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Dynamic sorted data

Sorting is useful for e!cient searching

What if the data is changing dynamically?

Items are periodically inserted and deleted

Insert/delete in a sorted list takes time O(n)

Move to a tree structure, like heaps for priority queues
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Binary search tree

For each node with value v

All values in the left subtree
are < v

All values in the right subtree
are > v

No duplicate values

5

2

1 4

8

9
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Implementing a binary search tree

Each node has a value and
pointers to its children

v ω r

5 • •

8 – •

9 – –

2 • •

4 – –

1 – –

5

2

1 4

8

9

Add a frontier with empty nodes, all fields –

Empty tree is single empty node

Leaf node points to empty nodes

Easier to implement operations recursively
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The class Tree

Three local fields, value, left,
right

Value None for empty value –

Empty true has all fields None

Leaf has a nonempty value and
empty left and right

class Tree:

# Constructor:

def __init__(self,initval=None):

self.value = initval

if self.value != None:

self.left = Tree()

self.right = Tree()

else:

self.left = None

self.right = None

return

# Only empty node has value None

def isempty(self):

return (self.value == None)

# Leaf nodes have both children empty

def isleaf(self):

return (self.value != None and

self.left.isempty() and

self.right.isempty())
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Inorder traversal

List the left subtree, then the
current node, then the right subtree

Lists values in sorted order

Use to print the tree

class Tree:
...
# Inorder traversal
def inorder(self):

if self.isempty():
return([])

else:
return(self.left.inorder()+

[self.value]+
self.right.inorder())

# Display Tree as a string
def __str__(self):

return(str(self.inorder()))
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Find a value v

Check value at current node

If v smaller than current node, go
left

If v smaller than current node, go
right

Natural generalization of binary
search

class Tree:
...
# Check if value v occurs in tree
def find(self,v):

if self.isempty():
return(False)

if self.value == v:
return(True)

if v < self.value:
return(self.left.find(v))

if v > self.value:
return(self.right.find(v))
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class Tree:
...
# Check if value v occurs in tree
def find(self,v):

if self.isempty():
return(False)

if self.value == v:
return(True)
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Minimum and maximum

Minimum is left most node in the
tree

Maximum is right most node in the
tree
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Maximum is right most node in the
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Minimum and maximum

Minimum is left most node in the
tree

Maximum is right most node in the
tree

5

3

1

2

4

7

9

8

class Tree:
...
def minval(self):

if self.left.isempty():
return(self.value)

else:
return(self.left.minval())

def maxval(self):
if self.right.isempty():

return(self.value)
else:

return(self.right.maxval())
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Insert a value v

Try to find v

Insert at the position where find
fails
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Insert a value v

Try to find v

Insert at the position where find
fails

Insert 21
52

37

16

28

44

74

91

83
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Insert a value v

Try to find v

Insert at the position where find
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Insert a value v

Try to find v

Insert at the position where find
fails

Insert 91
52

37

16

28
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65 91

83

class Tree:
...
def insert(self,v):

if self.isempty():
self.value = v
self.left = Tree()
self.right = Tree()

if self.value == v:
return

if v < self.value:
self.left.insert(v)
return

if v > self.value:
self.right.insert(v)
return
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Delete a value v

If v is present, delete

Leaf node? No problem

If only one child, promote that
subtree

Otherwise, replace v with
self.left.maxval() and delete
self.left.maxval()

self.left.maxval() has no
right child
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Delete a value v

If v is present, delete

Leaf node? No problem

If only one child, promote that
subtree

Otherwise, replace v with
self.left.maxval() and delete
self.left.maxval()

self.left.maxval() has no
right child

class Tree:

...

def delete(self,v):

if self.isempty():

return

if v < self.value:

self.left.delete(v)

return

if v > self.value:

self.right.delete(v)

return

if v == self.value:

if self.isleaf():

self.makeempty()

elif self.left.isempty():

self.copyright()

elif self.right.isempty():

self.copyleft()

else:

self.value = self.left.maxval()

self.left.delete(self.left.maxval())

return
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Delete a value v

Delete 65
52
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28
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65 91
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class Tree:

...
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elif self.right.isempty():

self.copyleft()

else:
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return
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Delete a value v
class Tree:

...

def delete(self,v):

if self.isempty():

return

if v < self.value:

self.left.delete(v)

return

if v > self.value:

self.right.delete(v)

return

if v == self.value:

if self.isleaf():

self.makeempty()

elif self.left.isempty():

self.copyright()

elif self.right.isempty():

self.copyleft()

else:

self.value = self.left.maxval()

self.left.delete(self.left.maxval())

return

# Convert leaf node to empty node

def makeempty(self):

self.value = None

self.left = None

self.right = None

return

# Promote left child

def copyleft(self):

self.value = self.left.value

self.right = self.left.right

self.left = self.left.left

return

# Promote right child

def copyright(self):

self.value = self.right.value

self.left = self.right.left

self.right = self.right.right

return
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Complexity

find(), insert() and delete() all walk down a single path

Worst-case: height of the tree

An unbalanced tree with n nodes may have height O(n)

Balanced trees have height O(log n)

How can we maintain balance as tree grows and shrinks?
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Operations on search trees

Defining balance

Left and right subtrees should be “equal”

Two possible measures: size and
height

self.left.size() and
self.right.size() are equal?

Only possible for complete binary trees

self.left.size() and
self.right.size() di”er by at most 1?

Plausible, but di!cult to maintain
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Height balanced trees

self.height() — number of nodes on
longest path from root to leaf

0 for empty tree

1 for tree with only a root node

1 + max of heights of left and right
subtrees, in general

Height balance

self.left.height() and
self.right.height() di”er by at most
1

AVL trees — Adelson-Velskii, Landis

Does height balance guarantee O(log n)
height?

Minimum size height-balanced trees

•

•

•

•

•

•

•

h = 4

General strategy to build a small
balanced tree of height h

Smallest balanced tree of height
h → 1 as left subtree

Smallest balanced tree of height
h → 2 as right subtree
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Smallest balanced tree of height
h → 2 as right subtree
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Correcting imbalance

Slope of a node : self.left.height() - self.right.height()

Balanced tree — slope is {→1, 0, 1}

t.insert(v), t.delete(v) can alter slope to →2 or +2
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Correcting imbalance

Slope of a node : self.left.height() - self.right.height()

Balanced tree — slope is {→1, 0, 1}

t.insert(v), t.delete(v) can alter slope to →2 or +2

Left rotation — converts slope →2 to {0, 1, 2}

•

h

h+2

=
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↭

h

L

h/
h+1

R

h/
h+1

=↑

↭
•

h
L
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R
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Slope of a node : self.left.height() - self.right.height()

Balanced tree — slope is {→1, 0, 1}
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Right rotation
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Correcting imbalance

Slope of a node : self.left.height() - self.right.height()

Balanced tree — slope is {→1, 0, 1}

t.insert(v), t.delete(v) can alter slope to →2 or +2

Right rotation — converts slope +2 to {→2,→1, 0}

•

h+2

h =

•
↭

h

R

h/
h+1

L

h/
h+1

=↑

↭
•

h
R

h/
h+1

L

h/
h+1
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Implementing rotations

•v

↭ vr

h

L

h/
h+1

R

h/
h+1

↓
↭ vr

•v

h
L

h/
h+1

R

h/
h+1

class Tree:
...

def leftrotate(self):
v = self.value
vr = self.right.value
tl = self.left
trl = self.right.left
trr = self.right.right

newleft = Tree(v)
newleft.left = tl
newleft.right = trl

self.value = vr
self.left = newleft
self.right = trr

return
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Implementing rotations

• v

↭vl

h

R

h/
h+1

L

h/
h+1

↓
↭vl

• v

h
R

h/
h+1

L

h/
h+1

class Tree:
...

def rightrotate(self):
v = self.value
vl = self.left.value
tll = self.left.left
tlr = self.left.right
tr = self.right

newright = Tree(v)
newright.left = tlr
newright.right = tr

self.value = vl
self.left = tll
self.right = newright

return
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Rebalancing, root has slope +2

Rebalance bottom-up, assume subtrees
are balanced

Case 1: Slope at ↭ is in {0, 1}

Rotate right at •
All nodes are balanced

Case 2: Slope at ↭ is →1

Expand R

Rotate left at ↭
Rotate left at •

Rebalance with root slope →2 is
symmetric

•
↭

RL

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 20 / 23



Rebalancing, root has slope +2

Rebalance bottom-up, assume subtrees
are balanced

Case 1: Slope at ↭ is in {0, 1}

Rotate right at •
All nodes are balanced

Case 2: Slope at ↭ is →1

Expand R

Rotate left at ↭
Rotate left at •

Rebalance with root slope →2 is
symmetric

•
↭

h

R

h/
h+1

L

h+1

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 20 / 23

G

may
O
i



Rebalancing, root has slope +2

Rebalance bottom-up, assume subtrees
are balanced

Case 1: Slope at ↭ is in {0, 1}
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Case 2: Slope at ↭ is →1

Expand R
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Rebalance with root slope →2 is
symmetric
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Update insert() and delete()

Use the rebalancing strategy to
define a function rebalance()

Rebalance each time the tree is
modified

Automatically rebalances bottom
up

class Tree:

...

def insert(self,v):

if self.isempty():

self.value = v

self.left = Tree()

self.right = Tree()

if self.value == v:

return

if v < self.value:

self.left.insert(v)

self.left.rebalance()

return

if v > self.value:

self.right.insert(v)

self.right.rebalance()

return
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Update insert() and delete()

Use the rebalancing strategy to
define a function rebalance()

Rebalance each time the tree is
modified

Automatically rebalances bottom
up

class Tree:

...

def delete(self,v):

...

if v < self.value:

self.left.delete(v)

self.left.rebalance()

return

if v > self.value:

self.right.delete(v)

self.right.rebalance()

return

if v == self.value:

if self.isleaf():

self.makeempty()

elif self.left.isempty():

self.copyright()

elif self.right.isempty():

self.copyleft()

else:

self.value = self.left.maxval()

self.left.delete(self.left.maxval())

return
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Computing slope

To compute the slope we need
heights of subtrees

But, computing height is O(n)

Instead, maintain a field
self.height

After each modification, update
self.height based on
self.left.height,
self.right.height

class Tree:
...
def height(self):

if self.isempty():
return(0)

else:
return(1 +

max(self.left.height(),
self.right.height())
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Computing slope

To compute the slope we need
heights of subtrees

But, computing height is O(n)

Instead, maintain a field
self.height

After each modification, update
self.height based on
self.left.height,
self.right.height

class Tree:
...
def insert(self,v):

...
if v < self.value:

self.left.insert(v)
self.left.rebalance()
self.height = 1 +

max(self.left.height,
self.right.height)

return

if v > self.value:
self.right.insert(v)
self.right.rebalance()
self.height = 1 +

max(self.left.height,
self.right.height)

return
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Summary

Using rotations, we can maintain height balance

Height balanced trees have height O(log n)

find(), insert() and delete() all walk down a single path, take time O(log n)

Madhavan Mukund Lecture 22, 7 November 2024 PDSP Lecture 22 23 / 23


