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Stack

Stack is a last-in, first-out sequence

push(s,x) — add x to stack s

pop(s) — return most recently added
element

Maintain stack as list, push and pop
from the right

push(s,x) is s.append(x)

s.pop() — Python built-in, returns
last element

Stack defined using classes:
s.push(x), s.pop()

Stacks are natural to keep track of local
variables through function calls

Each function call pushes current
frame onto a stack

When function exits, pop its frame o!
the stack
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Queue

First-in, first-out sequence

addq(q,x) — adds x to rear of queue q

removeq(q) — removes element at head of q

Using Python lists, left is rear, right is front

addq(q,x) is q.insert(0,x)

insert(j,x), insert x before position j

removeq(q) is q.pop()
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Systematic exploration

Rectangular m → n grid

Chess knight starts at (sx , sy) •
Usual knight moves

Can it reach a target square (tx , ty)? ↭
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Systematic exploration

X1 — all squares reachable in one
move from (sx , sy)

X2 —- all squares reachable from X1 in
one move
. . .

Don’t explore an already marked square

When do we stop?

If we reach target square

What if target is not reachable?

Maintain a queue Q of cells to be
explored

Initially Q contains only start node
(sx , sy)

Remove (ax , ay) from head of queue

Mark all squares reachable in one step
from (ax , ay)

Add all newly marked squares to the
queue

When the queue is empty, we have
finished
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Dealing with priorities

Job scheduler

A job scheduler maintains a list of
pending jobs with their priorities

When the processor is free, the
scheduler picks out the job with
maximum priority in the list and
schedules it

New jobs may join the list at any time

How should the scheduler maintain the
list of pending jobs and their priorities?

Need to maintain a collection of items
with priorities to optimise the following
operations

delete max()

Identify and remove item with highest
priority

Need not be unique

insert()

Add a new item to the collection
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Implementing priority queues with one dimensional structures

Unsorted list

insert() is O(1)

delete max() is O(n)

Sorted list

delete max() is O(1)

insert() is O(n)

Processing n items requires O(n2)

delete_max()

Identify and remove item with highest
priority

Need not be unique

insert()

Add a new item to the list
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Moving to two dimensions

First attempt

Assume N processes enter/leave the
queue

Maintain a
↑
N →

↑
N array

Each row is in sorted order
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insert()

Keep track of the size of each row

Insert into the first row that has space

Use size of row to determine

Insert 15

Takes time O(
↑
N)

Scan size column to locate row to insert,
O(

↑
N)

Insert into the first row with free space,
O(

↑
N)

N = 25

15

3 19 23 35 58

15

12 17 25 43 67

15

10 13 20
11 16 28 49
6 14

5
5
3
4
2
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delete max()

Maximum in each row is the last element

Position is available through size column

Identify the maximum amongst these

Delete it

Again O(
↑
N)

Find the maximum among last entries,
O(

↑
N)

Delete it, O(1)

N = 25

3 19 23 35 58
12 17 25 43 67
10 13 15 20
11 16 28 49
6 14

5
5
4
4
2
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Summary

2D
↑
N →

↑
N array with sorted rows

insert() is O(
↑
N)

delete max() is O(
↑
N)

Processing N items is O(N
↑
N)

Can we do better?

Maintain a special binary tree — heap

Height O(logN)

insert() is O(logN)

delete max() is O(logN)

Processing N items is O(N logN)

Flexible — need not fix N in advance

N = 25

3 19 23 35 58
12 17 25 43 67
10 13 20
11 16 28 49
6 14
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Binary trees

Values are stored as nodes in a
rooted tree

Each node has up to two
children

Left child and right child

Order is important

Other than the root, each node
has a unique parent

Leaf node — no children

Size — number of nodes

Height — number of levels

72

83

37

33

44

14 12

7 72

62
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Heap

Binary tree filled level by level,
left to right

The value at each node is at
least as big the values of its
children

max-heap

Binary tree on the right is an
example of a heap

Root always has the largest
value

By induction, because of the
max-heap property

83

83

54

28 51

27

13

72

44 31
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83
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28 51
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Non-examples

No “holes” allowed

83

83

51

72

44 31
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Non-examples

No “holes” allowed
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Cannot leave a level incomplete
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Non-examples

Heap property is violated
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insert()

insert(77)

Add a new node at dictated by
heap structure

Restore the heap property along
path to the root

insert(44)

insert(57)
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insert()

insert(77)

Add a new node at dictated by
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Restore the heap property along
path to the root
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insert()

insert(77)

Add a new node at dictated by
heap structure

Restore the heap property along
path to the root

insert(44)

insert(57)
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insert()

insert(77)

Add a new node at dictated by
heap structure

Restore the heap property along
path to the root

insert(44)

insert(57)
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Complexity of insert()

Need to walk up from the leaf to
the root

Height of the tree

Number of nodes at level 0 is
20 = 1

Number of nodes at level j is 2j

If we fill k levels,
20 + 21 + · · ·+ 2k→1 = 2k ↓ 1
nodes

If we have N nodes, at most
1 + logN levels

insert() is O(logN)
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delete max()

Maximum value is always at the
root

After we delete one value, tree
shrinks

Node to delete is rightmost at
lowest level

Move “homeless” value to the
root

Restore the heap property
downwards

Only need to follow a single path
down

Again O(logN)
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delete max()

Maximum value is always at the
root

After we delete one value, tree
shrinks

Node to delete is rightmost at
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delete max()

Maximum value is always at the
root

After we delete one value, tree
shrinks

Node to delete is rightmost at
lowest level
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root
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Only need to follow a single path
down

Again O(logN)
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delete max()

Maximum value is always at the
root

After we delete one value, tree
shrinks

Node to delete is rightmost at
lowest level

Move “homeless” value to the
root

Restore the heap property
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Only need to follow a single path
down

Again O(logN)
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delete max()

Maximum value is always at the
root

After we delete one value, tree
shrinks

Node to delete is rightmost at
lowest level

Move “homeless” value to the
root

Restore the heap property
downwards

Only need to follow a single path
down

Again O(logN)
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delete max()

Maximum value is always at the
root

After we delete one value, tree
shrinks

Node to delete is rightmost at
lowest level

Move “homeless” value to the
root

Restore the heap property
downwards

Only need to follow a single path
down

Again O(logN)
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delete max()

Maximum value is always at the
root

After we delete one value, tree
shrinks

Node to delete is rightmost at
lowest level

Move “homeless” value to the
root

Restore the heap property
downwards

Only need to follow a single path
down

Again O(logN)
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Implementation

Number the nodes top to
bottom left right

Store as a list
H = [h0,h1,h2,...,h9]

Children of H[i] are at
H[2*i+1], H[2*i+2]

Parent of H[i] is at
H[(i-1)//2],
for i > 0

h0

h1

h3

h7 h8

h4

h9

h2

h5 h6
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Building a heap — heapify()

Convert a list [v0,v1,...,vN]
into a heap

Simple strategy

Start with an empty heap

Repeatedly apply insert(vj)

Total time is O(N logN)

h0

h1

h3

h7 h8

h4

h9

h2

h5 h6
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Heap sort

Start with an unordered list

Build a heap — O(n)

Call delete max() n times to extract elements in descending order — O(n log n)

After each delete max(), heap shrinks by 1

Store maximum value at the end of current heap

In place O(n log n) sort
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Heap sort

Start with an unordered list

Build a heap — O(n)

Call delete max() n times to extract elements in descending order — O(n log n)

After each delete max(), heap shrinks by 1

Store maximum value at the end of current heap

In place O(n log n) sort
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Summary

Heaps are a tree implementation
of priority queues

insert() is O(logN)

delete max() is O(logN)

heapify() builds a heap in
O(N)

Can invert the heap condition
Each node is smaller than its
children

min-heap

delete min() rather than
delete max()
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