1} \backslash l_{k}\right) \cup\left(l_{2} \backslash l_{k}\right)\right) \cup l_{g} \\
\left(\left(l_{1} \backslash l_{k}\right) \cap\left(l_{2} \backslash l_{k}\right)\right) \cup l_{g}
\end{array}\right.
\end{aligned}=\left\{\begin{array}{l}
\left(\left(l_{1} \cup l_{2}\right) \backslash l_{k}\right) \cup l_{g} \\
\left(\left(l_{1} \cap l_{2}\right) \backslash l_{k}\right) \cup l_{g} \\
\left(\left(l_{1} \backslash l_{k}\right) \cup l_{g}\right) \cup\left(\left(l_{2} \backslash l_{k}\right) \cup l_{g}\right) \\
\left(\left(l_{1} \backslash l_{k}\right) \cup l_{g}\right) \cap\left(\left(l_{2} \backslash l_{k}\right) \cup l_{g}\right)
\end{array}\right)
$$

- $i d(l)=(l \backslash \emptyset) \cup \emptyset$
- $f_{2}\left(f_{1}(l)\right)=\left(\left(\left(l \backslash l_{k}^{1}\right) \cup l_{g}^{1}\right) \backslash l_{k}^{2}\right) \cup l_{g}^{2}=\left(l \backslash\left(l_{k}^{1} \cup l_{k}^{2}\right)\right) \cup\left(\left(l_{g}^{1} \backslash l_{k}^{2}\right) \cup l_{g}^{2}\right)$
- monotonicity follows from distributivity
- $\mathcal{P}(D)$ satisfies the Ascending Chain Condition because D is finite

