PDSP 2024, Lecture 06, 27 August 2024

List membership

e v in 1 returns True iffvalue v isin 1
e Implicit iteration, same as

def element(l,v):
for x in 1:
if x ==
return(True)
return(False)

e Linear scan of the list, examine all elements (worst case) if v isnotin 1

e Find unique elements in a list

def uniq(l):
newl = []
for x in 1: # newl is unique elements to the left of x
if not (x in newl):
newl.append(x)
return(newl)

uniqg([1,3,5,3,8,5,7,9])

[1, 3, 5, 8, 7, 9]

Tuples

e Sequence of values in round brackets - (v1,v2,...,vk)
e Typically values are not of a uniform type

= Collect together different attributes of an item

= Row in a table; each column is an attribute

t = ("Visakhapatnam","DC","CSK","DC","DC",192)

¢ Positional indexing, slicing like other sequences

t[4],t[-1]
('DC', 192)
t[1:4]

(‘DC', 'CSK', 'DC')
o [terate over a tuple

= print() printsits arguments --- either a message (string) or value of a variable

for x in t:
print("x is", x, ", to repeat", x)

is Visakhapatnam , to repeat Visakhapatnam
is DC , to repeat DC

is CSK , to repeat CSK

is DC , to repeat DC

is DC , to repeat DC

is 192 , to repeat 192

X X X X X X

'RR'"in t
print(t)
('Visakhapatnam', 'DC', 'CSK', 'DC', 'DC', 192)

¢ Unlike lists, cannot update a component of a tuple

t = ("Visakhapatnam","DC","CSK","DC","DC",192) # Change Team 2 to 'RR' from 'CSK'

t[2] = 'RR'

TypeError Traceback (most recent call last)
Cell In[9], line 1
----> 1 &[2] = 'RR!'

TypeError: 'tuple' object does not support item assignment

e Can concatenate tuples using +
= Update a tuple by assembling a new tuple
¢ Be careful, insert a comma to indicate a singleton tuple: (v,) vs (v)

u=t[0:2]+('RR")+t[3:] # No difference between 'RR' and ('RR')

TypeError Traceback (most recent call last)
Cell In[10], line 1
---->1u = E[0:2]+(*'RR*")+t[3:] # No difference between 'RR' and ('RR')

TypeError: can only concatenate tuple (not "str") to tuple

u=t[0:2]+('RR',)+t[3:] # ('RR',) 1is recognized a singleton tuple
u
('Visakhapatnam', 'DC', 'RR', 'DC', 'DC', 192)
e Canuse list() to converta tuple to a list
list(t)
['Visakhapatnam', 'DC', 'CSK', 'DC', 'DC', 192]
e Ingeneral list() works provided its argument is a sequence
list(range(5))
(o, 1, 2, 3, 4]
e If the argumentis not a sequence, list() generates an error

list(7)

TypeError Traceback (most recent call last)
Cell In[20], line 1
----> 1 list(7)

TypeError: 'int' object is not iterable

e (Can assign a tuple of variables in one shot
= Useful for initialising multiple quantities
= In nprimes() we started with primelist = [] and p = 2

(primelist,p) = ([1,2)

Equivalent to
primelist = []
p =2

e (x,y) = (y,x) swapsthevaluesof x and y
= All values on rhs are old values
= All values on |hs are new assignments
= Cannot be done sequentially
o Not equivalentto x = y followed by y = x orvice versa
¢ Normally, swap requires a temporary variable

t=y
y =X
X =t

e Imagine exchanging the contents of a glass of juice and a glass of milk
= Need a third empty glass

(5,11
(y,x)

(x,y)
(x,y)

X,y

([1, 5)

e Whenwesay x,y wemean (x,y) --brackets may be omitted
e Python inserts them to display the value to us

x,y =5,[]
X,y

(5, 1)
Strings

e Also sequences, of characters

e String values can be enclosed in single or double quotes
= 'Chennai' or "Chennai"

¢ Allows a value that has a quote to be easily embedded
= "Fermat's Last Theorem"
= 'He said, "Thank you!"

¢ If you need to use both single and double quotes inside the string, use a triple quote!
= '''He said, "That's great!"'"'

s = '''He said, "That's great!"'"'

S

'He said, "That\'s great!"'

e Python prefers to render strings using single quote
e Embedded quotes are "escaped" using \ to remove their special meaning

o Like lists and tuples, can access elements of a string by position, or by slices

s = "hello"
s[1]

o

s[2:4]

K

¢ Some languages have a separate type char for a single character
= Astring is then a sequence of char

e In Python, there is only the string type str
= Asingle character is the same as a string of length 1

s[1] == "e" # Logically speaking, s[1] is a single character

True

¢ Concatenate strings using +

s = "hello"
t = "there"
s+t
"hellothere'

o Like tuples, cannot update parts of a string directly

s[3] = "p"

TypeError Traceback (most recent call last)
Cell In[35], line 1
S 1 5[3] = ||p||

TypeError: 'str' object does not support item assignment

e Instead, assemble a new string from the old one

s = s[0:3] + "p" + s[4:]

S

"helpo’

e Can iterative over strings and check membership, like lists
e For iteration, no distinction between a string "xyz" andthelist ["x","y","z"]

def vowel(c):
return(c in "aieou")

vowel("a"),vowel("b")

(True, False)

def countvowels(s):
count = 0
for c in s:
if vowel(c):
count = count+l
return(count)

countvowels("hello")

2

vowel(7)

TypeError Traceback (most recent call last)
Cell In[42], line 1

----> 1 vowel(7)

Cell In[38], line 2, in (c)
1 def vowel(c):
oo P return(c in "aieou")

TypeError: 'in <string>' requires string as left operand, not int

vowel ("there")

False

e We have seenthat list() and int() can be use to convert values from one type to
another
o Likewise str() convertsits argumentto a string
= Almost any value converts sensibly into a "readable" representation
= print(v) implicitly converts v to str(v) to display on screen

str([1,2,3])

‘[1, 2, 31"
str(77)
I77I

e Can convert a string to a number if the contents can be intepreted sensibly

int('77")
77

int('hello")

ValueError Traceback
Cell In[47]1, line 1
----> 1 [int('hello')
ValueError: invalid literal for int() with base 10:

int('77.5'") # 77.5 is a number, but not an int

ValueError Traceback
Cell In[48], line 1

(most recent call last)

'hello’

(most recent call last)

----> 1 @nt(*'772.5") # 77.5 is a number, but not an int
ValueError: invalid literal for int() with base 10: '77.5'
float('77.5")
77.5
Dictionaries
e Alistis a collection indexed by position
e Alist can be thought of as a function f : {0,1,...,n — 1} — {vo,v1,...,Up-1}
= A list maps positions to values
e Generalize this to a function f : {ko, k1,...,kn—1} — {vo,v1,...,0n-1}

= Instead of positions, index by an abstract key
¢ dictionary: maps keys, rather than positions, to values
¢ Notation:

= d = {kl:vl, k2:v2} ,h enumerate a dictionary explicitly

= d[k1l],valueindictionary d1 corresponding to key k1l

= {}, emptydictionary ([] forlists, () for tuples)

d={'a'":1,'b":17,'c':0}
dl'b']
17

d['d'] # Invalid key

KeyError Traceback
Cell In[52], line 1
---->1d['d"] # Invalid key

KeyError: 'd'
d['d'] = 17
d['d']

17

(most recent call last)

e Anassignment d[k] = v serves two purposes
= If thereis no key k, create the key and assign it the value v
= If thereis already a key k , replace its current value by v

¢ In alist, we cannot create a value at a new position through an assignment
= If Lis [0,1,2,3], L[4] = 4 generate IndexError

m Ifd={'a'":1,'b':17,'c':0}, d['d'] = 19 extends d with a new key-value
pair

Iteration

e d.keys() generates asequence of all keysin d
= Jterate over keys using for k in d.keys():
= for k in d: alsoworks-- d isimplicitly intepreted as d.keys()

= Though the keys do not form a sequence, Python will generate them in the order in
which they were created

e Similarly, d.values() isthe sequence of values present
d={'a":1,'b"':17,'c"':0}
list(d.keys()), list(d.values())
(['a', 'b*, 'c'l, [1, 17, 0O])
d={'b":17,'c':0,'a':1}
list(d.keys()), list(d.values())
(['b", ‘'c', 'a'l, [17, 0, 1])
Example

e Count frequency of letters in a string
e Maintain a counter for each letter that appears in the string

e Dictionary freqd where each key is a letter ¢ and freqd[c] is a positive integer
= The first time we see a letter, need to create a key and assign it the value 1
= Ifthere is already a key for the current letter, increment its count
= Testifakey k ispresentusing k in d.keys() (or, shorter, k in d)

def frequency(s):
freqd = {}
for c in s:
if c in freqd: # Check if c is already a key
freqd[c] = freqd[c] + 1
else: # Create a new key with count 1
freqd[c] =1
return(freqd)

d = frequency("hello")

