
PDSP 2024, Lecture 04, 20 August 2024

Primes upto

Last time we wrote these functions to compute prime numbers upto .

def isprime(n):

 for i in range(2,n):

 if n % i == 0:

 return(False)

 return(True)

def primesupto(n):

 primelist = []

 for j in range(2,n+1):

 if isprime(j):

 primelist.append(j)

 return(primelist)

primesupto(30)

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

First primes

What if we want a list of the first primes?

Generate numbers 2,3,... and check if each one is a prime
Stop when we have generated primes

We don't know the upper bound of the list 2,3,...

Can't use range()

Instead, a new kind of loop

"Manually" generate the sequence
Stop when we reach the terminating condition

while (condition):

 statement 1

 ...

 statement k

If condition evaluates to True the block of k statements is executed
After this, the condition is checked again and the same process is repeated
Compare to if where the condition is evaluated once

if (condition):

 statement 1

 ...

 statement k

def nprimes(n):

 primelist = []

 i = 2

 while (len(primelist) < n):

n

n

In [1]:

In [2]:

In [3]:

Out[3]:

n

n

n

In [4]:

 if (isprime(i)):

 primelist.append(i)

 i = i+1

 return(primelist)

nprimes(20)

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71]

Infinite loops
Need to ensure that the statements make progress towards falsifying the condition
If the condition remains True forever, the loop never terminates
For instance, suppose there were only finitely many primes, say . For any , the length of
primelist would saturate at so the condition len(primelist) < n would never

become False

Looping --- for and while

while is more general than for

Can implement

for x in l:

 ...

using while by explicitly going through l from first to last position

pos = 0

while (pos < len(l)):

 ...

 pos = pos + 1

Note that we have to move the position "manually" to ensure that we make progress towards
termination
However, using for is preferred if it is clearly an iteration over a fixed sequence

The intent is capture much more clearly
In the while form it is slightly obfuscated

Efficiency
To check if is a prime, we can stop testing factors at , rather than checking all numbers in
range(2,n)

Another possibility is to only check prime factors smaller than
This is the principle behind the Sieve of Eratosthenes

We modify isprime to take a list of primes and only check for factors from this list

def sieve(plist,n):

 for p in plist:

 if n % p == 0:

 return(False)

 return(True)

Note that the function does not check that plist contains all primes below n

In [5]:

Out[5]:

M n >M

M

n √n

n

In [6]:

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

In fact, it does not even check that elements of plist are actually primes
We have to call it with an appropriate list of primes for it to work correctly

def primesuptosieve(n):

 primelist = []

 for j in range(2,n+1): # INVARIANT: primelist is primes upto j-1

 if sieve(primelist,j):

 primelist.append(j)

 return(primelist)

Each time we update the value of j in for , we have all primes less than j in primelist
This is called an invariant of the loop, or loop invariant
This invariant guarantees that the call to sieve passes the correct list of primes as the first
argument

primesuptosieve(70)

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67]

primesupto(70)

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67]

Checking efficiency

How can we validate whether the new function is more efficient?
Empirically, one can see how long it takes to run on large inputs
To avoid generating large lists in the output, we modify the function to report the largest prime
below , rather than the list of all primes

def primesupto(n):

 primelist = []

 for j in range(2,n+1):

 if isprime(j):

 primelist.append(j)

 lastprime = j

 return(lastprime)

def primesuptosieve(n):

 primelist = []

 for j in range(2,n+1): # INVARIANT: primelist is primes upto j-1

 if sieve(primelist,j):

 primelist.append(j)

 lastprime = j

 return(lastprime)

For , both functions report the answer "instantaneously"

primesupto(1000)

997

primesuptosieve(1000)

997

In [7]:

In [8]:

Out[8]:

In [9]:

Out[9]:

n

In [10]:

In [11]:

n = 1000

In [12]:

Out[12]:

In [13]:

Out[13]:

For , we see a small delay in the execution of primesupto , whereas
primesuptosieve is still "instantaneous"

primesupto(10000)

9973

primesuptosieve(10000)

9973

For , the difference between the two functions is more clear

primesupto(100000)

99991

primesuptosieve(100000)

99991

Later we will see how to measure and report execution time
We will also understand why the behaviour for , and is as
observed

Which is better?

Which do we expect to be faster --- checking all factors upto or all primes below

If we check factors upto we check numbers

How many primes are there below ? The Prime Number Theorem tells us this is of the order

, so we check this many numbers

Since is much smaller than , the sieve method is actually less efficient than checking all
factors upto

An improved solution
Combine the two ideas
Check all prime factors upto

We pass a list of all primes below , as before
When iterating through this list, if we cross without finding a factor, we declare the
number is a prime
Note that the final return(True) is probably never executed

def sievesqrt(plist,n):

 import math

 for p in plist:

 if p > math.sqrt(n):

 return(True) # No prime factors below sqrt(n)

 if n % p == 0:

 return(False)

 return(True) # Does this statement ever execute?

n = 10000

In [14]:

Out[14]:

In [15]:

Out[15]:

n = 100000

In [16]:

Out[16]:

In [17]:

Out[17]:

n = 1000 n = 10000 n = 100000

√n n

√n √n =
n

√n
n

n

logn
logn √n

√n

√n
n

√n

In [18]:

https://en.wikipedia.org/wiki/Prime_number_theorem

Modify our search for primes to call sievesqrt rather than sieve

def primesuptosievesqrt(n):

 primelist = []

 for j in range(2,n+1): # INVARIANT: primelist is primes upto j-1

 if sievesqrt(primelist,j):

 primelist.append(j)

 lastprime = j

 return(lastprime)

Compare times for large , say

primesuptosievesqrt(200000)

199999

primesuptosieve(200000)

199999

primesupto(200000) # Warning, takes a long time!

199999

Boolean datatypes
Usually an outcome of comparisons: == , != , < , <= , > , >=
Useful shortcut

Any "empty" value is interpreted as False
So 0 , [] , "" (empty string) are all False
Any other value is interpreted as True

Avoid comparisons such as if x == 0 or if l != []
Write if not(x) , if l instead

l = [1,2,3]

if l:

 x = True

else:

 x = False

x

True

m = 0

if not(m):

 y = True

else:

 y = False

y

True

Note that Python does not insist on brackets around the condition in if and while
Can write if (cond): or if cond: , while (cond): or while cond:

In [19]:

n n = 200000

In [20]:

Out[20]:

In [21]:

Out[21]:

In [22]:

Out[22]:

In [23]:

In [24]:

Out[24]:

In [25]:

In [26]:

Out[26]:

Variables, values and types
Variables (names) have no intrinsic types
Values have types

A variable inherits the type of the value it currently holds
The type of value a variable holds can vary over time

But not a good idea to use the same name for different types of values in the same piece of
code
Reduces readability, maintainability

The type() function returns the type of a variable that is currently assigned a value

x = True

type(x)

bool

x = 5

type(x)

int

The function del() unassigns a value from a name

del(x)

type(x)

NameError Traceback (most recent call last)

Cell In[32], line 1

----> 1 type(x)

NameError: name 'x' is not defined

Conditional statement
if allows conditional execution

if condition:

 statement 1

 ...

 statement k

else:

 statement 1'

 ...

 statement k'

If condition evaluates to True , the first block is executed, otherwise the second block.
The else: block is optional. If there is no else: block and the condition evaluates to
False , execution skips over to the next statement after the if

Example: Compute the absolute value of a number

In [27]:

In [28]:

Out[28]:

In [29]:

In [30]:

Out[30]:

In [31]:

In [32]:

def myabs(x): # myabs to avoid any confusion with built-in abs()

 if x < 0:

 return(-x)

 else:

 return(x)

myabs(-9), myabs(7)

(9, 7)

Multiway branching --- elif

Suppose we want to compute

In Python, we would have to nest if statements like this:

if x < 0:

 return(-1)

else:

 if x == 0:

 return(0):

 else:

 return(1)

As we see, the indentation of the nested if pushes the code to the right
With more cases, this would become worse
Python provides elif to avoid this cascaded nesting

if x < 0:

 return(-1)

elif x == 0:

 return(0):

else:

 return(1)

Can have as many elif blocks as you need
else is still optional

def sign(x):

 if x < 0:

 return(-1)

 elif x == 0:

 return(0)

 else:

 return(1)

sign(-7)

-1

sign(8)

1

sign(0)

0

In [33]:

In [34]:

Out[34]:

sign(x) =
⎧
⎨
⎩

x < 0 = −1,
x = 0 = 0,
x > 0 = 1

In [35]:

In [36]:

Out[36]:

In [37]:

Out[37]:

In [38]:

Out[38]:

