Lecture 24, 21 November 2024

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming and Data Structures with Python Lecture 24, 21 Nov 2024

メロト メタト メミト メミト 一毛 …

 2990

Dynamic programming

- Anticipate the structure of subproblems
	- **Derive from inductive definition**
	- Dependencies are acyclic
- Solve subproblems in appropriate order
	- Start with base cases no dependencies
	- Evaluate a value after all its dependencies are available
	- \blacksquare Fill table iteratively
	- Never need to make a recursive call

Longest common subsequence

- \blacksquare Subsequence can drop some letters in between
- Given two strings, find the (length of the) longest common subsequence

 \rightarrow \rightarrow \rightarrow

Longest common subsequence

- \blacksquare Subsequence can drop some letters in between
- Given two strings, find the (length of the) longest common subsequence
	- "secret", "secretary" "secret", length 6
	- "bisect", "trisect" "isect", length 5
	- "bisect", "secret" "sect", length 4
	- "director", "secretary" "ectr", "retr", length 4
- LCS is the longest path connecting non-zero LCW entries, moving right/down

Applications

Analyzing genes

- DNA is a long string over A, T, G, C
- Two species are similar if their DNA has long common subsequences
- \blacksquare diff command in Unix/Linux
	- Compares text files
	- \blacksquare Find the longest matching subsequence of lines
	- Each line of text is a "character"

- $u = a_0 a_1 \dots a_{m-1}$, $v = b_0 b_1 \dots b_{n-1}$
- $LCS(i, j)$ length of longest common subsequence in $a_i a_{i+1} \ldots a_{m-1}, b_i b_{i+1} \ldots b_{n-1}$

化重变 化重变化

4 0 8

G.

- $u = a_0a_1...a_{m-1}$, $v = b_0b_1...b_{n-1}$
- *LCS* (i, j) length of longest common subsequence in $a_i a_{i+1} \ldots a_{m-1}$, $b_i b_{i+1} \ldots b_{n-1}$
- **If** $a_i = b_i$
	- Gan assume (a_i, b_i) is part of *LCS*
	- $LCS(i, j) = 1 + LCS(i+1, j+1)$

 290

- $u = a_0 a_1 \ldots a_{m-1}$, $v = b_0 b_1 \ldots b_{n-1}$
- *LCS* (i, j) length of longest common subsequence in $a_i a_{i+1} \ldots a_{m-1}$, $b_i b_{i+1} \ldots b_{n-1}$
- **If** $a_i = b_i$
	- Gan assume (a_i, b_i) is part of *LCS*
	- $LCS(i, j) = 1 + LCS(i+1, j+1)$

- $u = a_0a_1...a_{m-1}$, $v = b_0b_1...b_{n-1}$
- $LCS(i, i)$ length of longest common subsequence in $a_i a_{i+1} \ldots a_{m-1}$, $b_i b_{i+1} \ldots b_{n-1}$
- If $a_i = b_i$
	- Gan assume (a_i, b_i) is part of *LCS*
	- $LCS(i, j) = 1 + LCS(i+1, j+1)$
- \blacksquare If $a_i \neq b_i$, a_i and b_i cannot both belong to LCS
	- Which one should we drop?

- $u = a_0a_1...a_{m-1}$, $v = b_0b_1...b_{n-1}$
- $LCS(i, i)$ length of longest common subsequence in $a_i a_{i+1} \ldots a_{m-1}$, $b_i b_{i+1} \ldots b_{n-1}$
- If $a_i = b_i$
	- Gan assume (a_i, b_i) is part of *LCS*
	- $LCS(i, j) = 1 + LCS(i+1, j+1)$
- \blacksquare If $a_i \neq b_i$, a_i and b_i cannot both belong to LCS
	- Which one should we drop?
	- $LCS(i,j) = max(LCS(i,j+1), LCS(i+1,j))$

医间面的

 298

- $u = a_0a_1...a_{m-1}$, $v = b_0b_1...b_{n-1}$
- $LCS(i, i)$ length of longest common subsequence in $a_i a_{i+1} \ldots a_{m-1}$, $b_i b_{i+1} \ldots b_{n-1}$
- If $a_i = b_i$
	- Can assume (a_i, b_i) is part of *LCS*
	- $LCS(i, j) = 1 + LCS(i+1, j+1)$
- \blacksquare If $a_i \neq b_i$, a_i and b_i cannot both belong to LCS
	- Which one should we drop?
	- $LCS(i, j) = max(LCS(i, j+1), LCS(i+1, j)$
- Base cases as with *LCW*
	- *LCS* $(i, n) = 0$ for all $0 \le i \le m$
	- *LCS*(*m*, *j*) = 0 for all $0 \le j \le n$

 299

Subproblems are $LCS(i, j)$, for $0 < i < m, 0 < j < n$

化重氮化 医下颌

4 0 8

∢母

G.

- Subproblems are $LCS(i, j)$, for $0 \le i \le m$, $0 \le i \le n$
- **Table of** $(m+1) \cdot (n+1)$ values

- Subproblems are *LCS*(*i*, *j*), for $0 \le i \le m$, $0 \le i \le n$
- **Table of** $(m+1) \cdot (n+1)$ values
- *LCS*(*i*, *j*) depends on *LCS*($i+1$, $j+1$), *LCS*(*i, j*+1),*LCS*(*i*+1*, j*),

- Subproblems are *LCS*(*i*, *j*), for $0 \le i \le m$, $0 \le i \le n$
- **Table of** $(m+1) \cdot (n+1)$ values
- \blacksquare *<i>LCS*(*i*, *j*) depends on *LCS*($i+1$, $i+1$), *LCS*(*i, j*+1),*LCS*(*i*+1*, j*),
- \blacksquare No dependency for $LCS(m, n)$ start at bottom right and fill by row, column or diagonal

- Subproblems are *LCS*(*i*, *j*), for $0 \le i \le m$, $0 \le i \le n$
- **Table of** $(m+1) \cdot (n+1)$ values
- \blacksquare *<i>LCS*(*i*, *j*) depends on *LCS*($i+1$, $i+1$), *LCS*(*i, j*+1),*LCS*(*i*+1*, j*),
- \blacksquare No dependency for $LCS(m, n)$ start at bottom right and fill by row, column or diagonal

- Subproblems are *LCS*(*i*, *j*), for $0 \le i \le m$, $0 \le i \le n$
- Table of $(m+1) \cdot (n+1)$ values
- *LCS* (i, j) depends on *LCS* $(i+1, j+1)$, *LCS*(*i, j*+1),*LCS*(*i*+1*, j*),
- \blacksquare No dependency for $LCS(m, n)$ start at bottom right and fill by row, column or diagonal

- Subproblems are *LCS*(*i*, *j*), for $0 \le i \le m$, $0 \le i \le n$
- **Table of** $(m+1) \cdot (n+1)$ values
- \blacksquare *<i>LCS*(*i*, *j*) depends on *LCS*($i+1$, $i+1$), *LCS*(*i, j*+1),*LCS*(*i*+1*, j*),
- \blacksquare No dependency for $LCS(m, n)$ start at bottom right and fill by row, column or diagonal

- Subproblems are *LCS*(*i*, *j*), for $0 \le i \le m$, $0 \le i \le n$
- **Table of** $(m+1) \cdot (n+1)$ values
- \blacksquare *<i>LCS*(*i*, *j*) depends on *LCS*($i+1$, $i+1$), *LCS*(*i, j*+1),*LCS*(*i*+1*, j*),
- \blacksquare No dependency for $LCS(m, n)$ start at bottom right and fill by row, column or diagonal

- Subproblems are *LCS*(*i*, *j*), for $0 \le i \le m$, $0 \le i \le n$
- **Table of** $(m+1) \cdot (n+1)$ values
- \blacksquare *<i>LCS*(*i*, *j*) depends on *LCS*($i+1$, $i+1$), *LCS*(*i, j*+1),*LCS*(*i*+1*, j*),
- \blacksquare No dependency for $LCS(m, n)$ start at bottom right and fill by row, column or diagonal

- Subproblems are *LCS*(*i*, *j*), for $0 \le i \le m$, $0 \le i \le n$
- Table of $(m+1) \cdot (n+1)$ values
- \blacksquare *<i>LCS*(*i*, *j*) depends on *LCS*($i+1$, $i+1$), *LCS*(*i, j*+1),*LCS*(*i*+1*, j*),
- \blacksquare No dependency for $LCS(m, n)$ start at bottom right and fill by row, column or diagonal

- Subproblems are *LCS*(*i*, *j*), for $0 \le i \le m$, $0 \le i \le n$
- **Table of** $(m+1) \cdot (n+1)$ values
- \blacksquare *<i>LCS*(*i*, *j*) depends on *LCS*($i+1$, $i+1$), *LCS*(*i, j*+1),*LCS*(*i*+1*, j*),
- \blacksquare No dependency for $LCS(m, n)$ start at bottom right and fill by row, column or diagonal

Reading off the solution

 \blacksquare Trace back the path by which each entry was filled

- Subproblems are *LCS*(*i*, *j*), for $0 \le i \le m$, $0 \le i \le n$
- Table of $(m+1) \cdot (n+1)$ values
- *LCS* (i, j) depends on *LCS* $(i+1, j+1)$, *LCS*(*i, j*+1),*LCS*(*i*+1*, j*),
- \blacksquare No dependency for $LCS(m, n)$ start at bottom right and fill by row, column or diagonal

Reading off the solution

- \blacksquare Trace back the path by which each entry was filled
- Each diagonal step is an element of *LCS*

PDSP Lecture 24 6 / 20

```
def LCS(u,v):
   import numpy as np
   (m,n) = (len(u),len(v))lcs = np{\cdot}zeros((m+1,n+1))for j in range(n-1,-1,-1):
     for i in range(m-1,-1,-1):
         if u[i] == v[i]:
            lcs[i,j] = 1 + lcs[i+1,j+1]else:
            lcs[i,j] = max(lcs[i+1,j],lcs[i, i+1])return(lcs[0,0])
             tation<br>
1,v):<br>
numpy as np<br>
= (len(u),len(v))<br>
pp.zeros((m+1,n+)<br>
in range(n-1,-1,-)<br>
i in range(m-1,-1,-)
             se:<br>Lcs[i,j] =<br>(lcs[0,0])
```
4 □ ▶

医毛囊 医牙骨下的

G.

Implementation

```
def LCS(u,v):
  import numpy as np
  (m,n) = (len(u),len(v))lcs = np{\cdot}zeros((m+1,n+1))
```

```
for i in range(n-1,-1,-1):
  for i in range(m-1,-1,-1):
    if u[i] == v[i]:
      lcs[i, j] = 1 + lcs[i+1, j+1]else:
      lcs[i,j] = max(lcs[i+1,j],lcs[i, i+1])return(lcs[0,0])
```
Complexity

- Again *O(mn)*, using dynamic programming or memoization
	- Fill a table of size $O(mn)$
	- \blacksquare Each table entry takes constant time to compute

化重新润滑脂

э

- \blacksquare "The students were able to appreciate the concept optimal substructure property and its use in designing algorithms"
- "The lecture taught the students to appreciate how the concept of optimal substructures can be used in designing algorithms"

- \blacksquare "The students were able to appreciate the concept optimal substructure property and its use in designing algorithms"
- \blacksquare "The lecture taught the students to appreciate how the concept of optimal substructures can be used in designing algorithms"
- Edit operations to transform documents
	- **Insert a character**
	- **Delete a character**
	- Substitute one character by another

- \blacksquare "The students were able to appreciate the concept optimal substructure property and its use in designing algorithms"
- \blacksquare "The lecture taught the students to appreciate how the concept of optimal substructures can be used in designing algorithms"
- Edit operations to transform documents
	- **Insert a character**
	- **Delete a character**
	- Substitute one character by another
- **The lecture taught the students** were able to appreciate how the concept of optimal substructures property cand it bse used in designing algorithms"
- ninsert, delete, substitute

- \blacksquare "The students were able to appreciate the concept optimal substructure property and its use in designing algorithms"
- "The lecture taught the students to appreciate how the concept of optimal substructures can be used in designing algorithms"
- Edit operations to transform documents
	- **Insert a character**
	- **Delete a character**
	- Substitute one character by another
- **The lecture taught the students** were able to appreciate how the concept of optimal substructures property cand $\frac{1}{1}$ tbse used in designing algorithms" "The <u>lecture tauge</u>"

were able to approconcept of optim

property cand ith

algorithms"

insert, delete, sulf

lit distance

Minimum number

needed

In our example, 2
- ninsert, delete, substitute

Edit distance

- **Minimum number of edit operations** needed
- \blacksquare In our example, 24 characters inserted, 18 deleted, 2 substituted
- Edit distance is at most 44

- **Minimum number of editing operations** needed to transform one document to the other
	- **Insert a character**
	- **Delete a character**
	- Substitute one character by another
- Also called Levenshtein distance
	- Vladimir Levenshtein, 1965
- **Applications**
	- Suggestions for spelling correction
	- Genetic similarity of species

- **Minimum number of editing operations** needed to transform one document to the other
	- **Insert a character**
	- **Delete a character**
	- Substitute one character by another
- Also called Levenshtein distance
	- Vladimir Levenshtein, 1965
- **Applications**
	- Suggestions for spelling correction
	- Genetic similarity of species

- Longest common subsequence of *u*, *v*
	- **Minimum number of deletes needed to** make them equal
- Deleting a letter from *u* is equivalent to inserting it in *v*

- **Minimum number of editing operations** needed to transform one document to the other
	- **Insert a character**
	- **Delete a character**
	- Substitute one character by another
- Also called Levenshtein distance
	- Vladimir Levenshtein, 1965
- **Applications**
	- Suggestions for spelling correction
	- Genetic similarity of species

- Longest common subsequence of *u*, *v*
	- **Minimum number of deletes needed to** make them equal
- Deleting a letter from *u* is equivalent to inserting it in *v*
	- \blacksquare bisect, secret \blacksquare LCS is sect

- **Minimum number of editing operations** needed to transform one document to the other
	- **Insert a character**
	- **Delete a character**
	- Substitute one character by another
- Also called Levenshtein distance
	- Vladimir Levenshtein, 1965
- **Applications**
	- Suggestions for spelling correction
	- Genetic similarity of species

- Longest common subsequence of *u*, *v*
	- **Minimum number of deletes needed to** make them equal
- Deleting a letter from *u* is equivalent to inserting it in *v* make them equine
ting a letter fi
bisect, secret
Delete busing
	- \blacksquare bisect, secret \blacksquare LCS is sect
	- \blacksquare Delete b, i in bisect and r, e in secret

- **Minimum number of editing operations** needed to transform one document to the other
	- **Insert a character**
	- **Delete a character**
	- Substitute one character by another
- Also called Levenshtein distance
	- Vladimir Levenshtein, 1965
- **Applications**
	- Suggestions for spelling correction
	- Genetic similarity of species

- Longest common subsequence of *u*, *v*
	- **Minimum number of deletes needed to** make them equal
- Deleting a letter from *u* is equivalent to inserting it in *v*
	- \blacksquare bisect, secret \blacksquare LCS is sect
	- \blacksquare Delete b, i in bisect and r, e in secret
	- Delete b, i and then insert r , e in bisect
- \blacksquare From LCS, we can compute edit distance without substitution

Inductive structure for edit distance

$$
u=a_0a_1\ldots a_{m-1},\ v=b_0b_1\ldots b_{n-1}
$$

4 ロ ▶ 4 伊

重

Inductive structure for edit distance

■ *u* = $a_0a_1... a_{m-1}$, $v = b_0b_1... b_{n-1}$

 \triangleright \rightarrow \exists \rightarrow

不自下

G.
$$
u=a_0a_1\ldots a_{m-1}, v=b_0b_1\ldots b_{n-1}
$$

 R ecall ICS

- $LCS(i, j)$ length of longest common subsequence in $a_i a_{i+1} \ldots a_{m-1}, b_i b_{i+1} \ldots b_{n-1}$
- If $a_i = b_i$, $LCS(i, j) = 1 + LCS(i+1, j+1)$

■ If $a_i \neq b_i$, $LCS(i, j) = max[LCS(i, j+1)]$ *LCS*(*i*+1*, j*)]

G.

$$
u=a_0a_1\ldots a_{m-1},\ v=b_0b_1\ldots b_{n-1}
$$

 R ecall ICS

Edit distance — aim is to transform *u* to *v*

- $LCS(i, j)$ length of longest common subsequence in $a_i a_{i+1} \ldots a_{m-1}, b_i b_{i+1} \ldots b_{n-1}$
- If $a_i = b_i$, $LCS(i, j) = 1 + LCS(i+1, j+1)$

 \blacksquare If $a_i \neq b_i$, $LCS(i, j) = max[LCS(i, j+1)]$ *LCS*(*i*+1*, j*)]

$$
u=a_0a_1\ldots a_{m-1}, v=b_0b_1\ldots b_{n-1}
$$

- R ecall ICS
- $LCS(i, j)$ length of longest common subsequence in $a_i a_{i+1} \ldots a_{m-1}, b_i b_{i+1} \ldots b_{n-1}$
- If $a_i = b_i$, $LCS(i, j) = 1 + LCS(i+1, j+1)$
- \blacksquare If $a_i \neq b_i$, $LCS(i, j) = max[LCS(i, j+1)]$ *LCS*(*i*+1*, j*)]
- Edit distance aim is to transform *u* to *v*
- If $a_i = b_i$, nothing to be done

$$
u=a_0a_1\ldots a_{m-1},\ v=b_0b_1\ldots b_{n-1}
$$

- R ecall ICS
- $LCS(i, j)$ length of longest common subsequence in $a_i a_{i+1} \ldots a_{m-1}, b_i b_{i+1} \ldots b_{n-1}$
- If $a_i = b_i$, $LCS(i, j) = 1 + LCS(i+1, j+1)$
- \blacksquare If $a_i \neq b_i$, $LCS(i, j) = max[LCS(i, j+1)]$ *LCS*(*i*+1*, j*)]
- Edit distance aim is to transform *u* to *v*
- If $a_i = b_i$, nothing to be done

$$
\mathbf{u}^{\mathrm{t}}\mathbf{u}^{\mathrm{t}}
$$

If $a_i \neq b_i$, best among

G.

$$
u=a_0a_1\ldots a_{m-1}, v=b_0b_1\ldots b_{n-1}
$$

- R ecall ICS
- $LCS(i, j)$ length of longest common subsequence in $a_i a_{i+1} \ldots a_{m-1}, b_i b_{i+1} \ldots b_{n-1}$
- If $a_i = b_i$, $LCS(i, j) = 1 + LCS(i+1, j+1)$
- \blacksquare If $a_i \neq b_i$, $LCS(i, j) = max[LCS(i, j+1)]$ *LCS*(*i*+1*, j*)]
- Edit distance aim is to transform *u* to *v*
- If $a_i = b_i$, nothing to be done
- **If** $a_i \neq b_i$, best among
	- Substitute a_i by b_i

$$
u=a_0a_1\ldots a_{m-1},\ v=b_0b_1\ldots b_{n-1}
$$

- R ecall ICS
- $LCS(i, j)$ length of longest common subsequence in $a_i a_{i+1} \ldots a_{m-1}, b_i b_{i+1} \ldots b_{n-1}$
- If $a_i = b_i$, $LCS(i, j) = 1 + LCS(i+1, j+1)$
- \blacksquare If $a_i \neq b_i$, $LCS(i, j) = max[LCS(i, j+1)]$ *LCS*(*i*+1*, j*)]
- Edit distance aim is to transform *u* to *v*
- If $a_i = b_i$, nothing to be done
- **If** $a_i \neq b_i$, best among
	- Substitute a_i by b_i
	- Delete *a*^{*i*}

$$
u=a_0a_1\ldots a_{m-1},\ v=b_0b_1\ldots b_{n-1}
$$

- R ecall ICS
- $LCS(i, j)$ length of longest common subsequence in $a_i a_{i+1} \ldots a_{m-1}, b_i b_{i+1} \ldots b_{n-1}$
- If $a_i = b_i$, $LCS(i, j) = 1 + LCS(i+1, j+1)$
- \blacksquare If $a_i \neq b_i$, $LCS(i, j) = max[LCS(i, j+1)]$ *LCS*(*i*+1*, j*)]
- Edit distance aim is to transform *u* to *v*
- If $a_i = b_i$, nothing to be done
- **If** $a_i \neq b_i$, best among
	- Substitute a_i by b_i
	- Delete *aⁱ*
	- Insert *b_i* before *a*_{*i*}

- $u = a_0 a_1 \ldots a_{m-1}$, $v = b_0 b_1 \ldots b_{n-1}$
- $E(D(i, j)$ edit distance for $a_i a_{i+1} \ldots a_{m-1}$, $b_i b_{i+1} \ldots b_{n-1}$
- If $a_i = b_i$, nothing to be done
- **If** $a_i \neq b_i$, best among
	- Substitute a_i by b_i
	- Delete *aⁱ*
	- \blacksquare Insert b_i before a_i

∍

 298

- *u* = $a_0 a_1 \ldots a_{m-1}$, $v = b_0 b_1 \ldots b_{n-1}$
- $E(D(i, i)$ edit distance for $a_i a_{i+1} \ldots a_{m-1}$, $b_i b_{i+1} \ldots b_{n-1}$
- If $a_i = b_i$, nothing to be done
- **If** $a_i \neq b_i$, best among
	- Substitute a_i by b_i
	- Delete *aⁱ*
	- \blacksquare Insert *b_i* before a_i

If $a_i = b_i$, $ED(i, j) = ED(i+1, j+1)$ If $a_i \neq b_i$, $ED(i, j) = 1 + min[$ $ED(i+1, j+1)$, *ED*(*i*+1*, j*)*, ED*(*i, j*+1)] \mathcal{L} $i \neq b_j$,
 $(i, j) = 1 + \min[i]$ $\frac{1}{2}$ insert by before ai

 \triangleright \rightarrow \exists \rightarrow

G.

- $u = a_0 a_1 \ldots a_{m-1}, v = b_0 b_1 \ldots b_{n-1}$
- $E(D(i, i))$ edit distance for $a_i a_{i+1} \ldots a_{m-1}$, $b_i b_{i+1} \ldots b_{n-1}$
- If $a_i = b_i$, nothing to be done
- **If** $a_i \neq b_i$, best among
	- Substitute a_i by b_i
	- Delete *aⁱ*
	- \blacksquare Insert b_i before a_i

If $a_i = b_i$, $ED(i, j) = ED(i+1, j+1)$

If $a_i \neq b_i$, $ED(i, j) = 1 + min[$ $ED(i+1, j+1)$, *ED*(*i*+1*, j*)*, ED*(*i, j*+1)]

- Base cases
	- $E(D(m, n) = 0)$
	- \blacksquare $ED(i, n) = m i$ for all $0 \le i \le m$

Delete $a_i a_{i+1} \ldots a_{m-1}$ from *u*

 \blacksquare $ED(m, j) = n - j$ for all $0 \le j \le n$ Insert $b_j b_{j+1} \ldots b_{n-1}$ into *u*

※ ④ 重 ※ ④ 重 ※ ○ 重 ○

Subproblems are $ED(i, j)$, for $0 < i < m, 0 < j < n$

化重氮化医氮

4 0 8

∢母

 299

G.

- Subproblems are $ED(i, j)$, for $0 \le i \le m$, $0 \le i \le n$
- **Table of** $(m+1) \cdot (n+1)$ values

- Subproblems are $ED(i, j)$, for $0 \le i \le m$, $0 \le i \le n$
- **Table of** $(m+1) \cdot (n+1)$ values
- Like LCS, $ED(i, j)$ depends on *ED*(*i*+1*, j*+1), *ED*(*i, j*+1), *ED*(*i*+1*, j*)

- Subproblems are *ED*(*i*, *j*), for $0 \le i \le m$, $0 \le i \le n$
- **Table of** $(m+1) \cdot (n+1)$ values
- Like LCS, $ED(i, j)$ depends on *ED*(*i*+1*, j*+1), *ED*(*i, j*+1), *ED*(*i*+1*, j*)
- \blacksquare No dependency for $ED(m, n)$ start at bottom right and fill by row, column or diagonal

- Subproblems are *ED*(*i*, *j*), for $0 \le i \le m$, $0 \le i \le n$
- **Table of** $(m+1) \cdot (n+1)$ values
- Like LCS, $ED(i, j)$ depends on *ED*(*i*+1*, j*+1), *ED*(*i, j*+1), *ED*(*i*+1*, j*)
- \blacksquare No dependency for $ED(m, n)$ start at bottom right and fill by row, column or diagonal

- Subproblems are *ED*(*i*, *j*), for $0 \le i \le m$, $0 \le i \le n$
- **Table of** $(m+1) \cdot (n+1)$ values
- Like LCS, $ED(i, j)$ depends on *ED*(*i*+1*, j*+1), *ED*(*i, j*+1), *ED*(*i*+1*, j*)
- No dependency for $ED(m, n)$ start at bottom right and fill by row, column or diagonal

- Subproblems are *ED*(*i*, *j*), for $0 \le i \le m$, $0 \le i \le n$
- **Table of** $(m+1) \cdot (n+1)$ values
- Like LCS, $ED(i, j)$ depends on *ED*(*i*+1*, j*+1), *ED*(*i, j*+1), *ED*(*i*+1*, j*)
- \blacksquare No dependency for $ED(m, n)$ start at bottom right and fill by row, column or diagonal

- Subproblems are *ED*(*i*, *j*), for $0 \le i \le m$, $0 \le i \le n$
- **Table of** $(m+1) \cdot (n+1)$ values
- Like LCS, $ED(i, j)$ depends on *ED*(*i*+1*, j*+1), *ED*(*i, j*+1), *ED*(*i*+1*, j*)
- \blacksquare No dependency for $ED(m, n)$ start at bottom right and fill by row, column or diagonal

 \sim

- Subproblems are *ED*(*i*, *j*), for $0 \le i \le m$, $0 \le i \le n$
- **Table of** $(m+1) \cdot (n+1)$ values
- Like LCS, $ED(i, j)$ depends on *ED*(*i*+1*, j*+1), *ED*(*i, j*+1), *ED*(*i*+1*, j*)
- \blacksquare No dependency for $ED(m, n)$ start at bottom right and fill by row, column or diagonal

- Subproblems are *ED*(*i*, *j*), for $0 \le i \le m$, $0 \le i \le n$
- **Table of** $(m+1) \cdot (n+1)$ values
- Like LCS, $ED(i, j)$ depends on *ED*(*i*+1*, j*+1), *ED*(*i, j*+1), *ED*(*i*+1*, j*)
- \blacksquare No dependency for $ED(m, n)$ start at bottom right and fill by row, column or diagonal

- Subproblems are *ED*(*i*, *j*), for $0 \le i \le m$, $0 \le i \le n$
- **Table of** $(m+1) \cdot (n+1)$ values
- Like LCS, $ED(i, j)$ depends on *ED*(*i*+1*, j*+1), *ED*(*i, j*+1), *ED*(*i*+1*, j*)
- No dependency for $ED(m, n)$ start at bottom right and fill by row, column or diagonal

Reading off the solution

Transform bisect to secret

- Subproblems are *ED*(*i*, *j*), for $0 \le i \le m$, $0 \le i \le n$
- **Table of** $(m+1) \cdot (n+1)$ values
- Like LCS, $ED(i, j)$ depends on *ED*(*i*+1*, j*+1), *ED*(*i, j*+1), *ED*(*i*+1*, j*)
- \blacksquare No dependency for $ED(m, n)$ start at bottom right and fill by row, column or diagonal

- Transform bisect to secret
- Delete b

- Subproblems are *ED*(*i*, *j*), for $0 \le i \le m$, $0 \le i \le n$
- **Table of** $(m+1) \cdot (n+1)$ values
- Like LCS, $ED(i, j)$ depends on *ED*(*i*+1*, j*+1), *ED*(*i, j*+1), *ED*(*i*+1*, j*)
- \blacksquare No dependency for $ED(m, n)$ start at bottom right and fill by row, column or diagonal

- **Transform bisect to secret**
- Delete b , Delete i

- Subproblems are *ED*(*i*, *j*), for $0 \le i \le m$, $0 \le i \le n$
- **Table of** $(m+1) \cdot (n+1)$ values
- Like LCS, $ED(i, j)$ depends on *ED*(*i*+1*, j*+1), *ED*(*i, j*+1), *ED*(*i*+1*, j*)
- \blacksquare No dependency for $ED(m, n)$ start at bottom right and fill by row, column or diagonal

- Transform bisect to secret
- Delete b , Delete i , Insert r

- Subproblems are *ED*(*i*, *j*), for $0 \le i \le m$, $0 \le i \le n$
- **Table of** $(m+1) \cdot (n+1)$ values
- Like LCS, $ED(i, j)$ depends on *ED*(*i*+1*, j*+1), *ED*(*i, j*+1), *ED*(*i*+1*, j*)
- \blacksquare No dependency for $ED(m, n)$ start at bottom right and fill by row, column or diagonal

- Transform bisect to secret
- Delete b , Delete i , Insert r , Insert e

Implementation

```
def ED(u,v):
       import numpy as np
       (m,n) = (len(u),len(v))ed = np{\text{.}zeros}((m+1,n+1))for i in range(m-1, -1, -1):
           ed[i,n] = m-ifor j in range(n-1, -1, -1):
          ed[m, j] = n - jfor j in range(n-1,-1,-1):
          for i in range(m-1,-1,-1):
              if u[i] == v[i]:
                  ed[i, j] = ed[i+1, j+1]else:
                  ed[i, j] = 1 + min(ed[i+1, j+1],ed[i,j+1],ed[i+1,j])return(ed[0,0])
                 1, v):<br>
= (len(u),len(v))<br>
p.zeros((m+1,n+1))<br>
in range(m-1,-1,-1):<br>
in range(m-1,-1,-1):<br>
i,j] = n-j<br>
in range(m-1,-1,-1):<br>
i [u] = n-j<br>
in range(m-1,-1,-1):<br>
i [u] = -j]<br>
in range(m-1,-1,-1):<br>
i [u] = -j]:<br>
ed[i,j] = -1 
Implementation<br>
def ED(u,v):<br>
import numpy as np<br>
(m,n) = (len(u),len(v))<br>
ed = np.zeros((m+1,n+1))<br>
for i in range(m-1,-1,-1):<br>
ed[i,n] = m-i<br>
for j in range(n-1,-1,-1):<br>
ed[m,j] = n-j<br>
for i in range(m-1,-1,-1):<br>
ed[m
```
Implementation

```
def ED(u,v):
  import numpy as np
  (m,n) = (len(u), len(v))ed = np{\text{.}zeros}((m+1,n+1))for i in range(m-1,-1,-1):
    ed[i,n] = m-ifor j in range(n-1,-1,-1):
```

```
ed[m, j] = n - j
```

```
for j in range(n-1,-1,-1):
  for i in range(m-1,-1,-1):
    if u[i] == v[i]:
      ed[i, j] = ed[i+1, j+1]else:
      ed[i, j] = 1 + min(ed[i+1, j+1],ed[i,j+1],ed[i+1,j])
```
return(ed[0,0])

Complexity

- Again *O(mn)*, using dynamic programming or memoization
	- Fill a table of size $O(mn)$
	- \blacksquare Each table entry takes constant time to compute

∢ □ ▶ ⊣ *←* □

医阿雷氏阿雷氏征

GH.

Multiply matrices *A*, *B*

 $AB[i,j] = \sum_{n=1}^{n-1}$ *k*=0 *A*[*i, k*]*B*[*k, j*]

 \leftarrow \Box

 \triangleright \rightarrow \exists \rightarrow

 $2Q$

∍

- Multiply matrices *A*, *B*
	- $AB[i,j] = \sum_{n=1}^{n-1}$ *k*=0 *A*[*i, k*]*B*[*k, j*]
- Dimensions must be compatible
	- \blacksquare *A* : *m* \times *n*, *B* : *n* \times *p*
	- \blacksquare *AB* : $m \times p$

4 0 F

э

 299

■ Multiply matrices *A*, *B*

 $AB[i,j] = \sum_{n=1}^{n-1}$ *k*=0 *A*[*i, k*]*B*[*k, j*]

- Dimensions must be compatible
	- \blacksquare *A* : *m* \times *n*, *B* : *n* \times *p*
	- \blacksquare *AB* : $m \times p$
- Computing each entry in *AB* is *O*(*n*)
- Overall, computing AB is $O(mnp)$

$$
- \quad \text{Square} \quad \text{matrices} \quad \text{m} = n = p
$$
\n
$$
O(n^3)
$$

■ Multiply matrices *A*, *B*

 $AB[i,j] = \sum_{n=1}^{n-1}$ *k*=0 *A*[*i, k*]*B*[*k, j*]

- Dimensions must be compatible
	- \blacksquare *A* : *m* \times *n*, *B* : *n* \times *p*
	- \blacksquare *AB* : *m* \times *p*
- Computing each entry in *AB* is *O*(*n*)
- Overall, computing AB is $O(mnp)$
- **Matrix multiplication is associative**
	- \blacksquare *ABC* = (*AB*)*C* = *A*(*BC*)

 298

■ Multiply matrices *A*, *B*

 $AB[i,j] = \sum_{n=1}^{n-1}$ *k*=0 *A*[*i, k*]*B*[*k, j*]

- Dimensions must be compatible
	- \blacksquare *A* : *m* \times *n*, *B* : *n* \times *p*
	- \blacksquare *AB* : $m \times p$
- Computing each entry in *AB* is *O*(*n*)
- Overall, computing AB is $O(mnp)$
- **Matrix multiplication is associative**
	- \blacksquare *ABC* = (*AB*)*C* = *A*(*BC*)
	- Bracketing does not change answer
	- \blacksquare ... but can affect the complexity!

 298

Multiply matrices *A*, *B*

 $AB[i,j] = \sum_{n=1}^{n-1}$ *k*=0 *A*[*i, k*]*B*[*k, j*]

- Dimensions must be compatible
	- \blacksquare *A* : *m* \times *n*, *B* : *n* \times *p*
	- \blacksquare *AB* : $m \times p$
- Computing each entry in *AB* is *O*(*n*)
- Overall, computing AB is $O(mnp)$
- **Matrix multiplication is associative**
	- \blacksquare *ABC* = (*AB*)*C* = *A*(*BC*)
	- Bracketing does not change answer
	- \blacksquare ... but can affect the complexity!

⑮

Let A $\bigl(1 \bigr) \times 100, \, B: 100 \times 1, \; C: 1 \times \bigl(100 \bigr)$

 $\left(\frac{1}{2} \times 100, B : 100 \times 1, C : 1 \times 100 \right)$

Multiply matrices *A*, *B*

 $AB[i,j] = \sum_{n=1}^{n-1}$ *k*=0 *A*[*i, k*]*B*[*k, j*]

- Dimensions must be compatible
	- \blacksquare *A* : *m* \times *n*, *B* : *n* \times *p*
	- \blacksquare *AB* : *m* \times *p*
- Computing each entry in AB is $O(n)$
- Overall, computing AB is $O(mnp)$
- **Matrix multiplication is associative**
	- \blacksquare *ABC* = (*AB*)*C* = *A*(*BC*)
	- Bracketing does not change answer
	- \blacksquare ... but can affect the complexity!

 290

Let $A: 1 \times 100$, $B: 100 \times 1$, $C: 1 \times 100$ ■ Computing *A(BC)* B *BC* : 100 \times 100, takes $100 \cdot 1 \cdot 100 = 10000$ steps to compute $\begin{array}{c|c}\n 100 \times 1, & C:1 \times 100 \\
 \hline\n \text{takes} & \text{if } \\
 0000 \text{ steps to compute}\n \end{array}$

 \blacksquare *A*(*BC*): 1 × 100, takes

 $1 \cdot 100 \cdot 100 = 10000$ steps to compute

Multiply matrices *A*, *B*

 $AB[i,j] = \sum_{n=1}^{n-1}$ *k*=0 *A*[*i, k*]*B*[*k, j*]

- Dimensions must be compatible
	- \blacksquare *A* : *m* \times *n*, *B* : *n* \times *p*
	- \blacksquare *AB* : $m \times p$
- Computing each entry in AB is $O(n)$
- Overall, computing AB is $O(mnp)$
- **Matrix multiplication is associative**
	- \blacksquare *ABC* = (*AB*)*C* = *A*(*BC*)
	- Bracketing does not change answer
	- \blacksquare ... but can affect the complexity!
- Let $A: 1 \times 100$, $B: 100 \times 1$, $C: 1 \times 100$
- Computing *A(BC)*
	- B *BC* : 100 \times 100, takes

 $100 \cdot 1 \cdot 100 = 10000$ steps to compute

- \blacksquare *A*(*BC*): 1 × 100, takes $1 \cdot 100 \cdot 100 = 10000$ steps to compute
- Computing (*AB*)*C* \blacksquare *AB* : 1 \times 1, takes puting $(AB)C$
 $AB : 1 \times 1$, takes
 $1 \cdot 100 \cdot 1 = 100$ steps to compute
	-
	- $(AB)C$: 1×100 , takes
		- $1 \cdot 1 \cdot 100 = 100$ steps to compute

 $\mathbf{A} \cdot \mathbf{A} \cdot \mathbf{B} \cdot \mathbf{A} \cdot \mathbf{B} \cdot \mathbf{A}$

Multiply matrices *A*, *B*

 $AB[i,j] = \sum_{n=1}^{n-1}$ *k*=0 *A*[*i, k*]*B*[*k, j*]

- Dimensions must be compatible
	- \blacksquare *A* : *m* \times *n*, *B* : *n* \times *p*
	- \blacksquare *AB* : *m* \times *p*
- Computing each entry in AB is $O(n)$
- Overall, computing AB is $O(mnp)$
- **Matrix multiplication is associative**
	- \blacksquare *ABC* = (*AB*)*C* = *A*(*BC*)
	- Bracketing does not change answer
	- \blacksquare ... but can affect the complexity!

■ Let $A: 1 \times 100$, $B: 100 \times 1$, $C: 1 \times 100$ 1 × 100, B : 100 × 1, C : 1 × 100

ing A(BC)

- Computing *A(BC)*
	- B *BC* : 100 \times 100, takes

 $100 \cdot 1 \cdot 100 = 10000$ steps to compute

- \blacksquare *A*(*BC*): 1 × 100, takes $A(BC): 1 \times 100$, takes
 $1 \cdot 100 \cdot 100 = 10000$ steps to compute
- Computing (*AB*)*C*
	- \blacksquare *AB* : 1 \times 1, takes
		- $1 \cdot 100 \cdot 1 = 100$ steps to compute
	- $(AB)C$: 1×100 , takes
		- $1 \cdot 1 \cdot 100 = 100$ steps to compute
- \blacksquare 20000 steps vs 200 steps!
Multiplying matrices

■ Multiply matrices *A*, *B*

 $AB[i,j] = \sum_{n=1}^{n-1}$ *k*=0 *A*[*i, k*]*B*[*k, j*]

- Dimensions must be compatible
	- \blacksquare *A* : *m* \times *n*, *B* : *n* \times *p*
	- \blacksquare *AB* : $m \times p$
- Computing each entry in *AB* is *O*(*n*)
- Overall, computing AB is $O(mnp)$
- **Matrix multiplication is associative**
	- \blacksquare *ABC* = (*AB*)*C* = *A*(*BC*)
	- Bracketing does not change answer
	- \blacksquare ... but can affect the complexity!

Multiplying matrices

Multiply matrices *A*, *B*

 $AB[i,j] = \sum_{n=1}^{n-1}$ *k*=0 *A*[*i, k*]*B*[*k, j*]

- Dimensions must be compatible
	- $A: m \times n$, $B: n \times p$
	- \blacksquare *AB* : *m* \times *p*
- Computing each entry in *AB* is *O*(*n*)
- Overall, computing AB is $O(mnp)$
- **Matrix multiplication is associative**
	- \blacksquare *ABC* = (*AB*)*C* = *A*(*BC*)
	- Bracketing does not change answer
	- \blacksquare ... but can affect the complexity!
- Given *n* matrices M_0 : $r_0 \times c_0$. $M_1: r_1 \times c_1, \ldots, M_{n-1}: r_{n-1} \times c_{n-1}$
	- Dimensions match: $r_i = c_{i-1}, 0 < j < n$
	- **••** Product $M_0 \cdot M_1 \cdots M_{n-1}$ can be computed

э

Multiplying matrices

Multiply matrices *A*, *B*

 $AB[i,j] = \sum_{n=1}^{n-1}$ *k*=0 *A*[*i, k*]*B*[*k, j*]

- Dimensions must be compatible
	- $A: m \times n$, $B: n \times p$
	- \blacksquare *AB* : $m \times p$
- Computing each entry in *AB* is *O*(*n*)
- Overall, computing AB is $O(mnp)$
- **Matrix multiplication is associative**
	- \blacksquare *ABC* = (*AB*)*C* = *A*(*BC*)
	- Bracketing does not change answer
	- \blacksquare ... but can affect the complexity!
- Given *n* matrices M_0 : $r_0 \times c_0$, $M_1: r_1 \times c_1, \ldots, M_{n-1}: r_{n-1} \times c_{n-1}$
	- Dimensions match: $r_i = c_{i-1}, 0 < j < n$
	- **••** Product $M_0 \cdot M_1 \cdots M_{n-1}$ can be computed
- \blacksquare Find an optimal order to compute the product
	- **Multiply two matrices at a time**
	- \blacksquare Bracket the expression optimally

 \triangleright \rightarrow \exists \rightarrow

G.

 \blacksquare Final step combines two subproducts $(M_0 \cdot M_1 \cdots M_{k-1}) \cdot (M_k \cdot M_{k+1} \cdots M_{n-1})$ for some $0 < k < n$

- \blacksquare Final step combines two subproducts $(M_0 \cdot M_1 \cdots M_{k-1}) \cdot (M_k \cdot M_{k+1} \cdots M_{n-1})$ for some $0 < k < n$
- **First factor is** $r_0 \times c_{k-1}$ **, second is** $r_k \times c_{n-1}$, where $r_k = c_{k-1}$

4 D F

∍

- \blacksquare Final step combines two subproducts $(M_0 \cdot M_1 \cdots M_{k-1}) \cdot (M_k \cdot M_{k+1} \cdots M_{n-1})$ for some $0 < k < n$
- First factor is $r_0 \times c_{k-1}$, second is $r_k \times c_{n-1}$, where $r_k = c_{k-1}$
- Let $C(0, n-1)$ denote the overall cost

- \blacksquare Final step combines two subproducts $(M_0 \cdot M_1 \cdots M_{k-1}) \cdot (M_k \cdot M_{k+1} \cdots M_{n-1})$ for some $0 < k < n$
- **First factor is** $r_0 \times c_{k-1}$ **, second is** $r_k \times c_{n-1}$, where $r_k = c_{k-1}$
- Let $C(0, n-1)$ denote the overall cost
- **Final multiplication is** $O(r_0 r_k c_{n-1})$

- \blacksquare Final step combines two subproducts $(M_0 \cdot M_1 \cdots M_{k-1}) \cdot (M_k \cdot M_{k+1} \cdots M_{n-1})$ for some $0 < k < n$
- First factor is $r_0 \times c_{k-1}$, second is $r_k \times c_{n-1}$, where $r_k = c_{k-1}$
- Let $C(0, n-1)$ denote the overall cost
- **Final multiplication is** $O(r_0r_kc_{n-1})$
- \blacksquare Inductively, costs of factors are $C(0, k-1)$ and $C(k, n-1)$

∍

- \blacksquare Final step combines two subproducts $(M_0 \cdot M_1 \cdots M_{k-1}) \cdot (M_k \cdot M_{k+1} \cdots M_{n-1})$ for some $0 < k < n$
- **First factor is** $r_0 \times c_{k-1}$ **, second is** $r_k \times c_{n-1}$, where $r_k = c_{k-1}$
- Let $C(0, n-1)$ denote the overall cost
- **Final multiplication is** $O(r_0r_kc_{n-1})$
- \blacksquare Inductively, costs of factors are $C(0, k-1)$ and $C(k, n-1)$
- $C(0, n-1) =$ $C(0, k-1) + C(k, n-1) + r_0 r_k c_{n-1}$

э

- \blacksquare Final step combines two subproducts $(M_0 \cdot M_1 \cdots M_{k-1}) \cdot (M_k \cdot M_{k+1} \cdots M_{n-1})$ for some $0 < k < n$
- **First factor is** $r_0 \times c_{k-1}$ **, second is** $r_k \times c_{n-1}$, where $r_k = c_{k-1}$
- \blacksquare Let $C(0, n-1)$ denote the overall cost
- **Final multiplication is** $O(r_0r_kc_{n-1})$
- \blacksquare Inductively, costs of factors are $C(0, k-1)$ and $C(k, n-1)$
- $C(0, n-1) =$ $C(0, k-1) + C(k, n-1) + r_0 r_k c_{n-1}$

Which *k* should we choose?

- \blacksquare Final step combines two subproducts $(M_0 \cdot M_1 \cdots M_{k-1}) \cdot (M_k \cdot M_{k+1} \cdots M_{n-1})$ for some $0 < k < n$
- **First factor is** $r_0 \times c_{k-1}$ **, second is** $r_k \times c_{n-1}$, where $r_k = c_{k-1}$
- Let $C(0, n-1)$ denote the overall cost
- **Final multiplication is** $O(r_0r_kc_{n-1})$
- \blacksquare Inductively, costs of factors are $C(0, k-1)$ and $C(k, n-1)$
- $C(0, n-1) =$ $C(0, k-1) + C(k, n-1) + r_0 r_k c_{n-1}$
- Which *k* should we choose?
	- Try all and choose the minimum!

- \blacksquare Final step combines two subproducts $(M_0 \cdot M_1 \cdots M_{k-1}) \cdot (M_k \cdot M_{k+1} \cdots M_{n-1})$ for some $0 < k < n$
- First factor is $r_0 \times c_{k-1}$, second is $r_k \times c_{n-1}$, where $r_k = c_{k-1}$
- \blacksquare Let $C(0, n-1)$ denote the overall cost
- **Final multiplication is** $O(r_0r_kc_{n-1})$
- \blacksquare Inductively, costs of factors are $C(0, k-1)$ and $C(k, n-1)$
- $C(0, n-1) =$ $C(0, k-1) + C(k, n-1) + r_0 r_k c_{n-1}$
- Which *k* should we choose?
	- Try all and choose the minimum!
- Subproblems?

- \blacksquare Final step combines two subproducts $(M_0 \cdot M_1 \cdots M_{k-1}) \cdot (M_k \cdot M_{k+1} \cdots M_{n-1})$ for some $0 < k < n$
- First factor is $r_0 \times c_{k-1}$, second is $r_k \times c_{n-1}$, where $r_k = c_{k-1}$
- Let $C(0, n-1)$ denote the overall cost
- **Final multiplication is** $O(r_0r_kc_{n-1})$
- \blacksquare Inductively, costs of factors are $C(0, k-1)$ and $C(k, n-1)$
- $C(0, n-1) =$ $C(0, k-1) + C(k, n-1) + r_0 r_k c_{n-1}$
- Which *k* should we choose?
	- Try all and choose the minimum!
- Subproblems?
	- $M_0 \cdot M_1 \cdot \cdot \cdot M_{k-1}$ would decompose as $(M_0 \cdots M_{i-1}) \cdot (M_i \cdots M_{k-1})$
	- Generic subproblem is $M_i \cdot M_{i+1} \cdots M_k$

- \blacksquare Final step combines two subproducts $(M_0 \cdot M_1 \cdots M_{k-1}) \cdot (M_k \cdot M_{k+1} \cdots M_{n-1})$ for some $0 < k < n$
- **First factor is** $r_0 \times c_{k-1}$ **, second is** $r_k \times c_{n-1}$, where $r_k = c_{k-1}$
- \blacksquare Let $C(0, n-1)$ denote the overall cost
- **Final multiplication is** $O(r_0r_kc_{n-1})$
- \blacksquare Inductively, costs of factors are $C(0, k-1)$ and $C(k, n-1)$
- $C(0, n-1) =$ $C(0, k-1) + C(k, n-1) + r_0 r_k c_{n-1}$
- Which *k* should we choose?
	- Try all and choose the minimum!
- Subproblems?
	- $M_0 \cdot M_1 \cdots M_{k-1}$ would decompose as $(M_0 \cdots M_{i-1}) \cdot (M_i \cdots M_{k-1})$
	- Generic subproblem is $M_i \cdot M_{i+1} \cdots M_k$

 $C(j,k) = \frac{1}{2\pi i}$ inductive costs mult min_j*<sub><e*(*c*(*j*, ℓ -1) + *C*(ℓ , k) + *r_jr_ec_k*]

 M_W
 MW

 MW

 MW</sub>

final

- \blacksquare Final step combines two subproducts $(M_0 \cdot M_1 \cdots M_{k-1}) \cdot (M_k \cdot M_{k+1} \cdots M_{n-1})$ for some $0 < k < n$
- First factor is $r_0 \times c_{k-1}$, second is $r_k \times c_{n-1}$, where $r_k = c_{k-1}$
- \blacksquare Let $C(0, n-1)$ denote the overall cost
- **Final multiplication is** $O(r_0r_kc_{n-1})$
- \blacksquare Inductively, costs of factors are $C(0, k-1)$ and $C(k, n-1)$
- $C(0, n-1) =$ $C(0, k-1) + C(k, n-1) + r_0 r_k c_{n-1}$
- Which *k* should we choose?
	- Try all and choose the minimum!
- Subproblems?
	- $M_0 \cdot M_1 \cdot \cdot \cdot M_{k-1}$ would decompose as $(M_0 \cdots M_{i-1}) \cdot (M_i \cdots M_{k-1})$
	- Generic subproblem is $M_j \cdot M_{j+1} \cdots M_k$

 $C(j,k) =$ $\min_{i \leq \ell \leq k}$ $[C(j, \ell-1) + C(\ell, k) + r_i r_\ell c_k]$ -1 would decompose

-1 would decompose

-1 would decompose

-1 (*M_j* ... *M_{k-1}*)

-2 (*e*, *k*) + *r_j r_e*

-2 (*e*, *k*) + *r_j r_e*

-2 (*e*, *k*) + *r_j r_e*

Base case: $C(j, j) = 0$ for $0 \leq j \leq n$

化重新化重新

G.

 \blacksquare Compute $C(i, j)$, $0 \leq i, j < n$

Madhavan Mukund **Lecture 24, 21 November 2024** PDSP Lecture 24 17 / 20

- \blacksquare Compute $C(i, j)$, $0 \leq i, j \leq n$
	- **Only for** $i \leq j$
	- **Entries above main diagonal**

- \blacksquare Compute $C(i, j)$, $0 \leq i, j \leq n$
	- **D** Only for $i < j$
	- **Entries above main diagonal**
- $C(i, j)$ depends on $C(i, k-1)$, $C(k, j)$ for every $i < k < j$

$$
c(i,j)
$$

\n
$$
c(i, e-i) \qquad c(e,j)
$$

\n
$$
i < e \leq j
$$

- \blacksquare Compute $C(i, j)$, $0 \leq i, j \leq n$
	- **D** Only for $i < j$
	- **Entries above main diagonal**
- $C(i, j)$ depends on $C(i, k-1)$, $C(k, j)$ for every $i < k < j$

- \blacksquare Compute $C(i, j)$, $0 \leq i, j \leq n$
	- **D** Only for $i < j$
	- **Entries above main diagonal**
- $C(i, j)$ depends on $C(i, k-1)$, $C(k, j)$ for every $i < k < j$

- \blacksquare Compute $C(i, j)$, $0 \leq i, j \leq n$
	- **D** Only for $i < j$
	- **Entries above main diagonal**
- $C(i, j)$ depends on $C(i, k-1)$, $C(k, j)$ for every $i < k < j$

- \blacksquare Compute $C(i, j)$, $0 \leq i, j \leq n$
	- **D** Only for $i < j$
	- **Entries above main diagonal**
- $C(i, j)$ depends on $C(i, k-1)$, $C(k, j)$ for every $i < k < j$
	- $O(n)$ dependencies per entry, unlike LCW, LCS and ED

- \blacksquare Compute $C(i, j)$, $0 \leq i, j \leq n$
	- **D** Only for $i < j$
	- **Entries above main diagonal**
- $C(i, j)$ depends on $C(i, k-1)$, $C(k, j)$ for every $i < k < j$
	- $O(n)$ dependencies per entry, unlike LCW, LCS and ED
- Diagonal entries are base case

- \blacksquare Compute $C(i, j)$, $0 \leq i, j \leq n$
	- **D** Only for $i < j$
	- **Entries above main diagonal**
- $C(i, j)$ depends on $C(i, k-1)$, $C(k, j)$ for every $i < k < j$
	- $O(n)$ dependencies per entry, unlike LCW, LCS and ED
- Diagonal entries are base case
- \blacksquare Fill matrix by diagonal, from main diagonal

- \blacksquare Compute $C(i, j)$, $0 \leq i, j \leq n$
	- **D** Only for $i < j$
	- **Entries above main diagonal**
- $C(i, i)$ depends on $C(i, k-1)$, $C(k, j)$ for every $i < k < j$
	- $O(n)$ dependencies per entry, unlike LCW, LCS and ED
- Diagonal entries are base case
- \blacksquare Fill matrix by diagonal, from main diagonal

Madhavan Mukund Lecture 24, 21 November 2024 PDSP Lecture 24 17 / 20

- \blacksquare Compute $C(i, j)$, $0 \leq i, j \leq n$
	- **D** Only for $i < j$
	- **Entries above main diagonal**
- $C(i, j)$ depends on $C(i, k-1)$, $C(k, j)$ for every $i < k < j$
	- $O(n)$ dependencies per entry, unlike LCW, LCS and ED
- Diagonal entries are base case
- \blacksquare Fill matrix by diagonal, from main diagonal

Madhavan Mukund Lecture 24, 21 November 2024 PDSP Lecture 24 17 / 20

- \blacksquare Compute $C(i, j)$, $0 \leq i, j \leq n$
	- **D** Only for $i < j$
	- **Entries above main diagonal**
- $C(i, j)$ depends on $C(i, k-1)$, $C(k, j)$ for every $i < k < j$
	- $O(n)$ dependencies per entry, unlike LCW, LCS and ED
- Diagonal entries are base case
- \blacksquare Fill matrix by diagonal, from main diagonal

- \blacksquare Compute $C(i, j)$, $0 \leq i, j \leq n$
	- **D** Only for $i < j$
	- **Entries above main diagonal**
- $C(i, j)$ depends on $C(i, k-1)$, $C(k, j)$ for every $i < k < j$
	- $O(n)$ dependencies per entry, unlike LCW, LCS and ED
- Diagonal entries are base case
- \blacksquare Fill matrix by diagonal, from main diagonal

- \blacksquare Compute $C(i, j)$, $0 \leq i, j \leq n$
	- **D** Only for $i < j$
	- **Entries above main diagonal**
- $C(i, j)$ depends on $C(i, k-1)$, $C(k, j)$ for every $i < k < j$
	- $O(n)$ dependencies per entry, unlike LCW, LCS and ED
- Diagonal entries are base case
- \blacksquare Fill matrix by diagonal, from main diagonal

- \blacksquare Compute $C(i, j)$, $0 \leq i, j \leq n$
	- **Only for** $i < j$
	- **Entries above main diagonal**
- $C(i, i)$ depends on $C(i, k-1)$, $C(k, j)$ for every $i < k < j$
	- $O(n)$ dependencies per entry, unlike LCW, LCS and ED
- Diagonal entries are base case
- \blacksquare Fill matrix by diagonal, from main diagonal

$$
C\left(\mathbf{0},\mathbf{n}-\mathbf{n}\right)
$$

Implementation

```
def C(dim):
  # dim: dimension matrix,
  # entries are pairs (r_i,c_i)
  import numpy as np
 n = dim.shape[0]C = np{\text{.}zeros}((n,n))for i in range(n):
    C[i,i] = 0for diff in range(1,n):
    for i in range(0,n-diff): Accement step
      j = i + diffC[i, j] = C[i, i] +C[i+1,j] +
               dim[i][0]*dim[i+1][0]*dim[j][1]
      for k in range(i+1,i+1):
        C[i, j] = min(C[i, j],C[i, k-1] + C[k, j] +dim[i][0]*dim[k][0]*dim[j][1])
 return(C[0, n-1])II
```
 $E = 990$

Implementation

```
def C(dim):
  # dim: dimension matrix,
  # entries are pairs (r_i,c_i)
  import numpy as np
 n = dim.shape[0]C = np{\text .}zeros((n,n))for i in range(n):
    C[i,i] = 0for diff in range(1,n):
    for i in range(0,n-diff):
      i = i + diffC[i, i] = C[i, i] +C[i+1,j] +
               dim[i][0]*dim[i+1][0]*dim[j][1]
      for k in range(i+1,i+1):
        C[i, j] = min(C[i, j],C[i, k-1] + C[k, j] +dim[i][0]*dim[k][0]*dim[j][1])
 return(C[0, n-1])
```
Complexity

- We have to fill a table of size $O(n^2)$
- Filling each entry takes $O(n)$

 \Box Overall, $O(n^3)$

GH.