
Lecture 22, 7 November 2024

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python

Lecture 22, 07 Nov 2024

Dynamic sorted data

Sorting is useful for e!cient searching

What if the data is changing dynamically?

Items are periodically inserted and deleted

Insert/delete in a sorted list takes time O(n)

Move to a tree structure, like heaps for priority queues

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 2 / 23

Heap-binary free
- Filled level by
level

,
L do R

find (v) -sorted -> Logn - Node I children

Insect(v)

delete (v)
Insert()
delete

-max()

Dynamic sorted data

Sorting is useful for e!cient searching

What if the data is changing dynamically?

Items are periodically inserted and deleted

Insert/delete in a sorted list takes time O(n)

Move to a tree structure, like heaps for priority queues

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 2 / 23

Binary search tree

For each node with value v

All values in the left subtree
are < v

All values in the right subtree
are > v

No duplicate values

5

2

1 4

8

9

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 3 / 23

O

-23
-
4
-
5--9

. 195

445, 472

472

= 875
142

Binary search tree

For each node with value v

All values in the left subtree
are < v

All values in the right subtree
are > v

No duplicate values

5

2

1 4

8

9

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 3 / 23

Implementing a binary search tree

Each node has a value and
pointers to its children

v ω r

5 • •

8 – •

9 – –

2 • •

4 – –

1 – –

5

2

1 4

8

9

Add a frontier with empty nodes, all fields –

Empty tree is single empty node

Leaf node points to empty nodes

Easier to implement operations recursively

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 4 / 23

-
L--

-00
↑

00

00
None Leaf Emp

Implementing a binary search tree

Each node has a value and
pointers to its children

v ω r

5 • •
8 • •

9 • •

– – –

– – – – – –2 • •

4 • •1 • •

– – –

– – –

– – –

– – –

5

2

1 4

8

9

Add a frontier with empty nodes, all fields –

Empty tree is single empty node

Leaf node points to empty nodes

Easier to implement operations recursively

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 4 / 23

-

--

-

-

zin G

The class Tree

Three local fields, value, left,
right

Value None for empty value –

Empty true has all fields None

Leaf has a nonempty value and
empty left and right

class Tree:

Constructor:

def __init__(self,initval=None):

self.value = initval

if self.value != None:

self.left = Tree()

self.right = Tree()

else:

self.left = None

self.right = None

return

Only empty node has value None

def isempty(self):

return (self.value == None)

Leaf nodes have both children empty

def isleaf(self):

return (self.value != None and

self.left.isempty() and

self.right.isempty())

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 5 / 23

-D
-

Inorder traversal

List the left subtree, then the
current node, then the right subtree

Lists values in sorted order

Use to print the tree

class Tree:
...
Inorder traversal
def inorder(self):

if self.isempty():
return([])

else:
return(self.left.inorder()+

[self.value]+
self.right.inorder())

Display Tree as a string
def __str__(self):

return(str(self.inorder()))

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 6 / 23

-

S

Inorder traversal

List the left subtree, then the
current node, then the right subtree

Lists values in sorted order

Use to print the tree

5

2

1 4

8

9

class Tree:
...
Inorder traversal
def inorder(self):

if self.isempty():
return([])

else:
return(self.left.inorder()+

[self.value]+
self.right.inorder())

Display Tree as a string
def __str__(self):

return(str(self.inorder()))

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 6 / 23

Y

Q
/[22
[i]

+

[4]
[3+8]2a) (1,2,43+[5]+ [8,97

Find a value v

Check value at current node

If v smaller than current node, go
left

If v smaller than current node, go
right

Natural generalization of binary
search

class Tree:
...
Check if value v occurs in tree
def find(self,v):

if self.isempty():
return(False)

if self.value == v:
return(True)

if v < self.value:
return(self.left.find(v))

if v > self.value:
return(self.right.find(v))

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 7 / 23

Find a value v

Check value at current node

If v smaller than current node, go
left

If v smaller than current node, go
right

Natural generalization of binary
search

5

2

1 4

8

9

class Tree:
...
Check if value v occurs in tree
def find(self,v):

if self.isempty():
return(False)

if self.value == v:
return(True)

if v < self.value:
return(self.left.find(v))

if v > self.value:
return(self.right.find(v))

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 7 / 23

↓do

-v

Minimum and maximum

Minimum is left most node in the
tree

Maximum is right most node in the
tree

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 8 / 23

Minimum and maximum

Minimum is left most node in the
tree

Maximum is right most node in the
tree

5

3

1

2

4

7

9

8

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 8 / 23

↓ >

↓ d

Y .

Minimum and maximum

Minimum is left most node in the
tree

Maximum is right most node in the
tree

5

3

1

2

4

7

9

8

class Tree:
...
def minval(self):

if self.left.isempty():
return(self.value)

else:
return(self.left.minval())

def maxval(self):
if self.right.isempty():

return(self.value)
else:

return(self.right.maxval())

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 8 / 23

-

~

Insert a value v

Try to find v

Insert at the position where find
fails

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 9 / 23

Insert a value v

Try to find v

Insert at the position where find
fails

Insert 21
52

37

16

28

44

74

91

83

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 9 / 23

Y

↓

J

Insert a value v

Try to find v

Insert at the position where find
fails

Insert 21
52

37

16

28

44

74

91

83

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 9 / 23

Insert a value v

Try to find v

Insert at the position where find
fails

Insert 21
52

37

16

28

21

44

74

91

83

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 9 / 23

Insert a value v

Try to find v

Insert at the position where find
fails

Insert 65
52

37

16

28

21

44

74

91

83

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 9 / 23

Y

"

Insert a value v

Try to find v

Insert at the position where find
fails

Insert 65
52

37

16

28

21

44

74

91

83

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 9 / 23

Insert a value v

Try to find v

Insert at the position where find
fails

Insert 65
52

37

16

28

21

44

74

65 91

83

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 9 / 23

Insert a value v

Try to find v

Insert at the position where find
fails

Insert 91
52

37

16

28

21

44

74

65 91

83

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 9 / 23

2

-

Insert a value v

Try to find v

Insert at the position where find
fails

Insert 91
52

37

16

28

21

44

74

65 91

83

class Tree:
...
def insert(self,v):

if self.isempty():
self.value = v
self.left = Tree()
self.right = Tree()

if self.value == v:
return

if v < self.value:
self.left.insert(v)
return

if v > self.value:
self.right.insert(v)
return

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 9 / 23

t

Delete a value v

If v is present, delete

Leaf node? No problem

If only one child, promote that
subtree

Otherwise, replace v with
self.left.maxval() and delete
self.left.maxval()

self.left.maxval() has no
right child

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 10 / 23

↳

Delete a value v

If v is present, delete

Leaf node? No problem

If only one child, promote that
subtree

Otherwise, replace v with
self.left.maxval() and delete
self.left.maxval()

self.left.maxval() has no
right child

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 10 / 23

Delete a value v

If v is present, delete

Leaf node? No problem

If only one child, promote that
subtree

Otherwise, replace v with
self.left.maxval() and delete
self.left.maxval()

self.left.maxval() has no
right child

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 10 / 23

⑤

/x

G

Delete a value v

If v is present, delete

Leaf node? No problem

If only one child, promote that
subtree

Otherwise, replace v with
self.left.maxval() and delete
self.left.maxval()

self.left.maxval() has no
right child

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 10 / 23

Otherwise? Tit

Delete a value v

If v is present, delete

Leaf node? No problem

If only one child, promote that
subtree

Otherwise, replace v with
self.left.maxval() and delete
self.left.maxval()

self.left.maxval() has no
right child

class Tree:

...

def delete(self,v):

if self.isempty():

return

if v < self.value:

self.left.delete(v)

return

if v > self.value:

self.right.delete(v)

return

if v == self.value:

if self.isleaf():

self.makeempty()

elif self.left.isempty():

self.copyright()

elif self.right.isempty():

self.copyleft()

else:

self.value = self.left.maxval()

self.left.delete(self.left.maxval())

return

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 10 / 23

I

3
Leaf

Joeld

Delete a value v

Delete 65
52

37

16

28

21

44

74

65 91

83

class Tree:

...

def delete(self,v):

if self.isempty():

return

if v < self.value:

self.left.delete(v)

return

if v > self.value:

self.right.delete(v)

return

if v == self.value:

if self.isleaf():

self.makeempty()

elif self.left.isempty():

self.copyright()

elif self.right.isempty():

self.copyleft()

else:

self.value = self.left.maxval()

self.left.delete(self.left.maxval())

return

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 11 / 23

↳

Delete a value v

Delete 65
52

37

16

28

21

44

74

65 91

83

class Tree:

...

def delete(self,v):

if self.isempty():

return

if v < self.value:

self.left.delete(v)

return

if v > self.value:

self.right.delete(v)

return

if v == self.value:

if self.isleaf():

self.makeempty()

elif self.left.isempty():

self.copyright()

elif self.right.isempty():

self.copyleft()

else:

self.value = self.left.maxval()

self.left.delete(self.left.maxval())

return

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 11 / 23

Delete a value v

Delete 65
52

37

16

28

21

44

74

91

83

class Tree:

...

def delete(self,v):

if self.isempty():

return

if v < self.value:

self.left.delete(v)

return

if v > self.value:

self.right.delete(v)

return

if v == self.value:

if self.isleaf():

self.makeempty()

elif self.left.isempty():

self.copyright()

elif self.right.isempty():

self.copyleft()

else:

self.value = self.left.maxval()

self.left.delete(self.left.maxval())

return

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 11 / 23

Delete a value v

Delete 74
52

37

16

28

21

44

74

91

83

class Tree:

...

def delete(self,v):

if self.isempty():

return

if v < self.value:

self.left.delete(v)

return

if v > self.value:

self.right.delete(v)

return

if v == self.value:

if self.isleaf():

self.makeempty()

elif self.left.isempty():

self.copyright()

elif self.right.isempty():

self.copyleft()

else:

self.value = self.left.maxval()

self.left.delete(self.left.maxval())

return

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 11 / 23

↑

Delete a value v

Delete 74
52

37

16

28

21

44

74

91

83

class Tree:

...

def delete(self,v):

if self.isempty():

return

if v < self.value:

self.left.delete(v)

return

if v > self.value:

self.right.delete(v)

return

if v == self.value:

if self.isleaf():

self.makeempty()

elif self.left.isempty():

self.copyright()

elif self.right.isempty():

self.copyleft()

else:

self.value = self.left.maxval()

self.left.delete(self.left.maxval())

return

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 11 / 23

Delete a value v

Delete 74
52

37

16

28

21

44

91

83

class Tree:

...

def delete(self,v):

if self.isempty():

return

if v < self.value:

self.left.delete(v)

return

if v > self.value:

self.right.delete(v)

return

if v == self.value:

if self.isleaf():

self.makeempty()

elif self.left.isempty():

self.copyright()

elif self.right.isempty():

self.copyleft()

else:

self.value = self.left.maxval()

self.left.delete(self.left.maxval())

return

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 11 / 23

Delete a value v

Delete 37
52

37

16

28

21

44

91

83

class Tree:

...

def delete(self,v):

if self.isempty():

return

if v < self.value:

self.left.delete(v)

return

if v > self.value:

self.right.delete(v)

return

if v == self.value:

if self.isleaf():

self.makeempty()

elif self.left.isempty():

self.copyright()

elif self.right.isempty():

self.copyleft()

else:

self.value = self.left.maxval()

self.left.delete(self.left.maxval())

return

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 11 / 23

40

Delete a value v

Delete 37
52

37

16

28

21

44

91

83

class Tree:

...

def delete(self,v):

if self.isempty():

return

if v < self.value:

self.left.delete(v)

return

if v > self.value:

self.right.delete(v)

return

if v == self.value:

if self.isleaf():

self.makeempty()

elif self.left.isempty():

self.copyright()

elif self.right.isempty():

self.copyleft()

else:

self.value = self.left.maxval()

self.left.delete(self.left.maxval())

return

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 11 / 23

Delete a value v

Delete 37
52

37

16

28

21

44

91

83

class Tree:

...

def delete(self,v):

if self.isempty():

return

if v < self.value:

self.left.delete(v)

return

if v > self.value:

self.right.delete(v)

return

if v == self.value:

if self.isleaf():

self.makeempty()

elif self.left.isempty():

self.copyright()

elif self.right.isempty():

self.copyleft()

else:

self.value = self.left.maxval()

self.left.delete(self.left.maxval())

return

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 11 / 23

Delete a value v

Delete 37
52

28

16

28

21

44

91

83

class Tree:

...

def delete(self,v):

if self.isempty():

return

if v < self.value:

self.left.delete(v)

return

if v > self.value:

self.right.delete(v)

return

if v == self.value:

if self.isleaf():

self.makeempty()

elif self.left.isempty():

self.copyright()

elif self.right.isempty():

self.copyleft()

else:

self.value = self.left.maxval()

self.left.delete(self.left.maxval())

return

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 11 / 23

Oma

Delete a value v

Delete 37
52

28

16

21

44

91

83

class Tree:

...

def delete(self,v):

if self.isempty():

return

if v < self.value:

self.left.delete(v)

return

if v > self.value:

self.right.delete(v)

return

if v == self.value:

if self.isleaf():

self.makeempty()

elif self.left.isempty():

self.copyright()

elif self.right.isempty():

self.copyleft()

else:

self.value = self.left.maxval()

self.left.delete(self.left.maxval())

return

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 11 / 23

-

Delete a value v
class Tree:

...

def delete(self,v):

if self.isempty():

return

if v < self.value:

self.left.delete(v)

return

if v > self.value:

self.right.delete(v)

return

if v == self.value:

if self.isleaf():

self.makeempty()

elif self.left.isempty():

self.copyright()

elif self.right.isempty():

self.copyleft()

else:

self.value = self.left.maxval()

self.left.delete(self.left.maxval())

return

Convert leaf node to empty node

def makeempty(self):

self.value = None

self.left = None

self.right = None

return

Promote left child

def copyleft(self):

self.value = self.left.value

self.right = self.left.right

self.left = self.left.left

return

Promote right child

def copyright(self):

self.value = self.right.value

self.left = self.right.left

self.right = self.right.right

return

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 12 / 23

=

Complexity

find(), insert() and delete() all walk down a single path

Worst-case: height of the tree

An unbalanced tree with n nodes may have height O(n)

Balanced trees have height O(log n)

How can we maintain balance as tree grows and shrinks?

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 13 / 23

o
&

·

Operations on search trees

Defining balance

Left and right subtrees should be “equal”

Two possible measures: size and
height

self.left.size() and
self.right.size() are equal?

Only possible for complete binary trees

self.left.size() and
self.right.size() di”er by at most 1?

Plausible, but di!cult to maintain

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 14 / 23

Operations on search trees

Defining balance

Left and right subtrees should be “equal”

Two possible measures: size and
height

self.left.size() and
self.right.size() are equal?

Only possible for complete binary trees

self.left.size() and
self.right.size() di”er by at most 1?

Plausible, but di!cult to maintain

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 14 / 23

Operations on search trees

Defining balance

Left and right subtrees should be “equal”

Two possible measures: size and
height

self.left.size() and
self.right.size() are equal?

Only possible for complete binary trees

self.left.size() and
self.right.size() di”er by at most 1?

Plausible, but di!cult to maintain

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 14 / 23

Height balanced trees

self.height() — number of nodes on
longest path from root to leaf

0 for empty tree

1 for tree with only a root node

1 + max of heights of left and right
subtrees, in general

Height balance

self.left.height() and
self.right.height() di”er by at most
1

AVL trees — Adelson-Velskii, Landis

Does height balance guarantee O(log n)
height?

Minimum size height-balanced trees

•

•

•

•

•

•

•

h = 4

General strategy to build a small
balanced tree of height h

Smallest balanced tree of height
h → 1 as left subtree

Smallest balanced tree of height
h → 2 as right subtree

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 15 / 23

% rh=o

a

Height balanced trees

self.height() — number of nodes on
longest path from root to leaf

0 for empty tree

1 for tree with only a root node

1 + max of heights of left and right
subtrees, in general

Height balance

self.left.height() and
self.right.height() di”er by at most
1

AVL trees — Adelson-Velskii, Landis

Does height balance guarantee O(log n)
height?

Minimum size height-balanced trees

•

•

•

•

•

•

•

h = 4

General strategy to build a small
balanced tree of height h

Smallest balanced tree of height
h → 1 as left subtree

Smallest balanced tree of height
h → 2 as right subtree

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 15 / 23

T

Height balanced trees

self.height() — number of nodes on
longest path from root to leaf

0 for empty tree

1 for tree with only a root node

1 + max of heights of left and right
subtrees, in general

Height balance

self.left.height() and
self.right.height() di”er by at most
1

AVL trees — Adelson-Velskii, Landis

Does height balance guarantee O(log n)
height?

Minimum size height-balanced trees

•

•

•

•

•

•

•

h = 4

General strategy to build a small
balanced tree of height h

Smallest balanced tree of height
h → 1 as left subtree

Smallest balanced tree of height
h → 2 as right subtree

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 15 / 23

Height balanced trees

self.height() — number of nodes on
longest path from root to leaf

0 for empty tree

1 for tree with only a root node

1 + max of heights of left and right
subtrees, in general

Height balance

self.left.height() and
self.right.height() di”er by at most
1

AVL trees — Adelson-Velskii, Landis

Does height balance guarantee O(log n)
height?

Minimum size height-balanced trees

•
h=1

•

•
h = 2

•

•

•

•

h = 3

•

•

•

•

•

•

•

h = 4

General strategy to build a small
balanced tree of height h

Smallest balanced tree of height
h → 1 as left subtree

Smallest balanced tree of height
h → 2 as right subtree

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 15 / 23

%

Height balanced trees

self.height() — number of nodes on
longest path from root to leaf

0 for empty tree

1 for tree with only a root node

1 + max of heights of left and right
subtrees, in general

Height balance

self.left.height() and
self.right.height() di”er by at most
1

AVL trees — Adelson-Velskii, Landis

Does height balance guarantee O(log n)
height?

Minimum size height-balanced trees

•
h=1

•

•
h = 2

•

•

•

•

h = 3

•

•

•

•

•

•

•

h = 4

General strategy to build a small
balanced tree of height h

Smallest balanced tree of height
h → 1 as left subtree

Smallest balanced tree of height
h → 2 as right subtree

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 15 / 23

00 jo

Height balanced trees

self.height() — number of nodes on
longest path from root to leaf

0 for empty tree

1 for tree with only a root node

1 + max of heights of left and right
subtrees, in general

Height balance

self.left.height() and
self.right.height() di”er by at most
1

AVL trees — Adelson-Velskii, Landis

Does height balance guarantee O(log n)
height?

Minimum size height-balanced trees

•
h=1

•

•
h = 2

•

•

•

•

h = 3

•

•

•

•

•

•

•

h = 4

General strategy to build a small
balanced tree of height h

Smallest balanced tree of height
h → 1 as left subtree

Smallest balanced tree of height
h → 2 as right subtree

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 15 / 23

Height balanced trees

Minimum size height-balanced trees

•
h=1

•

•
h = 2

•

•

•

•

h = 3

•

•

•

•

•

•

•

h = 4

General strategy to build a small
balanced tree of height h

Smallest balanced tree of height
h → 1 as left subtree

Smallest balanced tree of height
h → 2 as right subtree

S(h), size of smallest height-balanced tree
of height h

Recurrence

S(0) = 0, S(1) = 1

S(h) = 1 + S(h → 1) + S(h → 2)

Compare to Fibonacci sequence

F (0) = 0, F (1) = 1

F (n) = F (n → 1) + F (n → 2)

S(h) grows exponentially with h

For size n, h is O(log n)

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 16 / 23

Height balanced trees

Minimum size height-balanced trees

•
h=1

•

•
h = 2

•

•

•

•

h = 3

•

•

•

•

•

•

•

h = 4

General strategy to build a small
balanced tree of height h

Smallest balanced tree of height
h → 1 as left subtree

Smallest balanced tree of height
h → 2 as right subtree

S(h), size of smallest height-balanced tree
of height h

Recurrence

S(0) = 0, S(1) = 1

S(h) = 1 + S(h → 1) + S(h → 2)

Compare to Fibonacci sequence

F (0) = 0, F (1) = 1

F (n) = F (n → 1) + F (n → 2)

S(h) grows exponentially with h

For size n, h is O(log n)

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 16 / 23

Height balanced trees

Minimum size height-balanced trees

•
h=1

•

•
h = 2

•

•

•

•

h = 3

•

•

•

•

•

•

•

h = 4

General strategy to build a small
balanced tree of height h

Smallest balanced tree of height
h → 1 as left subtree

Smallest balanced tree of height
h → 2 as right subtree

S(h), size of smallest height-balanced tree
of height h

Recurrence

S(0) = 0, S(1) = 1

S(h) = 1 + S(h → 1) + S(h → 2)

Compare to Fibonacci sequence

F (0) = 0, F (1) = 1

F (n) = F (n → 1) + F (n → 2)

S(h) grows exponentially with h

For size n, h is O(log n)

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 16 / 23

Height balanced trees

Minimum size height-balanced trees

•
h=1

•

•
h = 2

•

•

•

•

h = 3

•

•

•

•

•

•

•

h = 4

General strategy to build a small
balanced tree of height h

Smallest balanced tree of height
h → 1 as left subtree

Smallest balanced tree of height
h → 2 as right subtree

S(h), size of smallest height-balanced tree
of height h

Recurrence

S(0) = 0, S(1) = 1

S(h) = 1 + S(h → 1) + S(h → 2)

Compare to Fibonacci sequence

F (0) = 0, F (1) = 1

F (n) = F (n → 1) + F (n → 2)

S(h) grows exponentially with h

For size n, h is O(log n)

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 16 / 23

Height balanced trees

Minimum size height-balanced trees

•
h=1

•

•
h = 2

•

•

•

•

h = 3

•

•

•

•

•

•

•

h = 4

General strategy to build a small
balanced tree of height h

Smallest balanced tree of height
h → 1 as left subtree

Smallest balanced tree of height
h → 2 as right subtree

S(h), size of smallest height-balanced tree
of height h

Recurrence

S(0) = 0, S(1) = 1

S(h) = 1 + S(h → 1) + S(h → 2)

Compare to Fibonacci sequence

F (0) = 0, F (1) = 1

F (n) = F (n → 1) + F (n → 2)

S(h) grows exponentially with h

For size n, h is O(log n)

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 16 / 23

Height balanced trees

Minimum size height-balanced trees

•
h=1

•

•
h = 2

•

•

•

•

h = 3

•

•

•

•

•

•

•

h = 4

General strategy to build a small
balanced tree of height h

Smallest balanced tree of height
h → 1 as left subtree

Smallest balanced tree of height
h → 2 as right subtree

S(h), size of smallest height-balanced tree
of height h

Recurrence

S(0) = 0, S(1) = 1

S(h) = 1 + S(h → 1) + S(h → 2)

Compare to Fibonacci sequence

F (0) = 0, F (1) = 1

F (n) = F (n → 1) + F (n → 2)

S(h) grows exponentially with h

For size n, h is O(log n)

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 16 / 23

Correcting imbalance

Slope of a node : self.left.height() - self.right.height()

Balanced tree — slope is {→1, 0, 1}

t.insert(v), t.delete(v) can alter slope to →2 or +2

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 17 / 23

!

Correcting imbalance

Slope of a node : self.left.height() - self.right.height()

Balanced tree — slope is {→1, 0, 1}

t.insert(v), t.delete(v) can alter slope to →2 or +2

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 17 / 23

Correcting imbalance

Slope of a node : self.left.height() - self.right.height()

Balanced tree — slope is {→1, 0, 1}

t.insert(v), t.delete(v) can alter slope to →2 or +2

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 17 / 23

Correcting imbalance

Slope of a node : self.left.height() - self.right.height()

Balanced tree — slope is {→1, 0, 1}

t.insert(v), t.delete(v) can alter slope to →2 or +2

Left rotation

•

h

h+2

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 17 / 23

-2

O

Correcting imbalance

Slope of a node : self.left.height() - self.right.height()

Balanced tree — slope is {→1, 0, 1}

t.insert(v), t.delete(v) can alter slope to →2 or +2

Left rotation

•

h

h+2

=

•
↭

h

L

h/
h+1

R

h/
h+1

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 17 / 23

0%.

Correcting imbalance

Slope of a node : self.left.height() - self.right.height()

Balanced tree — slope is {→1, 0, 1}

t.insert(v), t.delete(v) can alter slope to →2 or +2

Left rotation — converts slope →2 to {0, 1, 2}

•

h

h+2

=

•
↭

h

L

h/
h+1

R

h/
h+1

=↑

↭
•

h
L

h/
h+1

R

h/
h+1

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 17 / 23

00On
a
O

Correcting imbalance

Slope of a node : self.left.height() - self.right.height()

Balanced tree — slope is {→1, 0, 1}

t.insert(v), t.delete(v) can alter slope to →2 or +2

Right rotation

•

h+2

h

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 17 / 23

Correcting imbalance

Slope of a node : self.left.height() - self.right.height()

Balanced tree — slope is {→1, 0, 1}

t.insert(v), t.delete(v) can alter slope to →2 or +2

Right rotation

•

h+2

h =

•
↭

h

R

h/
h+1

L

h/
h+1

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 17 / 23

Correcting imbalance

Slope of a node : self.left.height() - self.right.height()

Balanced tree — slope is {→1, 0, 1}

t.insert(v), t.delete(v) can alter slope to →2 or +2

Right rotation — converts slope +2 to {→2,→1, 0}

•

h+2

h =

•
↭

h

R

h/
h+1

L

h/
h+1

=↑

↭
•

h
R

h/
h+1

L

h/
h+1

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 17 / 23

Implementing rotations

•v

↭ vr

h

L

h/
h+1

R

h/
h+1

↓
↭ vr

•v

h
L

h/
h+1

R

h/
h+1

class Tree:
...

def leftrotate(self):
v = self.value
vr = self.right.value
tl = self.left
trl = self.right.left
trr = self.right.right

newleft = Tree(v)
newleft.left = tl
newleft.right = trl

self.value = vr
self.left = newleft
self.right = trr

return
Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 18 / 23

Implementing rotations

• v

↭vl

h

R

h/
h+1

L

h/
h+1

↓
↭vl

• v

h
R

h/
h+1

L

h/
h+1

class Tree:
...

def rightrotate(self):
v = self.value
vl = self.left.value
tll = self.left.left
tlr = self.left.right
tr = self.right

newright = Tree(v)
newright.left = tlr
newright.right = tr

self.value = vl
self.left = tll
self.right = newright

return
Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 19 / 23

Rebalancing, root has slope +2

Rebalance bottom-up, assume subtrees
are balanced

Case 1: Slope at ↭ is in {0, 1}

Rotate right at •
All nodes are balanced

Case 2: Slope at ↭ is →1

Expand R

Rotate left at ↭
Rotate left at •

Rebalance with root slope →2 is
symmetric

•
↭

RL

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 20 / 23

Rebalancing, root has slope +2

Rebalance bottom-up, assume subtrees
are balanced

Case 1: Slope at ↭ is in {0, 1}

Rotate right at •
All nodes are balanced

Case 2: Slope at ↭ is →1

Expand R

Rotate left at ↭
Rotate left at •

Rebalance with root slope →2 is
symmetric

•
↭

h

R

h/
h+1

L

h+1

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 20 / 23

G

may
O
i

Rebalancing, root has slope +2

Rebalance bottom-up, assume subtrees
are balanced

Case 1: Slope at ↭ is in {0, 1}
Rotate right at •
All nodes are balanced

Case 2: Slope at ↭ is →1

Expand R

Rotate left at ↭
Rotate left at •

Rebalance with root slope →2 is
symmetric

↭
•

h
R

h/
h+1

L

h+1

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 20 / 23

O

Rebalancing, root has slope +2

Rebalance bottom-up, assume subtrees
are balanced

Case 1: Slope at ↭ is in {0, 1}
Rotate right at •
All nodes are balanced

Case 2: Slope at ↭ is →1

Expand R

Rotate left at ↭
Rotate left at •

Rebalance with root slope →2 is
symmetric

•
↭

h

R

h+1

L

h

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 20 / 23

Rebalancing, root has slope +2

Rebalance bottom-up, assume subtrees
are balanced

Case 1: Slope at ↭ is in {0, 1}
Rotate right at •
All nodes are balanced

Case 2: Slope at ↭ is →1

Expand R

Rotate left at ↭
Rotate left at •

Rebalance with root slope →2 is
symmetric

•
↭

↫
h

Y

h/
h→1

X

h/
h→1

L

h

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 20 / 23

Rebalancing, root has slope +2

Rebalance bottom-up, assume subtrees
are balanced

Case 1: Slope at ↭ is in {0, 1}
Rotate right at •
All nodes are balanced

Case 2: Slope at ↭ is →1

Expand R

Rotate left at ↭

Rotate left at •

Rebalance with root slope →2 is
symmetric

•
↫

↭

h

Y

h/
h→1

X

h/
h→1

L

h

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 20 / 23

Rebalancing, root has slope +2

Rebalance bottom-up, assume subtrees
are balanced

Case 1: Slope at ↭ is in {0, 1}
Rotate right at •
All nodes are balanced

Case 2: Slope at ↭ is →1

Expand R

Rotate left at ↭
Rotate left at •

Rebalance with root slope →2 is
symmetric

↫
•↭

h

Y

h/
h→1

X

h/
h→1

L

h

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 20 / 23

Rebalancing, root has slope +2

Rebalance bottom-up, assume subtrees
are balanced

Case 1: Slope at ↭ is in {0, 1}
Rotate right at •
All nodes are balanced

Case 2: Slope at ↭ is →1

Expand R

Rotate left at ↭
Rotate left at •

Rebalance with root slope →2 is
symmetric

↫
•↭

h

Y

h/
h→1

X

h/
h→1

L

h

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 20 / 23

Update insert() and delete()

Use the rebalancing strategy to
define a function rebalance()

Rebalance each time the tree is
modified

Automatically rebalances bottom
up

class Tree:

...

def insert(self,v):

if self.isempty():

self.value = v

self.left = Tree()

self.right = Tree()

if self.value == v:

return

if v < self.value:

self.left.insert(v)

self.left.rebalance()

return

if v > self.value:

self.right.insert(v)

self.right.rebalance()

return

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 21 / 23

Update insert() and delete()

Use the rebalancing strategy to
define a function rebalance()

Rebalance each time the tree is
modified

Automatically rebalances bottom
up

class Tree:

...

def delete(self,v):

...

if v < self.value:

self.left.delete(v)

self.left.rebalance()

return

if v > self.value:

self.right.delete(v)

self.right.rebalance()

return

if v == self.value:

if self.isleaf():

self.makeempty()

elif self.left.isempty():

self.copyright()

elif self.right.isempty():

self.copyleft()

else:

self.value = self.left.maxval()

self.left.delete(self.left.maxval())

return

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 21 / 23

Computing slope

To compute the slope we need
heights of subtrees

But, computing height is O(n)

Instead, maintain a field
self.height

After each modification, update
self.height based on
self.left.height,
self.right.height

class Tree:
...
def height(self):

if self.isempty():
return(0)

else:
return(1 +

max(self.left.height(),
self.right.height())

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 22 / 23

Computing slope

To compute the slope we need
heights of subtrees

But, computing height is O(n)

Instead, maintain a field
self.height

After each modification, update
self.height based on
self.left.height,
self.right.height

class Tree:
...
def height(self):

if self.isempty():
return(0)

else:
return(1 +

max(self.left.height(),
self.right.height())

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 22 / 23

Computing slope

To compute the slope we need
heights of subtrees

But, computing height is O(n)

Instead, maintain a field
self.height

After each modification, update
self.height based on
self.left.height,
self.right.height

class Tree:
...
def insert(self,v):

...
if v < self.value:

self.left.insert(v)
self.left.rebalance()
self.height = 1 +

max(self.left.height,
self.right.height)

return

if v > self.value:
self.right.insert(v)
self.right.rebalance()
self.height = 1 +

max(self.left.height,
self.right.height)

return

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 22 / 23

Summary

Using rotations, we can maintain height balance

Height balanced trees have height O(log n)

find(), insert() and delete() all walk down a single path, take time O(log n)

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 23 / 23

