
Lecture 21, 5 November 2024

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python

Lecture 21, 05 Nov 2023

Stack

Stack is a last-in, first-out sequence

push(s,x) — add x to stack s

pop(s) — return most recently added
element

Maintain stack as list, push and pop
from the right

push(s,x) is s.append(x)

s.pop() — Python built-in, returns
last element

Stack defined using classes:
s.push(x), s.pop()

Stacks are natural to keep track of local
variables through function calls

Each function call pushes current
frame onto a stack

When function exits, pop its frame o!
the stack

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 2 / 23

popI pushye
un-

- Na
x1
No

Stack

Stack is a last-in, first-out sequence

push(s,x) — add x to stack s

pop(s) — return most recently added
element

Maintain stack as list, push and pop
from the right

push(s,x) is s.append(x)

s.pop() — Python built-in, returns
last element

Stack defined using classes:
s.push(x), s.pop()

Stacks are natural to keep track of local
variables through function calls

Each function call pushes current
frame onto a stack

When function exits, pop its frame o!
the stack

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 2 / 23

pop()
&
#

↑
append(

Stack

Stack is a last-in, first-out sequence

push(s,x) — add x to stack s

pop(s) — return most recently added
element

Maintain stack as list, push and pop
from the right

push(s,x) is s.append(x)

s.pop() — Python built-in, returns
last element

Stack defined using classes:
s.push(x), s.pop()

Stacks are natural to keep track of local
variables through function calls

Each function call pushes current
frame onto a stack

When function exits, pop its frame o!
the stack

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 2 / 23

Callingfunctions

fact(n)

nxfact(n
-1)

-5statis

Stack

Stack is a last-in, first-out sequence

push(s,x) — add x to stack s

pop(s) — return most recently added
element

Maintain stack as list, push and pop
from the right

push(s,x) is s.append(x)

s.pop() — Python built-in, returns
last element

Stack defined using classes:
s.push(x), s.pop()

Stacks are natural to keep track of local
variables through function calls

Each function call pushes current
frame onto a stack

When function exits, pop its frame o!
the stack

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 2 / 23

Stalk is a list

with restricted access

(push(a)) · pop() == x
ABSTRACT data type

Stack

Stack is a last-in, first-out sequence

push(s,x) — add x to stack s

pop(s) — return most recently added
element

Maintain stack as list, push and pop
from the right

push(s,x) is s.append(x)

s.pop() — Python built-in, returns
last element

Stack defined using classes:
s.push(x), s.pop()

Stacks are natural to keep track of local
variables through function calls

Each function call pushes current
frame onto a stack

When function exits, pop its frame o!
the stack

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 2 / 23

Need

S . empty () -> Trethe

Stack

Stack is a last-in, first-out sequence

push(s,x) — add x to stack s

pop(s) — return most recently added
element

Maintain stack as list, push and pop
from the right

push(s,x) is s.append(x)

s.pop() — Python built-in, returns
last element

Stack defined using classes:
s.push(x), s.pop()

Stacks are natural to keep track of local
variables through function calls

Each function call pushes current
frame onto a stack

When function exits, pop its frame o!
the stack

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 2 / 23

Queue

First-in, first-out sequence

addq(q,x) — adds x to rear of queue q

removeq(q) — removes element at head of q

Using Python lists, left is rear, right is front

addq(q,x) is q.insert(0,x)

insert(j,x), insert x before position j

removeq(q) is q.pop()

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 3 / 23

-↳-
front

rear

Queue

First-in, first-out sequence

addq(q,x) — adds x to rear of queue q

removeq(q) — removes element at head of q

Using Python lists, left is rear, right is front

addq(q,x) is q.insert(0,x)

insert(j,x), insert x before position j

removeq(q) is q.pop()

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 3 / 23

Systematic exploration

Rectangular m → n grid

Chess knight starts at (sx , sy) •
Usual knight moves

Can it reach a target square (tx , ty)? ↭

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 4 / 23

-
T

Systematic exploration

Rectangular m → n grid

Chess knight starts at (sx , sy) •
Usual knight moves

Can it reach a target square (tx , ty)? ↭

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 4 / 23

&

Systematic exploration

Rectangular m → n grid

Chess knight starts at (sx , sy) •
Usual knight moves

Can it reach a target square (tx , ty)? ↭

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 4 / 23

E
Of

Systematic exploration

Rectangular m → n grid

Chess knight starts at (sx , sy) •
Usual knight moves

Can it reach a target square (tx , ty)? ↭

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 4 / 23

F

Systematic exploration

Rectangular m → n grid

Chess knight starts at (sx , sy) •
Usual knight moves

Can it reach a target square (tx , ty)? ↭

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 4 / 23

12345678910

I

2

3 3
,
2 3

,4

44 4,5

[15,33
> Mark it 66

,
1

X
45

Add unmarked 7 7
,27.4

usrs to quew g

· ·(, 2), (74), (6,5), (4 ,B, 4, (3,2)]

Systematic exploration

Rectangular m → n grid

Chess knight starts at (sx , sy) •
Usual knight moves

Can it reach a target square (tx , ty)? ↭

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 4 / 23

X X

Y

12

68 .. 4, 3 ,20 *
65

Systematic exploration

X1 — all squares reachable in one
move from (sx , sy)

X2 —- all squares reachable from X1 in
one move
. . .

Don’t explore an already marked square

When do we stop?

If we reach target square

What if target is not reachable?

Maintain a queue Q of cells to be
explored

Initially Q contains only start node
(sx , sy)

Remove (ax , ay) from head of queue

Mark all squares reachable in one step
from (ax , ay)

Add all newly marked squares to the
queue

When the queue is empty, we have
finished

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 5 / 23

Systematic exploration

X1 — all squares reachable in one
move from (sx , sy)

X2 —- all squares reachable from X1 in
one move
. . .

Don’t explore an already marked square

When do we stop?

If we reach target square

What if target is not reachable?

Maintain a queue Q of cells to be
explored

Initially Q contains only start node
(sx , sy)

Remove (ax , ay) from head of queue

Mark all squares reachable in one step
from (ax , ay)

Add all newly marked squares to the
queue

When the queue is empty, we have
finished

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 5 / 23

Systematic exploration

X1 — all squares reachable in one
move from (sx , sy)

X2 —- all squares reachable from X1 in
one move
. . .

Don’t explore an already marked square

When do we stop?

If we reach target square

What if target is not reachable?

Maintain a queue Q of cells to be
explored

Initially Q contains only start node
(sx , sy)

Remove (ax , ay) from head of queue

Mark all squares reachable in one step
from (ax , ay)

Add all newly marked squares to the
queue

When the queue is empty, we have
finished

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 5 / 23

Systematic exploration

X1 — all squares reachable in one
move from (sx , sy)

X2 —- all squares reachable from X1 in
one move
. . .

Don’t explore an already marked square

When do we stop?

If we reach target square

What if target is not reachable?

Maintain a queue Q of cells to be
explored

Initially Q contains only start node
(sx , sy)

Remove (ax , ay) from head of queue

Mark all squares reachable in one step
from (ax , ay)

Add all newly marked squares to the
queue

When the queue is empty, we have
finished

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 5 / 23

Systematic exploration

X1 — all squares reachable in one
move from (sx , sy)

X2 —- all squares reachable from X1 in
one move
. . .

Don’t explore an already marked square

When do we stop?

If we reach target square

What if target is not reachable?

Maintain a queue Q of cells to be
explored

Initially Q contains only start node
(sx , sy)

Remove (ax , ay) from head of queue

Mark all squares reachable in one step
from (ax , ay)

Add all newly marked squares to the
queue

When the queue is empty, we have
finished

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 5 / 23

Dealing with priorities

Job scheduler

A job scheduler maintains a list of
pending jobs with their priorities

When the processor is free, the
scheduler picks out the job with
maximum priority in the list and
schedules it

New jobs may join the list at any time

How should the scheduler maintain the
list of pending jobs and their priorities?

Need to maintain a collection of items
with priorities to optimise the following
operations

delete max()

Identify and remove item with highest
priority

Need not be unique

insert()

Add a new item to the collection

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 6 / 23

Dealing with priorities

Job scheduler

A job scheduler maintains a list of
pending jobs with their priorities

When the processor is free, the
scheduler picks out the job with
maximum priority in the list and
schedules it

New jobs may join the list at any time

How should the scheduler maintain the
list of pending jobs and their priorities?

Need to maintain a collection of items
with priorities to optimise the following
operations

delete max()

Identify and remove item with highest
priority

Need not be unique

insert()

Add a new item to the collection

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 6 / 23

Dealing with priorities

Job scheduler

A job scheduler maintains a list of
pending jobs with their priorities

When the processor is free, the
scheduler picks out the job with
maximum priority in the list and
schedules it

New jobs may join the list at any time

How should the scheduler maintain the
list of pending jobs and their priorities?

Need to maintain a collection of items
with priorities to optimise the following
operations

delete max()

Identify and remove item with highest
priority

Need not be unique

insert()

Add a new item to the collection

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 6 / 23

Dealing with priorities

Job scheduler

A job scheduler maintains a list of
pending jobs with their priorities

When the processor is free, the
scheduler picks out the job with
maximum priority in the list and
schedules it

New jobs may join the list at any time

How should the scheduler maintain the
list of pending jobs and their priorities?

Need to maintain a collection of items
with priorities to optimise the following
operations

delete max()

Identify and remove item with highest
priority

Need not be unique

insert()

Add a new item to the collection

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 6 / 23

Dealing with priorities

Job scheduler

A job scheduler maintains a list of
pending jobs with their priorities

When the processor is free, the
scheduler picks out the job with
maximum priority in the list and
schedules it

New jobs may join the list at any time

How should the scheduler maintain the
list of pending jobs and their priorities?

Priority queue

Need to maintain a collection of items
with priorities to optimise the following
operations

delete max()

Identify and remove item with highest
priority

Need not be unique

insert()

Add a new item to the collection

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 6 / 23

Implementing priority queues with one dimensional structures

Unsorted list

insert() is O(1)

delete max() is O(n)

Sorted list

delete max() is O(1)

insert() is O(n)

Processing n items requires O(n2)

delete_max()

Identify and remove item with highest
priority

Need not be unique

insert()

Add a new item to the list

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 7 / 23

Unordered list

Insert ? = append()
O(D)

Delete mas?

-scan list

compressur O(n)

Implementing priority queues with one dimensional structures

Unsorted list

insert() is O(1)

delete max() is O(n)

Sorted list

delete max() is O(1)

insert() is O(n)

Processing n items requires O(n2)

delete_max()

Identify and remove item with highest
priority

Need not be unique

insert()

Add a new item to the list

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 7 / 23

sorted (think Insertion sort)
Insert O(n)
Delete Max = pop() = 0 (1)

Implementing priority queues with one dimensional structures

Unsorted list

insert() is O(1)

delete max() is O(n)

Sorted list

delete max() is O(1)

insert() is O(n)

Processing n items requires O(n2)

delete_max()

Identify and remove item with highest
priority

Need not be unique

insert()

Add a new item to the list

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 7 / 23

Implementing priority queues with one dimensional structures

Unsorted list

insert() is O(1)

delete max() is O(n)

Sorted list

delete max() is O(1)

insert() is O(n)

Processing n items requires O(n2)

delete_max()

Identify and remove item with highest
priority

Need not be unique

insert()

Add a new item to the list

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 7 / 23

Moving to two dimensions

First attempt

Assume N processes enter/leave the
queue

Maintain a
↑
N →

↑
N array

Each row is in sorted order

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 8 / 23

Moving to two dimensions

First attempt

Assume N processes enter/leave the
queue

Maintain a
↑
N →

↑
N array

Each row is in sorted order

N = 25

3 19 23 35 58
12 17 25 43 67
10 13 20
11 16 28 49
6 14

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 8 / 23

->

Moving to two dimensions

First attempt

Assume N processes enter/leave the
queue

Maintain a
↑
N →

↑
N array

Each row is in sorted order

N = 25

3 19 23 35 58
12 17 25 43 67
10 13 20
11 16 28 49
6 14

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 8 / 23

insert()

Keep track of the size of each row

Insert into the first row that has space

Use size of row to determine

Insert 15

Takes time O(
↑
N)

Scan size column to locate row to insert,
O(

↑
N)

Insert into the first row with free space,
O(

↑
N)

N = 25

15

3 19 23 35 58

15

12 17 25 43 67

15

10 13 20
11 16 28 49
6 14

5
5
3
4
2

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 9 / 23

insert()

Keep track of the size of each row

Insert into the first row that has space

Use size of row to determine

Insert 15

Takes time O(
↑
N)

Scan size column to locate row to insert,
O(

↑
N)

Insert into the first row with free space,
O(

↑
N)

N = 25

15

3 19 23 35 58

15

12 17 25 43 67

15

10 13 20
11 16 28 49
6 14

5
5
3
4
2

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 9 / 23

insert()

Keep track of the size of each row

Insert into the first row that has space

Use size of row to determine

Insert 15

Takes time O(
↑
N)

Scan size column to locate row to insert,
O(

↑
N)

Insert into the first row with free space,
O(

↑
N)

N = 25

15

3 19 23 35 58

15

12 17 25 43 67

15

10 13 20
11 16 28 49
6 14

5
5
3
4
2

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 9 / 23

insert()

Keep track of the size of each row

Insert into the first row that has space

Use size of row to determine

Insert 15

Takes time O(
↑
N)

Scan size column to locate row to insert,
O(

↑
N)

Insert into the first row with free space,
O(

↑
N)

N = 25

15 3 19 23 35 58

15

12 17 25 43 67

15

10 13 20
11 16 28 49
6 14

5
5
3
4
2

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 9 / 23

X

insert()

Keep track of the size of each row

Insert into the first row that has space

Use size of row to determine

Insert 15

Takes time O(
↑
N)

Scan size column to locate row to insert,
O(

↑
N)

Insert into the first row with free space,
O(

↑
N)

N = 25

15

3 19 23 35 58
15 12 17 25 43 67

15

10 13 20
11 16 28 49
6 14

5
5
3
4
2

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 9 / 23

X

insert()

Keep track of the size of each row

Insert into the first row that has space

Use size of row to determine

Insert 15

Takes time O(
↑
N)

Scan size column to locate row to insert,
O(

↑
N)

Insert into the first row with free space,
O(

↑
N)

N = 25

15

3 19 23 35 58

15

12 17 25 43 67
15 10 13 20

11 16 28 49
6 14

5
5
3
4
2

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 9 / 23

insert()

Keep track of the size of each row

Insert into the first row that has space

Use size of row to determine

Insert 15

Takes time O(
↑
N)

Scan size column to locate row to insert,
O(

↑
N)

Insert into the first row with free space,
O(

↑
N)

N = 25

15

3 19 23 35 58

15

12 17 25 43 67

15

10 13 15 20
11 16 28 49
6 14

5
5
3
4
2

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 9 / 23

O

insert()

Keep track of the size of each row

Insert into the first row that has space

Use size of row to determine

Insert 15

Takes time O(
↑
N)

Scan size column to locate row to insert,
O(

↑
N)

Insert into the first row with free space,
O(

↑
N)

N = 25

15

3 19 23 35 58

15

12 17 25 43 67

15

10 13 15 20
11 16 28 49
6 14

5
5
4
4
2

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 9 / 23

I
#

insert()

Keep track of the size of each row

Insert into the first row that has space

Use size of row to determine

Insert 15

Takes time O(
↑
N)

Scan size column to locate row to insert,
O(

↑
N)

Insert into the first row with free space,
O(

↑
N)

N = 25

15

3 19 23 35 58

15

12 17 25 43 67

15

10 13 15 20
11 16 28 49
6 14

5
5
4
4
2

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 9 / 23

delete max()

Maximum in each row is the last element

Position is available through size column

Identify the maximum amongst these

Delete it

Again O(
↑
N)

Find the maximum among last entries,
O(

↑
N)

Delete it, O(1)

N = 25

3 19 23 35 58
12 17 25 43 67
10 13 15 20
11 16 28 49
6 14

5
5
4
4
2

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 10 / 23

delete max()

Maximum in each row is the last element

Position is available through size column

Identify the maximum amongst these

Delete it

Again O(
↑
N)

Find the maximum among last entries,
O(

↑
N)

Delete it, O(1)

N = 25

3 19 23 35 58
12 17 25 43 67
10 13 15 20
11 16 28 49
6 14

5
5
4
4
2

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 10 / 23

S

delete max()

Maximum in each row is the last element

Position is available through size column

Identify the maximum amongst these

Delete it

Again O(
↑
N)

Find the maximum among last entries,
O(

↑
N)

Delete it, O(1)

N = 25

3 19 23 35 58
12 17 25 43 67
10 13 15 20
11 16 28 49
6 14

5
5
4
4
2

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 10 / 23

delete max()

Maximum in each row is the last element

Position is available through size column

Identify the maximum amongst these

Delete it

Again O(
↑
N)

Find the maximum among last entries,
O(

↑
N)

Delete it, O(1)

N = 25

3 19 23 35 58
12 17 25 43
10 13 15 20
11 16 28 49
6 14

5
4
4
4
2

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 10 / 23

delete max()

Maximum in each row is the last element

Position is available through size column

Identify the maximum amongst these

Delete it

Again O(
↑
N)

Find the maximum among last entries,
O(

↑
N)

Delete it, O(1)

N = 25

3 19 23 35 58
12 17 25 43
10 13 15 20
11 16 28 49
6 14

5
4
4
4
2

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 10 / 23

I

Summary

2D
↑
N →

↑
N array with sorted rows

insert() is O(
↑
N)

delete max() is O(
↑
N)

Processing N items is O(N
↑
N)

Can we do better?

Maintain a special binary tree — heap

Height O(logN)

insert() is O(logN)

delete max() is O(logN)

Processing N items is O(N logN)

Flexible — need not fix N in advance

N = 25

3 19 23 35 58
12 17 25 43 67
10 13 20
11 16 28 49
6 14

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 11 / 23

Summary

2D
↑
N →

↑
N array with sorted rows

insert() is O(
↑
N)

delete max() is O(
↑
N)

Processing N items is O(N
↑
N)

Can we do better?

Maintain a special binary tree — heap

Height O(logN)

insert() is O(logN)

delete max() is O(logN)

Processing N items is O(N logN)

Flexible — need not fix N in advance

N = 25

3 19 23 35 58
12 17 25 43 67
10 13 20
11 16 28 49
6 14

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 11 / 23

Summary

2D
↑
N →

↑
N array with sorted rows

insert() is O(
↑
N)

delete max() is O(
↑
N)

Processing N items is O(N
↑
N)

Can we do better?

Maintain a special binary tree — heap

Height O(logN)

insert() is O(logN)

delete max() is O(logN)

Processing N items is O(N logN)

Flexible — need not fix N in advance

N = 25

3 19 23 35 58
12 17 25 43 67
10 13 20
11 16 28 49
6 14

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 11 / 23

Summary

2D
↑
N →

↑
N array with sorted rows

insert() is O(
↑
N)

delete max() is O(
↑
N)

Processing N items is O(N
↑
N)

Can we do better?

Maintain a special binary tree — heap

Height O(logN)

insert() is O(logN)

delete max() is O(logN)

Processing N items is O(N logN)

Flexible — need not fix N in advance

N = 25

3 19 23 35 58
12 17 25 43 67
10 13 20
11 16 28 49
6 14

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 11 / 23

Binary trees

Values are stored as nodes in a
rooted tree

Each node has up to two
children

Left child and right child

Order is important

Other than the root, each node
has a unique parent

Leaf node — no children

Size — number of nodes

Height — number of levels

72

83

37

33

44

14 12

7 72

62

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 12 / 23

-roof
& left right

1 bright XX

↓ d Leafhigh
X a

-L

Heap

Binary tree filled level by level,
left to right

The value at each node is at
least as big the values of its
children

max-heap

Binary tree on the right is an
example of a heap

Root always has the largest
value

By induction, because of the
max-heap property

83

83

54

28 51

27

13

72

44 31

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 13 / 23

natural
Tod
->

Heap

Binary tree filled level by level,
left to right

The value at each node is at
least as big the values of its
children

max-heap

Binary tree on the right is an
example of a heap

Root always has the largest
value

By induction, because of the
max-heap property

83

83

54

28 51

27

13

72

44 31

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 13 / 23

⑳
Where is maximum value?- is keep

herp

Heap

Binary tree filled level by level,
left to right

The value at each node is at
least as big the values of its
children

max-heap

Binary tree on the right is an
example of a heap

Root always has the largest
value

By induction, because of the
max-heap property

83

83

54

28 51

27

13

72

44 31

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 13 / 23

Non-examples

No “holes” allowed

83

83

51

72

44 31

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 14 / 23

↑
0

Non-examples

No “holes” allowed

83

83

51

72

44 31

Cannot leave a level incomplete

83

83

54

28 51

27

13

72

44

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 14 / 23

b

Non-examples

Heap property is violated

83

53

54

28 51

27

13

72

44 21

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 15 / 23

O

insert()

insert(77)

Add a new node at dictated by
heap structure

Restore the heap property along
path to the root

insert(44)

insert(57)

83

74

54 27

72

44 31

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 16 / 23

Add
a

⑪

insert()

insert(77)

Add a new node at dictated by
heap structure

Restore the heap property along
path to the root

insert(44)

insert(57)

83

74

54

77

27

72

44 31

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 16 / 23

j

insert()

insert(77)

Add a new node at dictated by
heap structure

Restore the heap property along
path to the root

insert(44)

insert(57)

83

74

77

54

27

72

44 31

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 16 / 23

O

insert()

insert(77)

Add a new node at dictated by
heap structure

Restore the heap property along
path to the root

insert(44)

insert(57)

83

77

74

54

27

72

44 31

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 16 / 23

%
We knew 74227

And 77274
So 77327

insert()

insert(77)

Add a new node at dictated by
heap structure

Restore the heap property along
path to the root

insert(44)

insert(57)

83

77

74

54 44

27

72

44 31

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 16 / 23

Or

insert()

insert(77)

Add a new node at dictated by
heap structure

Restore the heap property along
path to the root

insert(44)

insert(57)

83

77

74

54 44

27

57

72

44 31

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 16 / 23

M

insert()

insert(77)

Add a new node at dictated by
heap structure

Restore the heap property along
path to the root

insert(44)

insert(57)

83

77

74

54 44

57

27

72

44 31

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 16 / 23

Or

Complexity of insert()

Need to walk up from the leaf to
the root

Height of the tree

Number of nodes at level 0 is
20 = 1

Number of nodes at level j is 2j

If we fill k levels,
20 + 21 + · · ·+ 2k→1 = 2k ↓ 1
nodes

If we have N nodes, at most
1 + logN levels

insert() is O(logN)

83

77

74

54 44

57

27

72

44 31

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 17 / 23

Complexity of insert()

Need to walk up from the leaf to
the root

Height of the tree

Number of nodes at level 0 is
20 = 1

Number of nodes at level j is 2j

If we fill k levels,
20 + 21 + · · ·+ 2k→1 = 2k ↓ 1
nodes

If we have N nodes, at most
1 + logN levels

insert() is O(logN)

83

77

74

54 44

57

27

72

44 31

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 17 / 23

- Level O

-Level

C

Leve-2

Complexity of insert()

Need to walk up from the leaf to
the root

Height of the tree

Number of nodes at level 0 is
20 = 1

Number of nodes at level j is 2j

If we fill k levels,
20 + 21 + · · ·+ 2k→1 = 2k ↓ 1
nodes

If we have N nodes, at most
1 + logN levels

insert() is O(logN)

83

77

74

54 44

57

27

72

44 31

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 17 / 23

Complexity of insert()

Need to walk up from the leaf to
the root

Height of the tree

Number of nodes at level 0 is
20 = 1

Number of nodes at level j is 2j

If we fill k levels,
20 + 21 + · · ·+ 2k→1 = 2k ↓ 1
nodes

If we have N nodes, at most
1 + logN levels

insert() is O(logN)

83

77

74

54 44

57

27

72

44 31

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 17 / 23

↳ height
2-1 size

Complexity of insert()

Need to walk up from the leaf to
the root

Height of the tree

Number of nodes at level 0 is
20 = 1

Number of nodes at level j is 2j

If we fill k levels,
20 + 21 + · · ·+ 2k→1 = 2k ↓ 1
nodes

If we have N nodes, at most
1 + logN levels

insert() is O(logN)

83

77

74

54 44

57

27

72

44 31

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 17 / 23

Complexity of insert()

Need to walk up from the leaf to
the root

Height of the tree

Number of nodes at level 0 is
20 = 1

Number of nodes at level j is 2j

If we fill k levels,
20 + 21 + · · ·+ 2k→1 = 2k ↓ 1
nodes

If we have N nodes, at most
1 + logN levels

insert() is O(logN)

83

77

74

54 44

57

27

72

44 31

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 17 / 23

height
log()

-
L

64

delete max()

Maximum value is always at the
root

After we delete one value, tree
shrinks

Node to delete is rightmost at
lowest level

Move “homeless” value to the
root

Restore the heap property
downwards

Only need to follow a single path
down

Again O(logN)

83

77

74

54 44

57

27

72

44 31

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 18 / 23

-shadesd
value torort

delete max()

Maximum value is always at the
root

After we delete one value, tree
shrinks

Node to delete is rightmost at
lowest level

Move “homeless” value to the
root

Restore the heap property
downwards

Only need to follow a single path
down

Again O(logN)

77

74

54 44

57

27

72

44 31

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 18 / 23

S

delete max()

Maximum value is always at the
root

After we delete one value, tree
shrinks

Node to delete is rightmost at
lowest level

Move “homeless” value to the
root

Restore the heap property
downwards

Only need to follow a single path
down

Again O(logN)

27

77

74

54 44

57

72

44 31

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 18 / 23

-

delete max()

Maximum value is always at the
root

After we delete one value, tree
shrinks

Node to delete is rightmost at
lowest level

Move “homeless” value to the
root

Restore the heap property
downwards

Only need to follow a single path
down

Again O(logN)

27

77

74

54 44

57

72

44 31

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 18 / 23

delete max()

Maximum value is always at the
root

After we delete one value, tree
shrinks

Node to delete is rightmost at
lowest level

Move “homeless” value to the
root

Restore the heap property
downwards

Only need to follow a single path
down

Again O(logN)

77

27

74

54 44

57

72

44 31

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 18 / 23

⑯

delete max()

Maximum value is always at the
root

After we delete one value, tree
shrinks

Node to delete is rightmost at
lowest level

Move “homeless” value to the
root

Restore the heap property
downwards

Only need to follow a single path
down

Again O(logN)

77

74

27

54 44

57

72

44 31

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 18 / 23

⑮

delete max()

Maximum value is always at the
root

After we delete one value, tree
shrinks

Node to delete is rightmost at
lowest level

Move “homeless” value to the
root

Restore the heap property
downwards

Only need to follow a single path
down

Again O(logN)

77

74

54

27 44

57

72

44 31

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 18 / 23

!

Implementation

Number the nodes top to
bottom left right

Store as a list
H = [h0,h1,h2,...,h9]

Children of H[i] are at
H[2*i+1], H[2*i+2]

Parent of H[i] is at
H[(i-1)//2],
for i > 0

h0

h1

h3

h7 h8

h4

h9

h2

h5 h6

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 19 / 23

z
Leaf ? 22

,
litI are beyond N

Building a heap — heapify()

Convert a list [v0,v1,...,vN]
into a heap

Simple strategy

Start with an empty heap

Repeatedly apply insert(vj)

Total time is O(N logN)

h0

h1

h3

h7 h8

h4

h9

h2

h5 h6

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 20 / 23

Building a heap — heapify()

Convert a list [v0,v1,...,vN]
into a heap

Simple strategy

Start with an empty heap

Repeatedly apply insert(vj)

Total time is O(N logN)

h0

h1

h3

h7 h8

h4

h9

h2

h5 h6

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 20 / 23

Heap sort

Start with an unordered list

Build a heap — O(n)

Call delete max() n times to extract elements in descending order — O(n log n)

After each delete max(), heap shrinks by 1

Store maximum value at the end of current heap

In place O(n log n) sort

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 22 / 23

·
u

delebem

Heap sort

Start with an unordered list

Build a heap — O(n)

Call delete max() n times to extract elements in descending order — O(n log n)

After each delete max(), heap shrinks by 1

Store maximum value at the end of current heap

In place O(n log n) sort

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 22 / 23

~ Onlogn)

Heap sort

Start with an unordered list

Build a heap — O(n)

Call delete max() n times to extract elements in descending order — O(n log n)

After each delete max(), heap shrinks by 1

Store maximum value at the end of current heap

In place O(n log n) sort

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 22 / 23

- Onlogn)

Heap sort

Start with an unordered list

Build a heap — O(n)

Call delete max() n times to extract elements in descending order — O(n log n)

After each delete max(), heap shrinks by 1

Store maximum value at the end of current heap

In place O(n log n) sort

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 22 / 23

Heap sort

Start with an unordered list

Build a heap — O(n)

Call delete max() n times to extract elements in descending order — O(n log n)

After each delete max(), heap shrinks by 1

Store maximum value at the end of current heap

In place O(n log n) sort

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 22 / 23

Heap sort

Start with an unordered list

Build a heap — O(n)

Call delete max() n times to extract elements in descending order — O(n log n)

After each delete max(), heap shrinks by 1

Store maximum value at the end of current heap

In place O(n log n) sort

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 22 / 23

Summary

Heaps are a tree implementation
of priority queues

insert() is O(logN)

delete max() is O(logN)

heapify() builds a heap in
O(N)

Can invert the heap condition
Each node is smaller than its
children

min-heap

delete min() rather than
delete max()

83

83

54

28 51

27

13

72

44 31

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 23 / 23

Summary

Heaps are a tree implementation
of priority queues

insert() is O(logN)

delete max() is O(logN)

heapify() builds a heap in
O(N)

Can invert the heap condition
Each node is smaller than its
children

min-heap

delete min() rather than
delete max()

38

38

54

68 59

47

50

52

84 61

Madhavan Mukund Lecture 21, 5 November 2024 PDSP Lecture 21 23 / 23

