
PDSP 2024, Lecture 07, 29 August 2024

matchlist = [

 ("Chennai","RCB","CSK","RCB","CSK",174),

 ("Mohali","DC","PK","PK","PK",175),

 ("Kolkata","KKR","SRH","SRH","KKR",209),

 ("Jaipur","RR","LSG","RR","RR",194),

 ("Ahmedabad","GT","MI","MI","GT",169),

 ("Bengaluru","PK","RCB","RCB","RCB",177),

 ("Chennai","CSK","GT","GT","CSK",207),

 ("Hyderabad","SRH","MI","MI","SRH",278),

 ("Jaipur","RR","DC","DC","RR",186),

 ("Bengaluru","RCB","KKR","KKR","KKR",183),

 ("Lucknow","LSG","PK","LSG","LSG",200),

 ("Ahmedabad","SRH","GT","SRH","GT",163),

 ("Visakhapatnam","DC","CSK","DC","DC",192),

 ("Mumbai","MI","RR","RR","RR",126),

 ("Bengaluru","LSG","RCB","RCB","LSG",182),

 ("Visakhapatnam","KKR","DC","KKR","KKR",273),

 ("Ahmedabad","GT","PK","PK","PK",200),

 ("Hyderabad","CSK","SRH","SRH","SRH",166),

 ("Jaipur","RCB","RR","RR","RR",184),

 ("Mumbai","MI","DC","DC","MI",235),

 ("Lucknow","LSG","GT","LSG","LSG",164),

 ("Chennai","KKR","CSK","CSK","CSK",138),

 ("Mohali","SRH","PK","PK","SRH",183),

 ("Jaipur","RR","GT","GT","GT",197),

 ("Mumbai","RCB","MI","MI","MI",197),

 ("Lucknow","LSG","DC","LSG","DC",168),

 ("Mohali","PK","RR","RR","RR",148),

 ("Kolkata","LSG","KKR","KKR","KKR",162),

 ("Mumbai","CSK","MI","MI","CSK",207),

 ("Bengaluru","SRH","RCB","RCB","SRH",288),

 ("Kolkata","KKR","RR","RR","RR",224),

 ("Ahmedabad","GT","DC","DC","DC",90),

 ("Mohali","MI","PK","PK","MI",193),

 ("Lucknow","CSK","LSG","LSG","LSG",177),

 ("Delhi","SRH","DC","DC","SRH",267),

 ("Kolkata","KKR","RCB","RCB","KKR",223),

 ("Mohali","PK","GT","PK","GT",143),

 ("Jaipur","MI","RR","MI","RR",180),

 ("Chennai","CSK","LSG","LSG","LSG",211),

 ("Delhi","DC","GT","GT","DC",225),

 ("Hyderabad","RCB","SRH","RCB","RCB",207),

 ("Kolkata","KKR","PK","PK","PK",262),

 ("Delhi","DC","MI","MI","DC",258),

 ("Lucknow","LSG","RR","RR","RR",197),

 ("Ahmedabad","GT","RCB","RCB","RCB",201),

 ("Chennai","CSK","SRH","SRH","CSK",213),

 ("Kolkata","DC","KKR","DC","KKR",154),

 ("Lucknow","MI","LSG","LSG","LSG",145),

 ("Chennai","CSK","PK","PK","PK",163),

 ("Hyderabad","SRH","RR","SRH","SRH",202),

 ("Mumbai","KKR","MI","MI","KKR",170),

 ("Bengaluru","GT","RCB","RCB","RCB",148),

 ("Dharamsala","CSK","PK","PK","CSK",168),

 ("Lucknow","KKR","LSG","LSG","KKR",236),

 ("Mumbai","SRH","MI","MI","MI",174),

 ("Delhi","DC","RR","RR","DC",222),

 ("Hyderabad","LSG","SRH","LSG","SRH",166),

 ("Dharamsala","RCB","PK","PK","RCB",242),

 ("Ahmedabad","GT","CSK","CSK","GT",232),

 ("Kolkata","KKR","MI","MI","KKR",158),

 ("Chennai","RR","CSK","RR","CSK",142),

 ("Bengaluru","RCB","DC","DC","RCB",188),

 ("Delhi","DC","LSG","LSG","DC",209),

 ("Guwahati","RR","PK","RR","PK",145),

 ("Mumbai","LSG","MI","MI","LSG",215),

 ("Bengaluru","RCB","CSK","CSK","RCB",219),

 ("Hyderabad","PK","SRH","PK","SRH",215),

 ("Ahmedabad","SRH","KKR","SRH","KKR",160),

 ("Ahmedabad","RCB","RR","RR","RR",173),

 ("Chennai","SRH","RR","RR","SRH",176),

 ("Chennai","SRH","KKR","SRH","KKR",114)

]

Extract unique elements from a list

Standard loop builds a new list of unique elements
Check if each element in the original list is already in the new list before adding

In [1]:

def uniq(l):

 newl = []

 for x in l:

 if not (x in newl):

 newl.append(x)

 return(newl)

Complexity
Worst case is when original list has no duplicates
l[k] will be compared to k elements in newl before being added to newl

Takes steps, which is

Proportional to

Using a dictionary
Cannot have duplicate keys in a dictionary
Create a dictionary whose keys are values in the original list

Value associated with key is not important
If we see the same value twice, the key will be updated, not duplicated

In the end, return the list of keys

def uniqd(l):

 newd = {}

 for x in l:

 newd[x] = 1

 return(list(newd))

Complexity
Creating/updating a key in a dictionary takes a fixed amount of time, independent of the size of the dictionary

Assuming the hash function works well and there are no (or very few) collisions
This works effectively in time proportional to , the length of the list

We can experimentally verify this by applying both functions to a large list without duplicates
In the examples below, we have asked for the length of the list rather than the list itself to avoid large outputs cluttering the
page

len(uniq(list(range(100000)))) # Takes a long time

100000

len(uniqd(list(range(100000)))) # Almost instantaneous

100000

Nested collections
List of lists, list of tuples, dictionary whose values are lists ...
matchlist is a list of tuples

Use two indices to extract a value
matchlist[3] is ("Jaipur","RR","LSG","RR","RR",194)
matchlist[3][1] is "RR"

List of teams who played IPL 2024

def get_teams(l):

 teamlist = []

 for m in l:

 teamlist.append(m[1]) # Add team 1 for match m

 teamlist.append(m[2]) # Add team 2 for match m

 return(uniqd(teamlist)) # Remove duplicates

get_teams(matchlist)

['RCB', 'CSK', 'DC', 'PK', 'KKR', 'SRH', 'RR', 'LSG', 'GT', 'MI']

Map

Apply a function to each element in a list

In [2]:

1 + 2 +⋯n− 1
n(n− 1)

2
n2

In [3]:

n

In [4]:

Out[4]:

In [5]:

Out[5]:

In [6]:

In [7]:

Out[7]:

f()

Convert to
In Python, map(f,l) applies f to each element of l

Example

List full names of teams that played in IPL 2024
First, a function to map team abbreviations to full names, using a dictionary

def expand(s):

 teamdict = {'CSK':'Chennai Super Kings',

 'PK':'Punjab Kings',

 'SRH':'Sunrisers Hyderabad',

 'LSG':'Lucknow Super Giants',

 'MI':'Mumbai Indians',

 'RCB':'Royal Challengers Bengaluru',

 'GT':'Gujarat Titans',

 'DC':'Delhi Capitals',

 'KKR':'Kolata Knight Riders',

 'RR':'Rajasthan Royals'}

 if (s in teamdict):

 return(teamdict[s])

 else:

 return('No info')

Now, we can map this function to the outcome of our earlier function

teams = get_teams(matchlist)

map(expand,teams)

<map at 0x7fbf3032f1c0>

Output of map is a sequence, but not a list, like range
Explicitly convert it to a list

list(map(expand,teams))

['Royal Challengers Bengaluru',

'Chennai Super Kings',

'Delhi Capitals',

'Punjab Kings',

'Kolata Knight Riders',

'Sunrisers Hyderabad',

'Rajasthan Royals',

'Lucknow Super Giants',

'Gujarat Titans',

'Mumbai Indians']

Since expand returns No info for unknown keys, the following works
Note that keys need not be of uniform type: 7 is merely an unknown key, not an invalid one because it is not a string

list(map(expand,['xxx','yyy',7]))

['No info', 'No info', 'No info']

Filter
Check if each item in a list satisfies a property
Retain only such elements
Filter out elements that do not satisfy
In Python, filter(p,l)

Example

List matches where CSK won the toss
First define the filter function -- returns True or False

def csktosswin(t): # t is expected to be one tuple from matchlist

 return(t[3] == 'CSK')

Now, filter matchlist using this function

list(filter(csktosswin,matchlist))

[x0,x1,… ,xn−1] [f(x0), f(x1),… , f(xn−1)]

In [8]:

In [9]:

In [10]:

Out[10]:

In [11]:

Out[11]:

In [12]:

Out[12]:

x p(x)

p()

In [13]:

In [14]:

[('Chennai', 'KKR', 'CSK', 'CSK', 'CSK', 138),

('Ahmedabad', 'GT', 'CSK', 'CSK', 'GT', 232),

('Bengaluru', 'RCB', 'CSK', 'CSK', 'RCB', 219)]

List comprehension
Combine map and filter to create a list
Set comprehension: Squares of positive even integers =
In Python: [f(x) for x in l if p(x)]

Example

Full names of all teams in IPL 2024

[expand(t) for t in get_teams(matchlist)]

['Royal Challengers Bengaluru',

'Chennai Super Kings',

'Delhi Capitals',

'Punjab Kings',

'Kolata Knight Riders',

'Sunrisers Hyderabad',

'Rajasthan Royals',

'Lucknow Super Giants',

'Gujarat Titans',

'Mumbai Indians']

List both teams in matches where CSK won the toss

[(t[1],t[2]) for t in matchlist if t[3] == "CSK"]

[('KKR', 'CSK'), ('GT', 'CSK'), ('RCB', 'CSK')]

Same, with full names

[(expand(t[1]),expand(t[2])) for t in matchlist if t[3] == "CSK"]

[('Kolata Knight Riders', 'Chennai Super Kings'),

('Gujarat Titans', 'Chennai Super Kings'),

('Royal Challengers Bengaluru', 'Chennai Super Kings')]

Similar notation works for dictionaries
Create a dictionary matching team abbreviations to full names for teams in IPL 2024

{ t:expand(t) for t in get_teams(matchlist) }

{'RCB': 'Royal Challengers Bengaluru',

'CSK': 'Chennai Super Kings',

'DC': 'Delhi Capitals',

'PK': 'Punjab Kings',

'KKR': 'Kolata Knight Riders',

'SRH': 'Sunrisers Hyderabad',

'RR': 'Rajasthan Royals',

'LSG': 'Lucknow Super Giants',

'GT': 'Gujarat Titans',

'MI': 'Mumbai Indians'}

{ t:expand(t) for t in get_teams(matchlist) }

{'RCB': 'Royal Challengers Bengaluru',

'CSK': 'Chennai Super Kings',

'DC': 'Delhi Capitals',

'PK': 'Punjab Kings',

'KKR': 'Kolata Knight Riders',

'SRH': 'Sunrisers Hyderabad',

'RR': 'Rajasthan Royals',

'LSG': 'Lucknow Super Giants',

'GT': 'Gujarat Titans',

'MI': 'Mumbai Indians'}

Recall that uniqd created a list of unique items via keys of a dictionary
Here is a short way to do this using list comprehension

list({ x[2]:1 for x in matchlist})

['CSK', 'PK', 'SRH', 'LSG', 'MI', 'RCB', 'GT', 'DC', 'KKR', 'RR']

Out[14]:

{x2 ∣ x ∈ Z,x > 0}

In [15]:

Out[15]:

In [16]:

Out[16]:

In [17]:

Out[17]:

In [18]:

Out[18]:

In [19]:

Out[19]:

In [20]:

Out[20]:

Uses the fact that a dictionary d when interpreted as a sequence is implcitly d.keys()
list(d) looks for a sequence d

Can also do the equivalent of relational algebra selection and projection
Project matchlist onto columns team 1, team 2, target (columns 1,2,5) where CSK won the toss

Filter by CSK winning the toss (select)
Project onto columns 1,2,5

[(t[1],t[2],t[5]) for t in matchlist if t[3] == "CSK"]

[('KKR', 'CSK', 138), ('GT', 'CSK', 232), ('RCB', 'CSK', 219)]

Mutable and immutable values

Lists and dictionaries can be updated in place
Can reassign l[i] or d[k]
These are mutable values

Numbers (int , float), booleans, strings, tuples cannot be updated in place
Immutable values

Mutability and assignment
Assiging a mutable value creates an alias
Updating through either the old or the new name indirectly affects the other

l = [1,2,3]

newl = l

newl[0] = 4

l, newl

([4, 2, 3], [4, 2, 3])

l[1] = 5

l, newl

([4, 5, 3], [4, 5, 3])

For immutable values, assignment behaves as we would expect
The two names can be updated without affecting each other

It is as though assignment copies the value

x = 17

y = x

y = 19

x, y

(17, 19)

x = 18

x, y

(18, 19)

We can update a mutable value inside a function
However, we should be careful to use updates that do not reassign the name
Use l.append(v) vs l = l + [v]

def bad(l,v):

 l = l + [v]

 print(l)

 return

def good(l,v):

 l.append(v)

 print(l)

 return

In [21]:

Out[21]:

In [22]:

In [23]:

Out[23]:

In [24]:

In [25]:

Out[25]:

In [26]:

In [27]:

Out[27]:

In [28]:

In [29]:

Out[29]:

In [30]:

In [31]:

bad(l,v) appends v within the function, but creates a new copy of l in the process, that is different from the l passed as an
argument

l = [1,2,3]

bad(l,4)

[1, 2, 3, 4]

good(l,v) on the other hand updates l in place, so the effect is visible outside

l

[1, 2, 3]

good(l,4)

[1, 2, 3, 4]

l

[1, 2, 3, 4]

We can update bad(l,v) to return the modified list, but then we have to reassign l to the returned value

def bad2(l,v):

 l = l + [v]

 print(l)

 return(l)

l = [1,2,3]

returnlist = bad2(l,4)

[1, 2, 3, 4]

l,returnlist

([1, 2, 3], [1, 2, 3, 4])

l = [1,2,3]

l = bad2(l,4)

[1, 2, 3, 4]

l

[1, 2, 3, 4]

In [32]:

In [33]:

In [34]:

Out[34]:

In [35]:

In [36]:

Out[36]:

In [37]:

In []:

In [38]:

In [39]:

Out[39]:

In [40]:

In [41]:

Out[41]:

