
Lecture 23, 19 November 2024

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python

Lecture 23, 19 Nov 2024

Inductive definitions, recursive programs, subproblems

Factorial

fact(0) = 1

fact(n) = n → fact(n ↑ 1)

Insertion sort

isort([]) = []

isort([x0, x1, . . . , xn]) =
insert(isort([x0, x1, . . . , xn→1]), xn)

fact(n↑1) is a subproblem of fact(n)

So are fact(n↑2), fact(n↑3), . . . ,
fact(0)

isort([x0, x1, . . . , xn→1]) is a subproblem
of isort([x0, x1, . . . , xn])

So is isort([x0, . . . , xj]) for any
0 < j < n

Solution to original problem can be
derived by combining solutions to
subproblems

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 2 / 33

Inductive definitions, recursive programs, subproblems

Factorial

fact(0) = 1

fact(n) = n → fact(n ↑ 1)

def fact(n):

if n <= 0:

return(1)

else:

return(n * fact(n-1))

Insertion sort

isort([]) = []

isort([x0, x1, . . . , xn]) =
insert(isort([x0, x1, . . . , xn→1]), xn)

fact(n↑1) is a subproblem of fact(n)

So are fact(n↑2), fact(n↑3), . . . ,
fact(0)

isort([x0, x1, . . . , xn→1]) is a subproblem
of isort([x0, x1, . . . , xn])

So is isort([x0, . . . , xj]) for any
0 < j < n

Solution to original problem can be
derived by combining solutions to
subproblems

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 2 / 33

- Base Case
- Inductive
step

- Base Case

-recursive cal

Inductive definitions, recursive programs, subproblems

Factorial

fact(0) = 1

fact(n) = n → fact(n ↑ 1)

def fact(n):

if n <= 0:

return(1)

else:

return(n * fact(n-1))

Insertion sort

isort([]) = []

isort([x0, x1, . . . , xn]) =
insert(isort([x0, x1, . . . , xn→1]), xn)

fact(n↑1) is a subproblem of fact(n)

So are fact(n↑2), fact(n↑3), . . . ,
fact(0)

isort([x0, x1, . . . , xn→1]) is a subproblem
of isort([x0, x1, . . . , xn])

So is isort([x0, . . . , xj]) for any
0 < j < n

Solution to original problem can be
derived by combining solutions to
subproblems

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 2 / 33

-Base

Tuductive

Inductive definitions, recursive programs, subproblems

Factorial

fact(0) = 1

fact(n) = n → fact(n ↑ 1)

def fact(n):

if n <= 0:

return(1)

else:

return(n * fact(n-1))

Insertion sort

isort([]) = []

isort([x0, x1, . . . , xn]) =
insert(isort([x0, x1, . . . , xn→1]), xn)

fact(n↑1) is a subproblem of fact(n)

So are fact(n↑2), fact(n↑3), . . . ,
fact(0)

isort([x0, x1, . . . , xn→1]) is a subproblem
of isort([x0, x1, . . . , xn])

So is isort([x0, . . . , xj]) for any
0 < j < n

Solution to original problem can be
derived by combining solutions to
subproblems

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 2 / 33

Evaluating subproblems

Fibonacci numbers

fib(0) = 0

fib(1) = 1

fib(n) = fib(n↑1) + fib(n↑2)

def fib(n):

if n <= 1:

value = n

else:

value = fib(n-1) + fib(n-2)

return(value)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 3 / 33

011235813

1) Baseease
Inductive

II C
Doesn't work

,
in practic

Recursive Why ?

Evaluating subproblems

Fibonacci numbers

fib(0) = 0

fib(1) = 1

fib(n) = fib(n↑1) + fib(n↑2)

def fib(n):

if n <= 1:

value = n

else:

value = fib(n-1) + fib(n-2)

return(value)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 3 / 33

Overlapping ef(5
subproblems
dwestfu
:
+((0) o

Evaluating subproblems

Build a table of values already
computed

Memory table

Memoization

Check if the value to be
computed was already seen
before

Store each newly computed
value in a table

Look up the table before making
a recursive call

Computation tree becomes linear

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 4 / 33

Evaluating subproblems

Build a table of values already
computed

Memory table

Memoization

Check if the value to be
computed was already seen
before

Store each newly computed
value in a table

Look up the table before making
a recursive call

Computation tree becomes linear

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 4 / 33

Evaluating subproblems

Build a table of values already
computed

Memory table

Memoization

Check if the value to be
computed was already seen
before

Store each newly computed
value in a table

Look up the table before making
a recursive call

Computation tree becomes linear

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 4 / 33

~
+5)

+(3) = 2F
I

+ Fl

Memoizing recursive implmentations

def fib(n):

if n <= 1:

value = n

else:

value = fib(n-1) + fib(n-2)

return(value)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 5 / 33

Memoizing recursive implmentations

def fib(n):

if n in fibtable.keys():

return(fibtable[n])

if n <= 1:

value = n

else:

value = fib(n-1) + fib(n-2)

fibtable[n] = value

return(value)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 5 / 33

- Check table

- Updatin table

Memoizing recursive implmentations

def fib(n):

if n in fibtable.keys():

return(fibtable[n])

if n <= 1:

value = n

else:

value = fib(n-1) + fib(n-2)

fibtable[n] = value

return(value)

In general

def f(x,y,z):

if (x,y,z) in ftable.keys():

return(ftable[(x,y,z)])

recursively compute value

from subproblems

ftable[(x,y,z)] = value

return(value)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 5 / 33

Dynamic programming

Anticipate the structure of subproblems

Derive from inductive definition

Dependencies are acyclic

Solve subproblems in appropriate order

Start with base cases — no
dependencies

Evaluate a value after all its
dependencies are available

Fill table iteratively

Never need to make a recursive call

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 6 / 33

Dynamic programming

Anticipate the structure of subproblems

Derive from inductive definition

Dependencies are acyclic

Solve subproblems in appropriate order

Start with base cases — no
dependencies

Evaluate a value after all its
dependencies are available

Fill table iteratively

Never need to make a recursive call

Evaluating fib(5)

fib(5)

fib(4)

fib(3)

fib(2)

fib(1)

fib(0)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 6 / 33

Directed

-acyalic
greph

· ·~ 2
VI

Dynamic programming

Anticipate the structure of subproblems

Derive from inductive definition

Dependencies are acyclic

Solve subproblems in appropriate order

Start with base cases — no
dependencies

Evaluate a value after all its
dependencies are available

Fill table iteratively

Never need to make a recursive call

Evaluating fib(5)

fib(5)

fib(4)

fib(3)

fib(2)

fib(1)

fib(0)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 6 / 33

f= 53

f(o]=@

Topological f(i]=1
Sort

forInen+)

f

Grid paths

Rectangular grid of one-way roads

Can only go up and right

How many paths from (0, 0) to (m, n)?

(0, 0)

(5, 10)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 7 / 33

F

Combinatorial solution

Every path from (0, 0) to (5, 10) has 15
segments

Out of 15, exactly 5 are right moves,
10 are up moves

Fix the positions of the 5 right moves
among the 15 positions overall

(
15

5

)
=

15!

10! · 5! = 3003

Same as

(
15

10

)
— fix the 10 up moves

In general m+n segments from (0, 0) to
(m, n)

(0, 0)

(5, 10)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 8 / 33

-

Combinatorial solution

Every path from (0, 0) to (5, 10) has 15
segments

Out of 15, exactly 5 are right moves,
10 are up moves

Fix the positions of the 5 right moves
among the 15 positions overall
(
15

5

)
=

15!

10! · 5! = 3003

Same as

(
15

10

)
— fix the 10 up moves

In general m+n segments from (0, 0) to
(m, n)

(0, 0)

(5, 10)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 8 / 33

() =(E

Combinatorial solution

Every path from (0, 0) to (5, 10) has 15
segments

Out of 15, exactly 5 are right moves,
10 are up moves

Fix the positions of the 5 right moves
among the 15 positions overall
(
15

5

)
=

15!

10! · 5! = 3003

Same as

(
15

10

)
— fix the 10 up moves

In general m+n segments from (0, 0) to
(m, n)

(0, 0)

(5, 10)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 8 / 33

(i) (m

Holes

What if an intersection is blocked?

For instance, (2, 4)

(0, 0)

(5, 10)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 9 / 33

n
P.XP2 bad parties

(j) - (+P2) ↑

Combinatorial solution for holes

Discard paths passing through (2, 4)

(0, 0)

(5, 10)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 10 / 33

More holes

What if two intersections are blocked?

Discard paths via (2, 4), (4, 4)

Some paths are counted twice

Add back the paths that pass through
both holes

Inclusion-exclusion — counting is messy

(0, 0)

(5, 10)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 11 / 33

Inductive formulation

How can a path reach (i , j)

Move up from (i , j ↑ 1)

Move right from (i ↑ 1, j)

Each path to these neighbours extends
to a unique path to (i , j)

Recurrence for P(i , j), number of paths
from (0, 0) to (i , j)

P(i , j) = P(i ↑ 1, j) + P(i , j ↑ 1)

P(0, 0) = 1 — base case

P(i , 0) = P(i ↑ 1, 0) — bottom row

P(0, j) = P(0, j ↑ 1) — left column

P(i , j) = 0 if there is a hole at (i , j)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 12 / 33

a

Inductive formulation

How can a path reach (i , j)

Move up from (i , j ↑ 1)

Move right from (i ↑ 1, j)

Each path to these neighbours extends
to a unique path to (i , j)

Recurrence for P(i , j), number of paths
from (0, 0) to (i , j)

P(i , j) = P(i ↑ 1, j) + P(i , j ↑ 1)

P(0, 0) = 1 — base case

P(i , 0) = P(i ↑ 1, 0) — bottom row

P(0, j) = P(0, j ↑ 1) — left column

P(i , j) = 0 if there is a hole at (i , j)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 12 / 33

Inductive formulation

How can a path reach (i , j)

Move up from (i , j ↑ 1)

Move right from (i ↑ 1, j)

Each path to these neighbours extends
to a unique path to (i , j)

Recurrence for P(i , j), number of paths
from (0, 0) to (i , j)

P(i , j) = P(i ↑ 1, j) + P(i , j ↑ 1)

P(0, 0) = 1 — base case

P(i , 0) = P(i ↑ 1, 0) — bottom row

P(0, j) = P(0, j ↑ 1) — left column

P(i , j) = 0 if there is a hole at (i , j)

(i→1, j)

(i , j→1)

(i , j)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 12 / 33

Inductive formulation

How can a path reach (i , j)

Move up from (i , j ↑ 1)

Move right from (i ↑ 1, j)

Each path to these neighbours extends
to a unique path to (i , j)

Recurrence for P(i , j), number of paths
from (0, 0) to (i , j)

P(i , j) = P(i ↑ 1, j) + P(i , j ↑ 1)

P(0, 0) = 1 — base case

P(i , 0) = P(i ↑ 1, 0) — bottom row

P(0, j) = P(0, j ↑ 1) — left column

P(i , j) = 0 if there is a hole at (i , j)

(i→1, j)

(i , j→1)

(i , j)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 12 / 33

Inductive formulation

How can a path reach (i , j)

Move up from (i , j ↑ 1)

Move right from (i ↑ 1, j)

Each path to these neighbours extends
to a unique path to (i , j)

Recurrence for P(i , j), number of paths
from (0, 0) to (i , j)

P(i , j) = P(i ↑ 1, j) + P(i , j ↑ 1)

P(0, 0) = 1 — base case

P(i , 0) = P(i ↑ 1, 0) — bottom row

P(0, j) = P(0, j ↑ 1) — left column

P(i , j) = 0 if there is a hole at (i , j)

(i→1, j)

(i , j→1)

(i , j)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 12 / 33

Inductive formulation

How can a path reach (i , j)

Move up from (i , j ↑ 1)

Move right from (i ↑ 1, j)

Each path to these neighbours extends
to a unique path to (i , j)

Recurrence for P(i , j), number of paths
from (0, 0) to (i , j)

P(i , j) = P(i ↑ 1, j) + P(i , j ↑ 1)

P(0, 0) = 1 — base case

P(i , 0) = P(i ↑ 1, 0) — bottom row

P(0, j) = P(0, j ↑ 1) — left column

P(i , j) = 0 if there is a hole at (i , j)

(i→1, j)

(i , j→1)

(i , j)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 12 / 33

Inductive formulation

How can a path reach (i , j)

Move up from (i , j ↑ 1)

Move right from (i ↑ 1, j)

Each path to these neighbours extends
to a unique path to (i , j)

Recurrence for P(i , j), number of paths
from (0, 0) to (i , j)

P(i , j) = P(i ↑ 1, j) + P(i , j ↑ 1)

P(0, 0) = 1 — base case

P(i , 0) = P(i ↑ 1, 0) — bottom row

P(0, j) = P(0, j ↑ 1) — left column

P(i , j) = 0 if there is a hole at (i , j)

(i→1, j)

(i , j→1)

(i , j)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 12 / 33

Inductive formulation

How can a path reach (i , j)

Move up from (i , j ↑ 1)

Move right from (i ↑ 1, j)

Each path to these neighbours extends
to a unique path to (i , j)

Recurrence for P(i , j), number of paths
from (0, 0) to (i , j)

P(i , j) = P(i ↑ 1, j) + P(i , j ↑ 1)

P(0, 0) = 1 — base case

P(i , 0) = P(i ↑ 1, 0) — bottom row

P(0, j) = P(0, j ↑ 1) — left column

P(i , j) = 0 if there is a hole at (i , j)

(i→1, j)

(i , j→1)

(i , j)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 12 / 33

Inductive formulation

How can a path reach (i , j)

Move up from (i , j ↑ 1)

Move right from (i ↑ 1, j)

Each path to these neighbours extends
to a unique path to (i , j)

Recurrence for P(i , j), number of paths
from (0, 0) to (i , j)

P(i , j) = P(i ↑ 1, j) + P(i , j ↑ 1)

P(0, 0) = 1 — base case

P(i , 0) = P(i ↑ 1, 0) — bottom row

P(0, j) = P(0, j ↑ 1) — left column

P(i , j) = 0 if there is a hole at (i , j)

(i→1, j)

(i , j→1)

(i , j)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 12 / 33

Computing P(i , j)

Naive recursion recomputes same
subproblem repeatedly

P(5, 10) requires P(4, 10), P(5, 9)

Both P(4, 10), P(5, 9) require P(4, 9)

Use memoization . . .

. . . or find a suitable order to compute
the subproblems

(0, 0)

(5, 10)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 13 / 33

City(ii)
(H ,-)
>- (vig-

Computing P(i , j)

Naive recursion recomputes same
subproblem repeatedly

P(5, 10) requires P(4, 10), P(5, 9)

Both P(4, 10), P(5, 9) require P(4, 9)

Use memoization . . .

. . . or find a suitable order to compute
the subproblems

(0, 0)

(5, 10)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 13 / 33

Computing P(i , j)

Naive recursion recomputes same
subproblem repeatedly

P(5, 10) requires P(4, 10), P(5, 9)

Both P(4, 10), P(5, 9) require P(4, 9)

Use memoization . . .

. . . or find a suitable order to compute
the subproblems

(0, 0)

(5, 10)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 13 / 33

Computing P(i , j)

Naive recursion recomputes same
subproblem repeatedly

P(5, 10) requires P(4, 10), P(5, 9)

Both P(4, 10), P(5, 9) require P(4, 9)

Use memoization . . .

. . . or find a suitable order to compute
the subproblems

(0, 0)

(5, 10)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 13 / 33

Computing P(i , j)

Naive recursion recomputes same
subproblem repeatedly

P(5, 10) requires P(4, 10), P(5, 9)

Both P(4, 10), P(5, 9) require P(4, 9)

Use memoization . . .

. . . or find a suitable order to compute
the subproblems

(0, 0)

(5, 10)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 13 / 33

Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

(0, 0)

(5, 10)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 14 / 33

↑

⑭

i
↑ ~

& --
0-----

Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

(0, 0)

(5, 10)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 14 / 33

Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

(0, 0)

(5, 10)

1
Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 15 / 33

Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

(0, 0)

(5, 10)

1 1 1 1 1 1
Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 15 / 33

Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

(0, 0)

(5, 10)

1 1 1 1 1 1

1 2 3 4 5 6

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 15 / 33

Initi

Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

(0, 0)

(5, 10)

1 1 1 1 1 1

1 2 3 4 5 6

1 3 6 10 15 21

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 15 / 33

Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

(0, 0)

(5, 10)

1 1 1 1 1 1

1 2 3 4 5 6

1 3 6 10 15 21

1 4 10 20 35 56

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 15 / 33

Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

(0, 0)

(5, 10)

1 1 1 1 1 1

1 2 3 4 5 6

1 3 6 10 15 21

1 4 10 20 35 56

1 5 0 20 0 56

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 15 / 33

Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

(0, 0)

(5, 10)

1 1 1 1 1 1

1 2 3 4 5 6

1 3 6 10 15 21

1 4 10 20 35 56

1 5 0 20 0 56

1 6 6 26 26 82

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 15 / 33

O

0%00

Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

(0, 0)

(5, 10)

1 1 1 1 1 1

1 2 3 4 5 6

1 3 6 10 15 21

1 4 10 20 35 56

1 5 0 20 0 56

1 6 6 26 26 82

1 7 13 39 65 147

1 8 21 60 125 272

1 9 30 90 215 487

1 10 40 130 345 832

1 11 51 181 526 1358

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 15 / 33

Dynamic programming

Identify suproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

Fill column by column

(0, 0)

(5, 10)

1
Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 16 / 33

Dynamic programming

Identify suproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

Fill column by column

(0, 0)

(5, 10)

1

1

1

1

1

1

1

1

1

1

1

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 16 / 33

Dynamic programming

Identify suproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

Fill column by column

(0, 0)

(5, 10)

1

1

1

1

1

1

1

1

1

1

1

1

2

3

4

5

6

7

8

9

10

11

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 16 / 33

Dynamic programming

Identify suproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

Fill column by column

(0, 0)

(5, 10)

1

1

1

1

1

1

1

1

1

1

1

1

2

3

4

5

6

7

8

9

10

11

1 1 1 1

3 4 5 6

6 10 15 21

10 20 35 56

0 20 0 56

6 26 26 82

13 39 65 147

21 60 125 272

30 90 215 487

40 130 345 832

51 181 526 1358

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 16 / 33

modeit

Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

Fill column by column

Fill diagonal by diagonal

(0, 0)

(5, 10)

1
Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 17 / 33

Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

Fill column by column

Fill diagonal by diagonal

(0, 0)

(5, 10)

1

1

1
Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 17 / 33

Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

Fill column by column

Fill diagonal by diagonal

(0, 0)

(5, 10)

1

1

1

1

2

1
Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 17 / 33

Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

Fill column by column

Fill diagonal by diagonal

(0, 0)

(5, 10)

1

1

1

1

2

1

1

3

3

1
Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 17 / 33

Memoization vs dynamic programming

Barrier of holes just inside the border

Memoization never explores the shaded
region

Memo table has O(m + n) entries

Dynamic programming blindly fills all
mn cells of the table

Tradeo! between recursion and
iteration

“Wasteful” dynamic programming still
better in general

(0, 0)

(5, 10)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 18 / 33

.

Memoization vs dynamic programming

Barrier of holes just inside the border

Memoization never explores the shaded
region

Memo table has O(m + n) entries

Dynamic programming blindly fills all
mn cells of the table

Tradeo! between recursion and
iteration

“Wasteful” dynamic programming still
better in general

(0, 0)

(5, 10)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 18 / 33

23d

Memoization vs dynamic programming

Barrier of holes just inside the border

Memoization never explores the shaded
region

Memo table has O(m + n) entries

Dynamic programming blindly fills all
mn cells of the table

Tradeo! between recursion and
iteration

“Wasteful” dynamic programming still
better in general

(0, 0)

(5, 10)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 18 / 33

Memoization vs dynamic programming

Barrier of holes just inside the border

Memoization never explores the shaded
region

Memo table has O(m + n) entries

Dynamic programming blindly fills all
mn cells of the table

Tradeo! between recursion and
iteration

“Wasteful” dynamic programming still
better in general

(0, 0)

(5, 10)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 18 / 33

Memoization vs dynamic programming

Barrier of holes just inside the border

Memoization never explores the shaded
region

Memo table has O(m + n) entries

Dynamic programming blindly fills all
mn cells of the table

Tradeo! between recursion and
iteration

“Wasteful” dynamic programming still
better in general

(0, 0)

(5, 10)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 18 / 33

--
m

!

Longest common subword

Given two strings, find the (length of the) longest common subword

"secret", "secretary" — "secret", length 6

"bisect", "trisect" — "isect", length 5

"bisect", "secret" — "sec", length 3

"director", "secretary" — "ec", "re", length 2

Formally

u = a0a1 . . . am→1

v = b0b1 . . . bn→1

Common subword of length k — for some positions i and j ,
aiai+1ai+k→1 = bjbj+1bj+k→1

Find the largest such k — length of the longest common subword

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 19 / 33

-
--

-

--

- --

Longest common subword

Given two strings, find the (length of the) longest common subword

"secret", "secretary" — "secret", length 6

"bisect", "trisect" — "isect", length 5

"bisect", "secret" — "sec", length 3

"director", "secretary" — "ec", "re", length 2

Formally

u = a0a1 . . . am→1

v = b0b1 . . . bn→1

Common subword of length k — for some positions i and j ,
aiai+1ai+k→1 = bjbj+1bj+k→1

Find the largest such k — length of the longest common subword

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 19 / 33

Longest common subword

Given two strings, find the (length of the) longest common subword

"secret", "secretary" — "secret", length 6

"bisect", "trisect" — "isect", length 5

"bisect", "secret" — "sec", length 3

"director", "secretary" — "ec", "re", length 2

Formally

u = a0a1 . . . am→1

v = b0b1 . . . bn→1

Common subword of length k — for some positions i and j ,
aiai+1ai+k→1 = bjbj+1bj+k→1

Find the largest such k — length of the longest common subword

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 19 / 33

Longest common subword

Given two strings, find the (length of the) longest common subword

"secret", "secretary" — "secret", length 6

"bisect", "trisect" — "isect", length 5

"bisect", "secret" — "sec", length 3

"director", "secretary" — "ec", "re", length 2

Formally

u = a0a1 . . . am→1

v = b0b1 . . . bn→1

Common subword of length k — for some positions i and j ,
aiai+1ai+k→1 = bjbj+1bj+k→1

Find the largest such k — length of the longest common subword

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 19 / 33

Brute force

u = a0a1 . . . am→1

v = b0b1 . . . bn→1

Find the largest k such that for some positions i and j ,
aiai+1ai+k→1 = bjbj+1bj+k→1

Try every pair of starting positions i in u, j in v

Match (ai , bj), (ai+1, bj+1), . . . as far as possible

Keep track of longest match

Assuming m > n, this is O(mn
2)

mn pairs of starting positions

From each starting position, scan could be O(n)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 20 / 33

a

Brute force

u = a0a1 . . . am→1

v = b0b1 . . . bn→1

Find the largest k such that for some positions i and j ,
aiai+1ai+k→1 = bjbj+1bj+k→1

Try every pair of starting positions i in u, j in v

Match (ai , bj), (ai+1, bj+1), . . . as far as possible

Keep track of longest match

Assuming m > n, this is O(mn
2)

mn pairs of starting positions

From each starting position, scan could be O(n)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 20 / 33

Brute force

u = a0a1 . . . am→1

v = b0b1 . . . bn→1

Find the largest k such that for some positions i and j ,
aiai+1ai+k→1 = bjbj+1bj+k→1

Try every pair of starting positions i in u, j in v

Match (ai , bj), (ai+1, bj+1), . . . as far as possible

Keep track of longest match

Assuming m > n, this is O(mn
2)

mn pairs of starting positions

From each starting position, scan could be O(n)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 20 / 33

Inductive structure

u = a0a1 . . . am→1

v = b0b1 . . . bn→1

Find the largest k such that for some positions i and j ,
aiai+1ai+k→1 = bjbj+1bj+k→1

LCW (i , j) — length of longest common subword in aiai+1 . . . am→1, bjbj+1 . . . bn→1

If ai ↓= bj , LCW (i , j) = 0

If ai = bj , LCW (i , j) = 1 + LCW (i+1, j+1)

Base case: LCW (m, n) = 0

In general, LCW (i , n) = 0 for all 0 ↔ i ↔ m

In general, LCW (m, j) = 0 for all 0 ↔ j ↔ n

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 21 / 33

Inductive structure

u = a0a1 . . . am→1

v = b0b1 . . . bn→1

Find the largest k such that for some positions i and j ,
aiai+1ai+k→1 = bjbj+1bj+k→1

LCW (i , j) — length of longest common subword in aiai+1 . . . am→1, bjbj+1 . . . bn→1

If ai ↓= bj , LCW (i , j) = 0

If ai = bj , LCW (i , j) = 1 + LCW (i+1, j+1)

Base case: LCW (m, n) = 0

In general, LCW (i , n) = 0 for all 0 ↔ i ↔ m

In general, LCW (m, j) = 0 for all 0 ↔ j ↔ n

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 21 / 33

contis i longestendgaa

Inductive structure

u = a0a1 . . . am→1

v = b0b1 . . . bn→1

Find the largest k such that for some positions i and j ,
aiai+1ai+k→1 = bjbj+1bj+k→1

LCW (i , j) — length of longest common subword in aiai+1 . . . am→1, bjbj+1 . . . bn→1

If ai ↓= bj , LCW (i , j) = 0

If ai = bj , LCW (i , j) = 1 + LCW (i+1, j+1)

Base case: LCW (m, n) = 0

In general, LCW (i , n) = 0 for all 0 ↔ i ↔ m

In general, LCW (m, j) = 0 for all 0 ↔ j ↔ n

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 21 / 33

Inductive structure

u = a0a1 . . . am→1

v = b0b1 . . . bn→1

Find the largest k such that for some positions i and j ,
aiai+1ai+k→1 = bjbj+1bj+k→1

LCW (i , j) — length of longest common subword in aiai+1 . . . am→1, bjbj+1 . . . bn→1

If ai ↓= bj , LCW (i , j) = 0

If ai = bj , LCW (i , j) = 1 + LCW (i+1, j+1)

Base case: LCW (m, n) = 0

In general, LCW (i , n) = 0 for all 0 ↔ i ↔ m

In general, LCW (m, j) = 0 for all 0 ↔ j ↔ n

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 21 / 33

Inductive structure

u = a0a1 . . . am→1

v = b0b1 . . . bn→1

Find the largest k such that for some positions i and j ,
aiai+1ai+k→1 = bjbj+1bj+k→1

LCW (i , j) — length of longest common subword in aiai+1 . . . am→1, bjbj+1 . . . bn→1

If ai ↓= bj , LCW (i , j) = 0

If ai = bj , LCW (i , j) = 1 + LCW (i+1, j+1)

Base case: LCW (m, n) = 0

In general, LCW (i , n) = 0 for all 0 ↔ i ↔ m

In general, LCW (m, j) = 0 for all 0 ↔ j ↔ n

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 21 / 33

Subproblem dependency

Subproblems are LCW (i , j), for
0 ↔ i ↔ m, 0 ↔ j ↔ n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by
row or column by column

Find entry (i , j) with largest LCW value

Read o! the actual subword diagonally

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 22 / 33

Subproblem dependency

Subproblems are LCW (i , j), for
0 ↔ i ↔ m, 0 ↔ j ↔ n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by
row or column by column

Find entry (i , j) with largest LCW value

Read o! the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

•

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 22 / 33

Subproblem dependency

Subproblems are LCW (i , j), for
0 ↔ i ↔ m, 0 ↔ j ↔ n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by
row or column by column

Find entry (i , j) with largest LCW value

Read o! the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

•

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 22 / 33

Subproblem dependency

Subproblems are LCW (i , j), for
0 ↔ i ↔ m, 0 ↔ j ↔ n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by
row or column by column

Find entry (i , j) with largest LCW value

Read o! the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 22 / 33

O m

i

j
O

↓
Y

Y
N 10

Subproblem dependency

Subproblems are LCW (i , j), for
0 ↔ i ↔ m, 0 ↔ j ↔ n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by
row or column by column

Find entry (i , j) with largest LCW value

Read o! the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 22 / 33

G

It Lew (i+,jt)) !
0-

O

Subproblem dependency

Subproblems are LCW (i , j), for
0 ↔ i ↔ m, 0 ↔ j ↔ n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by
row or column by column

Find entry (i , j) with largest LCW value

Read o! the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 22 / 33

O

g-

Subproblem dependency

Subproblems are LCW (i , j), for
0 ↔ i ↔ m, 0 ↔ j ↔ n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by
row or column by column

Find entry (i , j) with largest LCW value

Read o! the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 22 / 33

Subproblem dependency

Subproblems are LCW (i , j), for
0 ↔ i ↔ m, 0 ↔ j ↔ n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by
row or column by column

Find entry (i , j) with largest LCW value

Read o! the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 22 / 33

-I

Subproblem dependency

Subproblems are LCW (i , j), for
0 ↔ i ↔ m, 0 ↔ j ↔ n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by
row or column by column

Find entry (i , j) with largest LCW value

Read o! the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

2

0

0

0

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 22 / 33

·_

I

Subproblem dependency

Subproblems are LCW (i , j), for
0 ↔ i ↔ m, 0 ↔ j ↔ n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by
row or column by column

Find entry (i , j) with largest LCW value

Read o! the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

3

0

0

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 22 / 33

·
I

Subproblem dependency

Subproblems are LCW (i , j), for
0 ↔ i ↔ m, 0 ↔ j ↔ n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by
row or column by column

Reading o! the solution

Find entry (i , j) with largest LCW value

Read o! the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

3

0

0

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 22 / 33

Subproblem dependency

Subproblems are LCW (i , j), for
0 ↔ i ↔ m, 0 ↔ j ↔ n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by
row or column by column

Reading o! the solution

Find entry (i , j) with largest LCW value

Read o! the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

3

0

0

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 22 / 33

Subproblem dependency

Subproblems are LCW (i , j), for
0 ↔ i ↔ m, 0 ↔ j ↔ n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by
row or column by column

Reading o! the solution

Find entry (i , j) with largest LCW value

Read o! the actual subword diagonally

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

3

0

0

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 22 / 33

Implementation

def LCW(u,v):
import numpy as np
(m,n) = (len(u),len(v))
lcw = np.zeros((m+1,n+1))

maxlcw = 0

for j in range(n-1,-1,-1):
for i in range(m-1,-1,-1):
if u[i] == v[j]:
lcw[i,j] = 1 + lcw[i+1,j+1]

else:
lcw[i,j] = 0

if lcw[i,j] > maxlcw:
maxlcw = lcw[i,j]

return(maxlcw)

Recall that brute force was
O(mn

2)

Inductive solution is O(mn),
using dynamic programming or
memoization

Fill a table of size O(mn)

Each table entry takes
constant time to compute

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 23 / 33

-

-

-

-

Implementation

def LCW(u,v):
import numpy as np
(m,n) = (len(u),len(v))
lcw = np.zeros((m+1,n+1))

maxlcw = 0

for j in range(n-1,-1,-1):
for i in range(m-1,-1,-1):
if u[i] == v[j]:
lcw[i,j] = 1 + lcw[i+1,j+1]

else:
lcw[i,j] = 0

if lcw[i,j] > maxlcw:
maxlcw = lcw[i,j]

return(maxlcw)

Complexity

Recall that brute force was
O(mn

2)

Inductive solution is O(mn),
using dynamic programming or
memoization

Fill a table of size O(mn)

Each table entry takes
constant time to compute

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 23 / 33

