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Inductive definitions, recursive programs, subproblems

Factorial

fact(0) = 1

fact(n) = n → fact(n ↑ 1)

Insertion sort

isort([ ]) = [ ]

isort([x0, x1, . . . , xn]) =
insert(isort([x0, x1, . . . , xn→1]), xn)

fact(n↑1) is a subproblem of fact(n)

So are fact(n↑2), fact(n↑3), . . . ,
fact(0)

isort([x0, x1, . . . , xn→1]) is a subproblem
of isort([x0, x1, . . . , xn])

So is isort([x0, . . . , xj ]) for any
0 < j < n

Solution to original problem can be
derived by combining solutions to
subproblems
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Evaluating subproblems

Fibonacci numbers

fib(0) = 0

fib(1) = 1

fib(n) = fib(n↑1) + fib(n↑2)

def fib(n):

if n <= 1:

value = n

else:

value = fib(n-1) + fib(n-2)

return(value)
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Fibonacci numbers
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Evaluating subproblems

Build a table of values already
computed

Memory table

Memoization

Check if the value to be
computed was already seen
before

Store each newly computed
value in a table

Look up the table before making
a recursive call

Computation tree becomes linear
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Memoizing recursive implmentations

def fib(n):

if n <= 1:

value = n

else:

value = fib(n-1) + fib(n-2)

return(value)
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Memoizing recursive implmentations

def fib(n):

if n in fibtable.keys():

return(fibtable[n])

if n <= 1:

value = n

else:

value = fib(n-1) + fib(n-2)

fibtable[n] = value

return(value)

Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 5 / 33

- Check table

- Updatin table



Memoizing recursive implmentations

def fib(n):

if n in fibtable.keys():

return(fibtable[n])

if n <= 1:

value = n

else:

value = fib(n-1) + fib(n-2)

fibtable[n] = value

return(value)

In general

def f(x,y,z):

if (x,y,z) in ftable.keys():

return(ftable[(x,y,z)])

recursively compute value

from subproblems

ftable[(x,y,z)] = value

return(value)
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Dynamic programming

Anticipate the structure of subproblems

Derive from inductive definition

Dependencies are acyclic

Solve subproblems in appropriate order

Start with base cases — no
dependencies

Evaluate a value after all its
dependencies are available

Fill table iteratively

Never need to make a recursive call
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Grid paths

Rectangular grid of one-way roads

Can only go up and right

How many paths from (0, 0) to (m, n)?

(0, 0)

(5, 10)
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Combinatorial solution

Every path from (0, 0) to (5, 10) has 15
segments

Out of 15, exactly 5 are right moves,
10 are up moves

Fix the positions of the 5 right moves
among the 15 positions overall

(
15

5

)
=

15!

10! · 5! = 3003

Same as

(
15

10

)
— fix the 10 up moves

In general m+n segments from (0, 0) to
(m, n)

(0, 0)

(5, 10)
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Holes

What if an intersection is blocked?

For instance, (2, 4)

(0, 0)

(5, 10)
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Combinatorial solution for holes

Discard paths passing through (2, 4)

(0, 0)

(5, 10)
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More holes

What if two intersections are blocked?

Discard paths via (2, 4), (4, 4)

Some paths are counted twice

Add back the paths that pass through
both holes

Inclusion-exclusion — counting is messy

(0, 0)

(5, 10)
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Inductive formulation

How can a path reach (i , j)

Move up from (i , j ↑ 1)

Move right from (i ↑ 1, j)

Each path to these neighbours extends
to a unique path to (i , j)

Recurrence for P(i , j), number of paths
from (0, 0) to (i , j)

P(i , j) = P(i ↑ 1, j) + P(i , j ↑ 1)

P(0, 0) = 1 — base case

P(i , 0) = P(i ↑ 1, 0) — bottom row

P(0, j) = P(0, j ↑ 1) — left column

P(i , j) = 0 if there is a hole at (i , j)
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Computing P(i , j)

Naive recursion recomputes same
subproblem repeatedly

P(5, 10) requires P(4, 10), P(5, 9)

Both P(4, 10), P(5, 9) require P(4, 9)

Use memoization . . .

. . . or find a suitable order to compute
the subproblems

(0, 0)

(5, 10)
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Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

(0, 0)

(5, 10)
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Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

(0, 0)

(5, 10)

1
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(0, 0)
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1 1 1 1 1 1
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Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

(0, 0)

(5, 10)

1 1 1 1 1 1

1 2 3 4 5 6
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Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

(0, 0)

(5, 10)

1 1 1 1 1 1

1 2 3 4 5 6

1 3 6 10 15 21
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Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

(0, 0)

(5, 10)

1 1 1 1 1 1

1 2 3 4 5 6

1 3 6 10 15 21

1 4 10 20 35 56
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Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

(0, 0)

(5, 10)

1 1 1 1 1 1

1 2 3 4 5 6

1 3 6 10 15 21

1 4 10 20 35 56
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Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 15 / 33



Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

(0, 0)

(5, 10)

1 1 1 1 1 1

1 2 3 4 5 6

1 3 6 10 15 21
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Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

(0, 0)

(5, 10)

1 1 1 1 1 1

1 2 3 4 5 6

1 3 6 10 15 21

1 4 10 20 35 56

1 5 0 20 0 56

1 6 6 26 26 82

1 7 13 39 65 147

1 8 21 60 125 272

1 9 30 90 215 487

1 10 40 130 345 832

1 11 51 181 526 1358
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Dynamic programming

Identify suproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

Fill column by column

(0, 0)

(5, 10)

1
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Dynamic programming

Identify suproblem structure

P(0, 0) has no dependencies
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Fill row by row

Fill column by column
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1

1

1

1

1

1

1

1

1

1

1
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Dynamic programming

Identify suproblem structure

P(0, 0) has no dependencies
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Dynamic programming

Identify suproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

Fill column by column

(0, 0)
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1

1

1

1

1

1

1

1

1

1

1

1

2

3

4

5

6

7

8

9
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11

1 1 1 1

3 4 5 6

6 10 15 21

10 20 35 56

0 20 0 56

6 26 26 82

13 39 65 147

21 60 125 272

30 90 215 487

40 130 345 832

51 181 526 1358
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Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies

Start at (0, 0)

Fill row by row

Fill column by column

Fill diagonal by diagonal

(0, 0)

(5, 10)

1
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Dynamic programming

Identify subproblem structure

P(0, 0) has no dependencies
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Fill column by column

Fill diagonal by diagonal

(0, 0)

(5, 10)

1

1

1

1

2

1

1

3

3

1
Madhavan Mukund Lecture 23, 19 November 2024 PDSP Lecture 23 17 / 33



Memoization vs dynamic programming

Barrier of holes just inside the border

Memoization never explores the shaded
region

Memo table has O(m + n) entries

Dynamic programming blindly fills all
mn cells of the table

Tradeo! between recursion and
iteration

“Wasteful” dynamic programming still
better in general

(0, 0)

(5, 10)
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Longest common subword

Given two strings, find the (length of the) longest common subword

"secret", "secretary" — "secret", length 6

"bisect", "trisect" — "isect", length 5

"bisect", "secret" — "sec", length 3

"director", "secretary" — "ec", "re", length 2

Formally

u = a0a1 . . . am→1

v = b0b1 . . . bn→1

Common subword of length k — for some positions i and j ,
aiai+1ai+k→1 = bjbj+1bj+k→1

Find the largest such k — length of the longest common subword
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Brute force

u = a0a1 . . . am→1

v = b0b1 . . . bn→1

Find the largest k such that for some positions i and j ,
aiai+1ai+k→1 = bjbj+1bj+k→1

Try every pair of starting positions i in u, j in v

Match (ai , bj), (ai+1, bj+1), . . . as far as possible

Keep track of longest match

Assuming m > n, this is O(mn
2)

mn pairs of starting positions

From each starting position, scan could be O(n)
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Inductive structure

u = a0a1 . . . am→1

v = b0b1 . . . bn→1

Find the largest k such that for some positions i and j ,
aiai+1ai+k→1 = bjbj+1bj+k→1

LCW (i , j) — length of longest common subword in aiai+1 . . . am→1, bjbj+1 . . . bn→1

If ai ↓= bj , LCW (i , j) = 0

If ai = bj , LCW (i , j) = 1 + LCW (i+1, j+1)

Base case: LCW (m, n) = 0

In general, LCW (i , n) = 0 for all 0 ↔ i ↔ m

In general, LCW (m, j) = 0 for all 0 ↔ j ↔ n
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Subproblem dependency

Subproblems are LCW (i , j), for
0 ↔ i ↔ m, 0 ↔ j ↔ n

Table of (m + 1) · (n + 1) values

LCW (i , j) depends on LCW (i+1, j+1)

Start at bottom right and fill row by
row or column by column

Find entry (i , j) with largest LCW value

Read o! the actual subword diagonally
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Implementation

def LCW(u,v):
import numpy as np
(m,n) = (len(u),len(v))
lcw = np.zeros((m+1,n+1))

maxlcw = 0

for j in range(n-1,-1,-1):
for i in range(m-1,-1,-1):
if u[i] == v[j]:
lcw[i,j] = 1 + lcw[i+1,j+1]

else:
lcw[i,j] = 0

if lcw[i,j] > maxlcw:
maxlcw = lcw[i,j]

return(maxlcw)

Recall that brute force was
O(mn

2)

Inductive solution is O(mn),
using dynamic programming or
memoization

Fill a table of size O(mn)

Each table entry takes
constant time to compute
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