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Dynamic programming

Anticipate the structure of subproblems

Derive from inductive definition

Dependencies are acyclic

Solve subproblems in appropriate order

Start with base cases — no

dependencies

Evaluate a value after all its

dependencies are available

Fill table iteratively

Never need to make a recursive call

Evaluating fib(5)

fib(5)

fib(4)

fib(3)

fib(2)

fib(1)

fib(0)
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Longest common subsequence

Subsequence — can drop some letters in

between

Given two strings, find the (length of the)

longest common subsequence

"secret", "secretary" —

"secret", length 6

"bisect", "trisect" —

"isect", length 5

"bisect", "secret" —

"sect", length 4

"director", "secretary" —

"ectr", "retr", length 4

LCS is the longest path connecting

non-zero LCW entries, moving right/down
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Applications

Analyzing genes

DNA is a long string over A, T, G, C

Two species are similar if their DNA has

long common subsequences

diff command in Unix/Linux

Compares text files

Find the longest matching subsequence

of lines

Each line of text is a “character”
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Inductive structure

u = a0a1 . . . am→1, v = b0b1 . . . bn→1

LCS(i , j) — length of longest common subsequence in

aiai+1 . . . am→1, bjbj+1 . . . bn→1

If ai = bj

Can assume (ai , bj) is part of LCS

LCS(i , j) = 1 + LCS(i+1, j+1)

If ai →= bj , ai and bj cannot both belong to LCS

Which one should we drop?

LCS(i , j) = max(LCS(i , j+1), LCS(i+1, j)

Base cases as with LCW

LCS(i , n) = 0 for all 0 ↑ i ↑ m

LCS(m, j) = 0 for all 0 ↑ j ↑ n
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Subproblem dependency

Subproblems are LCS(i , j), for
0 ↑ i ↑ m, 0 ↑ j ↑ n

Table of (m + 1) · (n + 1) values

LCS(i , j) depends on LCS(i+1, j+1),

LCS(i , j+1),LCS(i+1, j),

No dependency for LCS(m, n) — start

at bottom right and fill by row, column

or diagonal

Trace back the path by which each

entry was filled

Each diagonal step is an element of LCS
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Subproblem dependency

Subproblems are LCS(i , j), for
0 ↑ i ↑ m, 0 ↑ j ↑ n

Table of (m + 1) · (n + 1) values

LCS(i , j) depends on LCS(i+1, j+1),

LCS(i , j+1),LCS(i+1, j),

No dependency for LCS(m, n) — start

at bottom right and fill by row, column

or diagonal

Reading o! the solution

Trace back the path by which each

entry was filled

Each diagonal step is an element of LCS

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

1

1

1

1

1

0

1

1

2

2

2

2

0

1

1

2

2

2

2

0

1

2

2

2

2

2

0

1

2

3

3

3

3

0

1

2

3

4

4

4

Madhavan Mukund Lecture 24, 21 November 2024 PDSP Lecture 24 6 / 20



Subproblem dependency

Subproblems are LCS(i , j), for
0 ↑ i ↑ m, 0 ↑ j ↑ n

Table of (m + 1) · (n + 1) values

LCS(i , j) depends on LCS(i+1, j+1),

LCS(i , j+1),LCS(i+1, j),

No dependency for LCS(m, n) — start

at bottom right and fill by row, column

or diagonal

Reading o! the solution

Trace back the path by which each

entry was filled

Each diagonal step is an element of LCS

0 1 2 3 4 5 6

s e c r e t •

0

1

2

3

4

5

6

b

i

s

e

c

t

• 0

0

0

0

0

0

0

0

1

1

1

1

1

1

0

1

1

2

2

2

2

0

1

1

2

2

2

2

0

1

2

2

2

2

2

0

1

2

3

3

3

3

0

1

2

3

4

4

4

Madhavan Mukund Lecture 24, 21 November 2024 PDSP Lecture 24 6 / 20

T



Implementation

def LCS(u,v):

import numpy as np

(m,n) = (len(u),len(v))

lcs = np.zeros((m+1,n+1))

for j in range(n-1,-1,-1):

for i in range(m-1,-1,-1):

if u[i] == v[j]:

lcs[i,j] = 1 + lcs[i+1,j+1]

else:

lcs[i,j] = max(lcs[i+1,j],

lcs[i,j+1])

return(lcs[0,0])

Again O(mn), using dynamic

programming or memoization

Fill a table of size O(mn)

Each table entry takes

constant time to compute
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Document similarity

“The students were able to appreciate the

concept optimal substructure property and

its use in designing algorithms”

“The lecture taught the students to

appreciate how the concept of optimal

substructures can be used in designing

algorithms”

Edit operations to transform documents

Insert a character

Delete a character

Substitute one character by another

“The lecture taught the students

were able to appreciate how the

concept of optimal substructures

property cand itbse used in designing

algorithms”

insert, delete, substitute

Minimum number of edit operations

needed

In our example, 24 characters

inserted, 18 deleted, 2 substituted

Edit distance is at most 44
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Edit distance

Minimum number of editing operations

needed to transform one document to

the other

Insert a character

Delete a character

Substitute one character by another

Also called Levenshtein distance

Vladimir Levenshtein, 1965

Applications

Suggestions for spelling correction

Genetic similarity of species

Longest common subsequence of u, v

Minimum number of deletes needed to

make them equal

Deleting a letter from u is equivalent to

inserting it in v

bisect, secret — LCS is sect

Delete b, i in bisect and r, e in

secret

Delete b, i and then insert r, e in

bisect

From LCS, we can compute edit

distance without substitution
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Minimum number of deletes needed to

make them equal

Deleting a letter from u is equivalent to

inserting it in v

bisect, secret — LCS is sect

Delete b, i in bisect and r, e in

secret

Delete b, i and then insert r, e in

bisect

From LCS, we can compute edit

distance without substitution
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Inductive structure for edit distance

u = a0a1 . . . am→1, v = b0b1 . . . bn→1

Recall LCS

LCS(i , j) — length of longest

common subsequence in

aiai+1 . . . am→1, bjbj+1 . . . bn→1

If ai = bj ,

LCS(i , j) = 1 + LCS(i+1, j+1)

If ai →= bj ,

LCS(i , j) = max[ LCS(i , j+1),
LCS(i+1, j) ]

Edit distance — aim is to transform u to v

If ai = bj , nothing to be done

If ai →= bj , best among

Substitute ai by bj

Delete ai

Insert bj before ai
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Inductive structure for edit distance

u = a0a1 . . . am→1, v = b0b1 . . . bn→1

ED(i , j) — edit distance for

aiai+1 . . . am→1, bjbj+1 . . . bn→1

If ai = bj , nothing to be done

If ai →= bj , best among

Substitute ai by bj

Delete ai

Insert bj before ai

If ai = bj ,

ED(i , j) = ED(i+1, j+1)

If ai →= bj ,

ED(i , j) = 1 + min[ ED(i+1, j+1),
ED(i+1, j),
ED(i , j+1) ]

Base cases

ED(m, n) = 0

ED(i , n) = m ↓ i for all 0 ↑ i ↑ m

Delete aiai+1 . . . am→1 from u

ED(m, j) = n ↓ j for all 0 ↑ j ↑ n

Insert bjbj+1 . . . bn→1 into u
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Subproblem dependency

Subproblems are ED(i , j), for
0 ↑ i ↑ m, 0 ↑ j ↑ n

Table of (m + 1) · (n + 1) values

Like LCS, ED(i , j) depends on
ED(i+1, j+1), ED(i , j+1), ED(i+1, j)

No dependency for ED(m, n) — start at

bottom right and fill by row, column or

diagonal

Transform bisect to secret
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Subproblem dependency
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Subproblem dependency
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Implementation

def ED(u,v):
import numpy as np
(m,n) = (len(u),len(v))
ed = np.zeros((m+1,n+1))

for i in range(m-1,-1,-1):
ed[i,n] = m-i

for j in range(n-1,-1,-1):
ed[m,j] = n-j

for j in range(n-1,-1,-1):
for i in range(m-1,-1,-1):
if u[i] == v[j]:
ed[i,j] = ed[i+1,j+1]

else:
ed[i,j] = 1 + min(ed[i+1,j+1],

ed[i,j+1],
ed[i+1,j])

return(ed[0,0])

Again O(mn), using dynamic

programming or memoization
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Multiplying matrices

Multiply matrices A, B

AB[i , j ] =
n→1∑

k=0

A[i , k]B[k , j ]

Dimensions must be compatible

A : m ↔ n, B : n ↔ p

AB : m ↔ p

Computing each entry in AB is O(n)

Overall, computing AB is O(mnp)

Matrix multiplication is associative

ABC = (AB)C = A(BC )

Bracketing does not change answer

. . . but can a!ect the complexity!

Let A : 1↔ 100, B : 100↔ 1, C : 1↔ 100

Computing A(BC )

BC : 100↔ 100, takes

100 · 1 · 100 = 10000 steps to compute

A(BC ) : 1↔ 100, takes

1 · 100 · 100 = 10000 steps to compute

Computing (AB)C

AB : 1↔ 1, takes

1 · 100 · 1 = 100 steps to compute

(AB)C ) : 1↔ 100, takes

1 · 1 · 100 = 100 steps to compute

20000 steps vs 200 steps!
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Multiplying matrices

Multiply matrices A, B

AB[i , j ] =
n→1∑

k=0

A[i , k]B[k , j ]

Dimensions must be compatible

A : m ↔ n, B : n ↔ p

AB : m ↔ p

Computing each entry in AB is O(n)

Overall, computing AB is O(mnp)

Matrix multiplication is associative

ABC = (AB)C = A(BC )

Bracketing does not change answer

. . . but can a!ect the complexity!

Given n matrices M0 : r0 ↔ c0,

M1 : r1 ↔ c1, . . . , Mn→1 : rn→1 ↔ cn→1

Dimensions match: rj = cj→1, 0 < j < n

Product M0 ·M1 · · ·Mn→1 can be

computed

Find an optimal order to compute the

product

Multiply two matrices at a time

Bracket the expression optimally
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Inductive structure

Final step combines two subproducts

(M0 ·M1 · · ·Mk→1) · (Mk ·Mk+1 · · ·Mn→1)

for some 0 < k < n

First factor is r0 ↔ ck→1, second is

rk ↔ cn→1, where rk = ck→1

Let C (0, n↓1) denote the overall cost

Final multiplication is O(r0rkcn→1)

Inductively, costs of factors are C (0, k↓1)

and C (k , n↓1)

C (0, n↓1) =

C (0, k↓1) + C (k , n↓1) + r0rkcn→1

Which k should we choose?

Try all and choose the minimum!

Subproblems?

M0 ·M1 · · ·Mk→1 would decompose

as (M0 · · ·Mj→1) · (Mj · · ·Mk→1)

Generic subproblem is

Mj ·Mj+1 · · ·Mk

C (j , k) =

minj<ω↑k [C (j , ω↓1) + C (ω, k) + rj rωck ]

Base case: C (j , j) = 0 for 0 ↑ j < n
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Inductive structure

Final step combines two subproducts

(M0 ·M1 · · ·Mk→1) · (Mk ·Mk+1 · · ·Mn→1)

for some 0 < k < n

First factor is r0 ↔ ck→1, second is

rk ↔ cn→1, where rk = ck→1

Let C (0, n↓1) denote the overall cost

Final multiplication is O(r0rkcn→1)

Inductively, costs of factors are C (0, k↓1)

and C (k , n↓1)

C (0, n↓1) =

C (0, k↓1) + C (k , n↓1) + r0rkcn→1

Which k should we choose?

Try all and choose the minimum!

Subproblems?

M0 ·M1 · · ·Mk→1 would decompose

as (M0 · · ·Mj→1) · (Mj · · ·Mk→1)

Generic subproblem is

Mj ·Mj+1 · · ·Mk

C (j , k) =

minj<ω↑k [C (j , ω↓1) + C (ω, k) + rj rωck ]

Base case: C (j , j) = 0 for 0 ↑ j < n
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Subproblem dependency

Compute C (i , j), 0 ↑ i , j < n

Only for i ↑ j

Entries above main diagonal

C (i , j) depends on C (i , k↓1), C (k , j)
for every i < k ↑ j

O(n) dependencies per entry, unlike

LCW, LCS and ED

Diagonal entries are base case

Fill matrix by diagonal, from main

diagonal

0 · · · i · · · · · · j · · · n↓1

0

· · ·

i

· · ·

· · ·

j

· · ·

n↓1
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Subproblem dependency

Compute C (i , j), 0 → i , j < n

Only for i → j

Entries above main diagonal

C (i , j) depends on C (i , k↑1), C (k , j)
for every i < k → j

O(n) dependencies per entry, unlike

LCW, LCS and ED

Diagonal entries are base case

Fill matrix by diagonal, from main

diagonal

0 · · · i · · · · · · j · · · n↑1

0

· · ·

i

· · ·

· · ·

j

· · ·

n↑1

Madhavan Mukund Lecture 24, 21 November 2024 PDSP Lecture 24 17 / 20

O

c(0 , n-1)



Implementation

def C(dim):
# dim: dimension matrix,
# entries are pairs (r_i,c_i)
import numpy as np
n = dim.shape[0]
C = np.zeros((n,n))
for i in range(n):

C[i,i] = 0
for diff in range(1,n):

for i in range(0,n-diff):
j = i + diff
C[i,j] = C[i,i] +

C[i+1,j] +
dim[i][0]*dim[i+1][0]*dim[j][1]

for k in range(i+1,j+1):
C[i,j] = min(C[i,j],

C[i,k-1] + C[k,j] +
dim[i][0]*dim[k][0]*dim[j][1])

return(C[0,n-1])

We have to fill a table of size

O(n
2
)

Filling each entry takes O(n)

Overall, O(n
3
)
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Implementation

def C(dim):
# dim: dimension matrix,
# entries are pairs (r_i,c_i)
import numpy as np
n = dim.shape[0]
C = np.zeros((n,n))
for i in range(n):

C[i,i] = 0
for diff in range(1,n):

for i in range(0,n-diff):
j = i + diff
C[i,j] = C[i,i] +

C[i+1,j] +
dim[i][0]*dim[i+1][0]*dim[j][1]

for k in range(i+1,j+1):
C[i,j] = min(C[i,j],

C[i,k-1] + C[k,j] +
dim[i][0]*dim[k][0]*dim[j][1])

return(C[0,n-1])

Complexity

We have to fill a table of size

O(n
2
)

Filling each entry takes O(n)

Overall, O(n
3
)
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