Lecture 23, 19 November 2024

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python Lecture 23, 19 Nov 2024

メロト メタト メミト メミト 一毛 …

- *fact*(0) = 1
- *fact*(n) = $n \times$ *fact*($n 1$)

4 **D F**

 \triangleright \rightarrow \exists \rightarrow

∍

fact(0) = 1 \longrightarrow **Base Case** $fact(n) = n \times fact(n-1) -$ **Inductive** def fact(n): if $n \leq 0$: $r_{\text{return}(1)} - \text{Base}$ bec else: se:
return(n * fact(n-1)) **- recursive call** \bullet

```
\blacksquare fact(0) = 1
  fact(n) = n \times fact(n - 1)
def fact(n):
  if n \leq 0:
     return(1)
  else:
     return(n * fact(n-1))
```
 \blacksquare Insertion sort

```
isort([]) = [ \longrightarrow Base
■ isort([x_0, x_1, \ldots, x_n]) =
   insert(isort([x_0, x_1, \ldots, x_{n-1}]), x_n)Inductive
```
- *fact* $(0) = 1$
- *fact*(*n*) = $n \times$ *fact*($n 1$)
- def fact(n): if $n \leq 0$: return(1)
	- else:
		- $return(n * fact(n-1))$
- **Insertion sort**
	- *isort*($[$]) = $[$]
	- *isort*($[x_0, x_1, \ldots, x_n]$) = $insert(isort([x_0, x_1, \ldots, x_{n-1}]), x_n)$
- $fact(n-1)$ is a subproblem of $fact(n)$
	- So are $fact(n-2)$, $fact(n-3)$, ... *fact*(0)
- *isort*($[x_0, x_1, \ldots, x_{n-1}]$) is a subproblem of *isort*($[x_0, x_1, \ldots, x_n]$)
	- So is $isort([x_0, \ldots, x_i])$ for any $0 < i < n$
- Solution to original problem can be derived by combining solutions to subproblems

 \triangleright \rightarrow \exists \rightarrow

э

 \blacksquare Fibonacci numbers

011235813

- $fib(0) = 0$ $fib(0) = 0$ **Base** are
- $fib(n) = fib(n-1) + fib(n-2)$ Inductive

- **Build a table of values already** computed
	- **Memory table**

4 0 8 卢

×

重

- **Build a table of values already** computed
	- **Memory table**
- **Memoization**
	- Check if the value to be computed was already seen before

 \rightarrow \rightarrow \rightarrow

4 0 8

∍

- Build a table of values already computed
	- **Memory table**
- **Memoization**
	- Check if the value to be computed was already seen before
- Store each newly computed value in a table
- **Look up the table before making** a recursive call
- Computation tree becomes linear


```
def fib(n):
  if n \leq 1:
    value = n
  else:
    value = fib(n-1) + fib(n-2)return(value)
```
G.

 299

4 0 8

```
def fib(n):
 if n in fibtable.keys():
   return(fibtable[n])
  if n \leq 1:
   value = n
  else:
   value = fib(n-1) + fib(n-2)fibtable[n] = valuereturn(value)
                          -Check table
                           - Updaty table
```
∢ □ ▶ ⊣ *←* □

э

```
def fib(n):
```

```
if n in fibtable.keys():
  return(fibtable[n])
```

```
if n \leq 1:
```

```
value = n
```

```
else:
```

```
value = fib(n-1) + fib(n-2)
```

```
fibtable[n] = value
```

```
return(value)
```
In general

```
def f(x,y,z):
  if (x,y,z) in ftable.keys():
    return(ftable[(x,y,z)])
  recursively compute value
    from subproblems
  ftable[(x,y,z)] = valuereturn(value)
```
G.

Dynamic programming

- Anticipate the structure of subproblems
	- Derive from inductive definition
	- **Dependencies are acyclic**

4 0 F

∍

Dynamic programming

- Anticipate the structure of subproblems
	- Derive from inductive definition
	- **Dependencies are acyclic**

重

∍

Dynamic programming

- Anticipate the structure of subproblems
	- **Derive from inductive definition**
	- Dependencies are acyclic
- Solve subproblems in appropriate order
	- \blacksquare Start with base cases no dependencies
	- **Evaluate a value after all its** dependencies are available
	- \blacksquare Fill table iteratively
	- Never need to make a recursive call

 $f = 53$ f_{o}]=0 for j in
rang (2, ⁿⁱ <u>)</u> $f_{1} = 0$
 $f_{1} = 1$
 $f_{2} = 1$
 $f_{1} = 1$
 $f_{2} = 1$
 $f_{1} = 1$

Grid paths

- Rectangular grid of one-way roads
- Can only go up and right
- How many paths from $(0, 0)$ to (m, n) ?

Combinatorial solution

- Every path from $(0,0)$ to $(5,10)$ has 15 segments ivery path from $(0, 0)$ to $(5, 10)$ has 15

egments

■ Out of 15, exactly 5 are right moves,

10 are up moves

■ Fix the positions of the 5 right moves

among the 15 positions overall

→

	- \Box Out of 15, exactly 5 are right moves, 10 are up moves
	- \blacksquare Fix the positions of the 5 right moves among the 15 positions overall

Combinatorial solution

Combinatorial solution

- Every path from (0*,* 0) to (5*,* 10) has 15 segments
	- \Box Out of 15, exactly 5 are right moves, 10 are up moves
	- \blacksquare Fix the positions of the 5 right moves among the 15 positions overall

$$
\bullet \ \binom{15}{5} = \frac{15!}{10! \cdot 5!} = 3003
$$

Same as $\binom{15}{10}$ — fix the 10 up moves

In general $m+n$ segments from $(0,0)$ to
 (m,n) $\binom{m+n}{m}$ $\binom{m+n}{m}$ (*m, n*)

Combinatorial solution for holes

Discard paths passing through (2, 4)

More holes

- What if two intersections are blocked?
- Discard paths via $(2, 4)$, $(4, 4)$
	- Some paths are counted twice
- Add back the paths that pass through both holes
- \blacksquare Inclusion-exclusion counting is messy

How can a path reach (i, j)

How can a path reach (i, j)

Move up from $(i, j - 1)$

目

 299

◆ ロ ▶ → 何

- How can a path reach (i, j)
	- **Move up from** $(i, j 1)$
	- **Move right from** $(i 1, j)$

4 D F

 \triangleright \rightarrow \exists \rightarrow

э

- How can a path reach (i, j)
	- **Move up from** $(i, j 1)$
	- **Move right from** $(i 1, j)$
- Each path to these neighbours extends to a unique path to (i, j)

4 **D F**

∍

- \blacksquare How can a path reach (i, j)
	- **Move up from** $(i, j 1)$
	- **M**ove right from $(i 1, i)$
- Each path to these neighbours extends to a unique path to (i, j)
- Recurrence for $P(i, j)$, number of paths from $(0, 0)$ to (i, j)
	- $P(i, j) = P(i 1, j) + P(i, j 1)$

$$
(i-1,j) \longrightarrow (i,j)
$$

$$
\downarrow
$$

$$
(i,j-1)
$$

- \blacksquare How can a path reach (i, j)
	- **Move up from** $(i, j 1)$
	- **M**ove right from $(i 1, i)$
- Each path to these neighbours extends to a unique path to (*i, j*)
- Recurrence for $P(i, j)$, number of paths from (0*,* 0) to (*i, j*)
	- $P(i,j) = P(i-1,j) + P(i,j-1)$
	- $P(0,0) = 1$ base case

 $(i-1,j) \longrightarrow (i,j)$ $(i, i-1)$

- \blacksquare How can a path reach (i, j)
	- **Move up from** $(i, j 1)$
	- **M**ove right from $(i 1, i)$
- Each path to these neighbours extends to a unique path to (*i, j*)
- Recurrence for $P(i, j)$, number of paths from (0*,* 0) to (*i, j*)
	- $P(i, j) = P(i 1, j) + P(i, j 1)$
	- $P(0,0) = 1$ base case
	- $P(i, 0) = P(i 1, 0)$ bottom row

$$
(i-1,j) \longrightarrow (i,j)
$$

$$
\uparrow
$$

$$
(i,j-1)
$$

- \blacksquare How can a path reach (i, j)
	- **Move up from** $(i, j 1)$
	- **M**ove right from $(i 1, i)$
- Each path to these neighbours extends to a unique path to (*i, j*)
- Recurrence for $P(i, j)$, number of paths from (0*,* 0) to (*i, j*)
	- $P(i, j) = P(i 1, j) + P(i, j 1)$
	- $P(0,0) = 1$ base case
	- $P(i, 0) = P(i 1, 0)$ bottom row
	- $P(0, j) = P(0, j 1)$ left column

$$
(i-1,j) \longrightarrow (i,j)
$$

$$
\downarrow
$$

$$
(i,j-1)
$$

- \blacksquare How can a path reach (i, j)
	- **Move up from** $(i, j 1)$
	- **M**ove right from $(i 1, i)$
- Each path to these neighbours extends to a unique path to (*i, j*)
- Recurrence for $P(i, j)$, number of paths from (0*,* 0) to (*i, j*)
	- $P(i, j) = P(i 1, j) + P(i, j 1)$
	- $P(0,0) = 1$ base case
	- $P(i, 0) = P(i 1, 0)$ bottom row
	- $P(0, j) = P(0, j 1)$ left column

$$
\blacksquare P(i,j) = 0 \text{ if there is a hole at } (i,j)
$$

$$
(i-1,j) \longrightarrow (i,j)
$$

$$
\downarrow
$$

$$
(i,j-1)
$$

Naive recursion recomputes same subproblem repeatedly

Naive recursion recomputes same subproblem repeatedly

 $P(5, 10)$ requires $P(4, 10)$, $P(5, 9)$

- Naive recursion recomputes same subproblem repeatedly
	- $P(5, 10)$ requires $P(4, 10)$, $P(5, 9)$
	- Both $P(4, 10)$, $P(5, 9)$ require $P(4, 9)$

- Naive recursion recomputes same subproblem repeatedly
	- $P(5, 10)$ requires $P(4, 10)$, $P(5, 9)$
	- Both $P(4, 10)$, $P(5, 9)$ require $P(4, 9)$
- Use memoization ...

Computing *P*(*i, j*)

- Naive recursion recomputes same subproblem repeatedly
	- $P(5, 10)$ requires $P(4, 10)$, $P(5, 9)$
	- **Both** $P(4, 10)$, $P(5, 9)$ require $P(4, 9)$
- Use memoization ...
- \blacksquare ... or find a suitable order to compute the subproblems

 \blacksquare Identify subproblem structure

- \blacksquare Identify subproblem structure
- $P(0,0)$ has no dependencies

- \blacksquare Identify subproblem structure
- $P(0,0)$ has no dependencies
- Start at $(0,0)$

(0*,* 0)

- \blacksquare Identify subproblem structure
- $P(0,0)$ has no dependencies
- Start at $(0,0)$
- Fill row by row

- \blacksquare Identify subproblem structure
- $P(0,0)$ has no dependencies
- Start at $(0,0)$
- Fill row by row

- \blacksquare Identify subproblem structure
- $P(0,0)$ has no dependencies
- Start at $(0,0)$
- Fill row by row

- \blacksquare Identify subproblem structure
- $P(0,0)$ has no dependencies
- Start at $(0,0)$
- Fill row by row

- \blacksquare Identify subproblem structure
- $P(0,0)$ has no dependencies
- Start at $(0,0)$
- Fill row by row

- \blacksquare Identify subproblem structure
- $P(0,0)$ has no dependencies
- Start at $(0,0)$
- Fill row by row

- \blacksquare Identify subproblem structure
- $P(0,0)$ has no dependencies
- Start at $(0,0)$
- Fill row by row

- \blacksquare Identify suproblem structure
- $P(0,0)$ has no dependencies
- Start at $(0,0)$
- Fill row by row
- Fill column by column

- \blacksquare Identify suproblem structure
- $P(0,0)$ has no dependencies
- Start at $(0,0)$
- Fill row by row
- Fill column by column

- \blacksquare Identify suproblem structure
- $P(0,0)$ has no dependencies
- Start at $(0,0)$
- Fill row by row
- Fill column by column

- \blacksquare Identify suproblem structure
- $P(0,0)$ has no dependencies
- Start at $(0,0)$
- **Fill row by row**
- Fill column by column

- \blacksquare Identify subproblem structure
- $P(0,0)$ has no dependencies
- Start at $(0,0)$
- Fill row by row
- Fill column by column
- Fill diagonal by diagonal

- \blacksquare Identify subproblem structure
- $P(0,0)$ has no dependencies
- Start at $(0,0)$
- Fill row by row
- Fill column by column
- Fill diagonal by diagonal

- \blacksquare Identify subproblem structure
- $P(0,0)$ has no dependencies
- Start at $(0,0)$
- Fill row by row
- Fill column by column
- Fill diagonal by diagonal

- \blacksquare Identify subproblem structure
- $P(0,0)$ has no dependencies
- Start at $(0,0)$
- Fill row by row
- Fill column by column
- Fill diagonal by diagonal

Barrier of holes just inside the border

- Barrier of holes just inside the border
- **Memoization never explores the shaded** region

Madhavan Mukund **Lecture 23, 19 November 2024** PDSP Lecture 23 18 / 33

(0*,* 0)

- Barrier of holes just inside the border
- **Memoization never explores the shaded** region
- **Memo table has** $O(m+n)$ **entries**

- Barrier of holes just inside the border
- **Memoization never explores the shaded** region
- **Memo table has** $O(m+n)$ **entries**
- Dynamic programming blindly fills all *mn* cells of the table

- **Barrier of holes just inside the border**
- **Memoization never explores the shaded** region
- **Memo table has** $O(m+n)$ **entries**
- Dynamic programming blindly fills all *mn* cells of the table
- Tradeoff between recursion and iteration
	- **Wasteful**" dynamic programming still better in general

Longest common subword

- Given two strings, find the

- "secret", "secretary"

- "bisect", "trisect" Given two strings, find the (length of the) longest common subword "secret", "secretary" — "secret", length 6 ■ "bisect", "trisect" — "isect", length 5 "bisect", "secret" — "sec", length 3 "director", "secretary" — "ec", "re", length 2 (length of the)
" — "secret",
- "isect", leng wo strings, find
wo strings, find
ecret", "trisec
isect", "secret
irector", "secret - sect", "secret"
rector", "secre

4 D F

Longest common subword

Given two strings, find the (length of the) longest common subword

- \blacksquare "secret", "secretary" "secret", length 6
- \blacksquare "bisect", "trisect" "isect", length 5
- "bisect", "secret" "sec", length 3
- \blacksquare "director", "secretary" "ec", "re", length 2
- **Formally**
	- $u = a_0 a_1 \ldots a_{m-1}$
	- $v = b_0 b_1 \ldots b_{n-1}$

 $E = 990$

Longest common subword

Given two strings, find the (length of the) longest common subword

- \blacksquare "secret", "secretary" "secret", length 6
- \blacksquare "bisect", "trisect" "isect", length 5
- "bisect", "secret" "sec", length 3
- \blacksquare "director", "secretary" "ec", "re", length 2
- **Formally**
	- $u = a_0 a_1 \ldots a_{m-1}$
	- $v = b_0 b_1 \ldots b_{n-1}$
	- Common subword of length k for some positions *i* and *j*, $a_i a_{i+1} a_{i+k-1} = b_i b_{i+1} b_{i+k-1}$

 $E = 990$

Longest common subword

Given two strings, find the (length of the) longest common subword

- \blacksquare "secret", "secretary" "secret", length 6
- \blacksquare "bisect", "trisect" "isect", length 5
- "bisect", "secret" "sec", length 3
- "director", "secretary" "ec", "re", length 2
- **Formally**
	- $u = a_0 a_1 \ldots a_{m-1}$
	- $v = b_0 b_1 \ldots b_{n-1}$
	- **E** Common subword of length k for some positions *i* and *j*, $a_i a_{i+1} a_{i+k-1} = b_i b_{i+1} b_{i+k-1}$
	- Find the largest such k length of the longest common subword

化重新润滑脂

 $E = 990$

Brute force

- $u = a_0 a_1 \ldots a_{m-1}$
- $v = b_0 b_1 \ldots b_{n-1}$
- Find the largest *k* such that for some positions *i* and *j*, $a_i a_{i+1} a_{i+k-1} = b_i b_{i+1} b_{i+k-1}$

э

Brute force

- $U = a_0 a_1 \ldots a_{m-1}$
- $v = b_0 b_1 \ldots b_{n-1}$
- Find the largest *k* such that for some positions *i* and *j*, $a_i a_{i+1} a_{i+k-1} = b_i b_{i+1} b_{i+k-1}$
- Try every pair of starting positions *i* in *u*, *j* in *v*
	- **Match** (a_i, b_i) , (a_{i+1}, b_{i+1}) ,... as far as possible
	- Keep track of longest match

4 0 F

G.

Brute force

- $U = a_0 a_1 \ldots a_{m-1}$
- \blacksquare $v = b_0b_1 \ldots b_{n-1}$
- Find the largest *k* such that for some positions *i* and *j*, $a_i a_{i+1} a_{i+k-1} = b_i b_{i+1} b_{i+k-1}$
- Try every pair of starting positions *i* in *u*, *j* in *v*
	- **Match** (a_i, b_i) , (a_{i+1}, b_{i+1}) ,... as far as possible
	- Keep track of longest match
- Assuming $m > n$, this is $O(mn^2)$
	- *mn* pairs of starting positions
	- From each starting position, scan could be $O(n)$

G.

- $u = a_0 a_1 \ldots a_{m-1}$
- $v = b_0 b_1 \ldots b_{n-1}$

Find the largest k such that for some positions i and j , $a_i a_{i+1} a_{i+k-1} = b_i b_{i+1} b_{i+k-1}$

FRI

 \rightarrow \rightarrow \equiv \rightarrow

4 0 8

G.

- $U = a_0 a_1 \ldots a_{m-1}$
- $v = b_0 b_1 \ldots b_{n-1}$
- Find the largest *k* such that for some positions *i* and *j*, $a_i a_{i+1} a_{i+k-1} = b_i b_{i+1} b_{i+k-1}$
- *LCW*(*i*,*j*) length of longest common subword in $a_i a_{i+1} \ldots a_{m-1}$, $b_j b_{j+1} \ldots b_{n-1}$
 a If $a_i \neq b_j$, *LCW*(*i*,*j*) = 0
 a If $a_i = b_j$, *LCW*(*i*,*j*) = 1 + *LCW*(*i*+1,*j*+1)
 a θ **l**
 h k
 a θ If $a_i \neq b_i$, $LCW(i, i) = 0$

Example 11 If
$$
a_i = b_j
$$
, $LCW(i,j) = 1 + LCW(i+1,j+1)$

LCW
$$
(i_{ij})
$$
 is longest ending
at a_{i} , b_{j}

h that for some positions *i* and *j*,

\n
$$
b_{j+k-1}
$$
\nf longest common subword in $a_i a_{i+1} \ldots a_{m-1}$, $b_j b_{j+1}$

\n
$$
j) = 0
$$
\nhongesh, ending

\nhongesh, ending

\nhag, g, g, g, November 2024

\no.g., 19 November 2024

\n

E.

- $U = a_0 a_1 \ldots a_{m-1}$
- \blacksquare $v = b_0b_1 \ldots b_{n-1}$
- Find the largest *k* such that for some positions *i* and *j*, $a_i a_{i+1} a_{i+k-1} = b_i b_{i+1} b_{i+k-1}$

■ $LCW(i, j)$ — length of longest common subword in $a_i a_{i+1} \ldots a_{m-1}$, $b_i b_{i+1} \ldots b_{n-1}$ If $a_i \neq b_i$, $LCW(i, i) = 0$

- \blacksquare If $a_i = b_i$, $LCW(i, j) = 1 + LCW(i+1, j+1)$
- **Base case:** $LCW(m, n) = 0$

(B) 2990

- $u = a_0 a_1 \ldots a_{m-1}$
- $v = b_0 b_1 \ldots b_{n-1}$
- Find the largest *k* such that for some positions *i* and *j*, $a_i a_{i+1} a_{i+k-1} = b_i b_{i+1} b_{i+k-1}$

■ *LCW*(i , j) — length of longest common subword in $a_i a_{i+1} \ldots a_{m-1}$, $b_i b_{i+1} \ldots b_{n-1}$

- If $a_i \neq b_i$, $LCW(i, i) = 0$
- \blacksquare If $a_i = b_i$, $LCW(i, j) = 1 + LCW(i+1, j+1)$
- **Base case:** $LCW(m, n) = 0$
- In general, $LCW(i, n) = 0$ for all $0 \le i \le m$

(B) 2990

- $U = a_0 a_1 \ldots a_{m-1}$
- $v = b_0 b_1 \ldots b_{n-1}$
- Find the largest *k* such that for some positions *i* and *j*, $a_i a_{i+1} a_{i+k-1} = b_i b_{i+1} b_{i+k-1}$

■ *LCW*(i , j) — length of longest common subword in $a_i a_{i+1} \ldots a_{m-1}$, $b_i b_{i+1} \ldots b_{n-1}$

- If $a_i \neq b_i$, $LCW(i, i) = 0$
- \blacksquare If $a_i = b_i$, $LCW(i, j) = 1 + LCW(i+1, j+1)$
- **Base case:** $LCW(m, n) = 0$
- In general, $LCW(i, n) = 0$ for all $0 \le i \le m$
- \blacksquare In general, $LCW(m, j) = 0$ for all $0 \leq j \leq n$

医尿囊的

(B) 2990
Subproblems are $LCW(i, j)$, for $0 < i < m, 0 < j < n$

目

 299

4 0 8

∢母

- Subproblems are *LCW*(*i*, *j*), for $0 \le i \le m$, $0 \le i \le n$
- **Table of** $(m+1) \cdot (n+1)$ values

- Subproblems are *LCW*(*i*, *j*), for $0 \le i \le m$, $0 \le i \le n$
- **Table of** $(m+1) \cdot (n+1)$ values
- *LCW* (i, j) depends on $LCW(i+1, j+1)$

- Subproblems are $LCW(i, j)$, for $0 \le i \le m$, $0 \le i \le n$
- **Table of** $(m+1) \cdot (n+1)$ values
- *LCW* (i, j) depends on $LCW(i+1, j+1)$
- Start at bottom right and fill row by row or column by column

- Subproblems are *LCW*(*i*, *j*), for $0 \le i \le m$, $0 \le i \le n$
- **Table of** $(m+1) \cdot (n+1)$ values
- \blacksquare *LCW*(*i*, *j*) depends on *LCW*(*i*+1, *j*+1)
- Start at bottom right and fill row by row or column by column

 $1 + \text{l} \omega (\text{l} + \text{l}) + 1$

- Subproblems are *LCW*(*i*, *j*), for $0 \le i \le m$, $0 \le i \le n$
- **Table of** $(m+1) \cdot (n+1)$ values
- \blacksquare *LCW* (*i*, *j*) depends on *LCW* (*i*+1, *j*+1)
- Start at bottom right and fill row by row or column by column

- Subproblems are *LCW*(*i*, *j*), for $0 \le i \le m$, $0 \le i \le n$
- **Table of** $(m+1) \cdot (n+1)$ values
- \blacksquare *LCW*(*i*, *j*) depends on *LCW*(*i*+1, *j*+1)
- Start at bottom right and fill row by row or column by column

- Subproblems are *LCW*(*i*, *j*), for $0 \le i \le m$, $0 \le i \le n$
- **Table of** $(m+1) \cdot (n+1)$ values
- \blacksquare *LCW*(*i*, *j*) depends on *LCW*(*i*+1, *j*+1)
- Start at bottom right and fill row by row or column by column

- Subproblems are *LCW*(*i*, *j*), for $0 \le i \le m$, $0 \le i \le n$
- **Table of** $(m+1) \cdot (n+1)$ values
- \blacksquare *LCW*(*i*, *j*) depends on *LCW*(*i*+1, *j*+1)
- Start at bottom right and fill row by row or column by column

 \sim

- Subproblems are *LCW*(*i*, *j*), for $0 \le i \le m$, $0 \le i \le n$
- **Table of** $(m+1) \cdot (n+1)$ values
- \blacksquare *LCW*(*i*, *j*) depends on *LCW*(*i*+1, *j*+1)
- Start at bottom right and fill row by row or column by column

- Subproblems are *LCW*(*i*, *j*), for $0 \le i \le m$, $0 \le i \le n$
- **Table of** $(m+1) \cdot (n+1)$ values
- \blacksquare *LCW*(*i*, *j*) depends on *LCW*(*i*+1, *j*+1)
- Start at bottom right and fill row by row or column by column

Reading off the solution

■ Find entry (i, j) with largest *LCW* value

- Subproblems are *LCW*(*i*, *j*), for $0 \le i \le m$, $0 \le i \le n$
- **Table of** $(m+1) \cdot (n+1)$ values
- \blacksquare *LCW*(*i*, *j*) depends on *LCW*(*i*+1, *j*+1)
- Start at bottom right and fill row by row or column by column

Reading off the solution

- Find entry (i, j) with largest *LCW* value
- \blacksquare Read off the actual subword diagonally

- Subproblems are *LCW*(*i*, *j*), for $0 \le i \le m$, $0 \le i \le n$
- **Table of** $(m+1) \cdot (n+1)$ values
- \blacksquare *LCW*(*i*, *j*) depends on *LCW*(*i*+1, *j*+1)
- Start at bottom right and fill row by row or column by column

Reading off the solution

- Find entry (i, j) with largest *LCW* value
- \blacksquare Read off the actual subword diagonally

Implementation

```
def LCW(u, v):
       import numpy as np
       (m,n) = (len(u),len(v))lcw = np{\text{.zeros}}((m+1,n+1))maxlcw = 0for j in range(n-1,-1,-1):
             for i in range(m-1,-1,-1):
                    if u[i] == v[j]:
                          lcw[i,j] = 1 + lcw[i+1,j+1]else:
                          lcw[i,j] = 0if lcw[i,j] > maxlcw:
                           maxlcw = lcw[i, j]entation<br>
u,v):<br>
numpy as np<br>
= (len(u),len(v))<br>
np.zeros((m+1,n+1)<br>
= 0<br>
in range(n-1 -1 -1
                        (u,v):<br>
t numpy as np<br>
= (len(u),le:<br>
: np.zeros((m+<br>
xw = 0<br>
in range(n-1<br>
in range(m-1<br>
in range(m-1<br>
in range(m-1<br>
ile:<br>
lev[i,j] = 1<br>
lev[i,j] = 1<br>
lev[i,j] = 1<br>
lev[i,j] = 0
                           n = 0<br>
in range(n-i<br>
i in range(n-i<br>
\lfloor u[i] \rfloor = v[\lfloor vw[i,j] \rfloor = 0<br>
se:<br>
\lfloor cw[i,j] \rfloor > max1 and \lfloor vw[i,j] \rfloor > max1 and \lfloor uv[i,j] \rfloor > max1v):<br>
umpy as np<br>
(len(u),len(v))<br>
.zeros((m+1,n+1))<br>
. 0<br>
0<br>
1 range(n-1,-1,-1):<br>
in range(m-1,-1,-1):<br>
in range(m-1,-1,-1):<br>
[i] == y[j]:<br>
w[i,j] = 1 + lcw[i+1,j+1<br>
.:<br>
.w[i,j] = 0<br>
.cw[i,j] > maxlcw:<br>
xlcw = lcw[i,j] > maxlc
```
return(maxlcw)

 \equiv 990

Implementation

```
def LCW(u,v):
  import numpy as np
  (m,n) = (len(u),len(v))lcw = np{\text{.zeros}}((m+1,n+1))
```

```
maxlcw = 0
```

```
for i in range(n-1,-1,-1):
  for i in range(m-1,-1,-1):
    if u[i] == v[i]:
      lcw[i,j] = 1 + lcw[i+1,j+1]else:
      lcw[i, i] = 0if lcw[i,j] > maxlcw:
      maxlcw = lcw[i, j]
```
return(maxlcw)

Complexity

- Recall that brute force was *O*(*mn*2)
- **Inductive solution is** $O(mn)$ **.** using dynamic programming or memoization
	- Fill a table of size $O(mn)$
	- \blacksquare Each table entry takes constant time to compute

Ξ.