Lecture 08, 10 September 2024

Mutable and immutable values

e Lists and dictionaries are mutable
e int, float, bool, str,tuple areimmutable

e For immutable values, assignment copies the value

5
X
7 # Does not affect the value of x

<
nmnu

X,y

(5, 7)

e For mutable values, assigment aliases the new name to point to the same value as the old name
¢ Updating through either name affects both

11 = [1,2,3]
12 =11
12[0] = 4
11,12

([4, 2, 31, [4, 2, 3])
11[2] = 6
11,12

(14, 2, 61, [4, 2, 6])

Slices and copying lists

e Aslice creates a new list
e 1[0:1len(1)] isafaithful copy of 1
= Abbreviateas 1[:1], full slice
e Assigning a full slice makes a disjoint copy of a list

11 = [1,2,3]
12 = 11[:]
1,12

(rr, 2, 31, [1, 2, 3])

11[2] = 6
12[0] = 4
11, 12

(r1, 2, 61, [4, 2, 3])

Pitfalls of mutability

zerorow = [0,0,0]
zeromat = [zerorow, zerorow, zerorow]
zeromat

[[o, o, 0], [0, 0, O], [0, O, O]]

zeromat[2][2] = 33

zeromat

[fe, o, 331, [0, 0, 33], [0, O, 33]]



zerorow
[0, 6, 33]

e This happens because updating any row in zeromat impliciltly updates zerolist
e And vice versa

zerorow[0] = 11

zeromat

[rii, o, 331, [11, o, 331, [11, 0, 33]]

An aside

e Multiplication is repeated addtion'n X m =n+n-+---+n
R

m-~times
e Forlists, + denotes concatenation
e 1+1+1+1 can be written as 1*4

4 +4 + 4

12

4*3

12

[0,0,0] + [0,0,0] + [0,0,0]
[0, 6, 6, 0, 6, 0, 0, 0, 0]

[0,0,0]*3

(e, o, e, 6, 0, 0, 6, 0, 0]

e This does not avoid list aliasing issues

zerorow = [0,0,0]

zerolist = [zerorow]*3

zerolist

[[0, @, 0], [0, O, O], [0, 0, O]]
zerolist[1][1] = 44

zerolist

[[0, 44, 0], [0, 44, 0], [0, 44, 0]]

Calling functions

e Suppose we have a function definition def f(a,b): and afunctioncall f(x,y)
e When f(x,y) isexecuted, itisasthoughwe start f with the assignments

a = X
b=y

¢ This explains how/when values can be updated within a function

def factorial(n):
ans = 1
while n >= 1:
ans = ans * n
n =n-1
return(ans)

6
factorial(x)

x
nn

X,y



(6, 720)

¢ Inside the function, the parameter n is decremented to 0

e n isderived from the variable x passed when the function is called

e Since x isimmutable, the implicit assignment n = x copies the value of x into n
e Updating n has no effecton x

¢ This also means we cannot write a function swap along the following lines

def swap(x,y):
(x,y) = (y,x)
return

(5, 7)

Passing mutable values to a function

e Passing an argument is like executing an assignment statement before starting the function
e For mutable values, this aliases the function parameter to the called value
¢ In place changes in the function affect the value outside the function

def concat(l1,12):
11.extend(12)

return
13 = [1,2,3]
14 = [4,5,6]

concat(13,14)

13,14

(f1, 2, 3, 4, 5, 61, [4, 5, 6])

o If we pass a slice, the value in the function is a disjoint copy

13 =[1,2,3]
14 = [4,5,6]
concat(13[:1,14[:1])

13,14
(f1, 2, 31, (4, 5, 6])
e However, reassigning the variable inside the function creates a new value not connected to the outer value

def concat2(11,12):

1=11+12
return

13 = [1,2,3]

14 = [4,5,6]

concat2(13,14)

13,14 # No effect - reassignment in function creates a local copy

(11, 2, 31, [4, 5, 6]1)

e Infact, our problem with swap() applies to mutable values as well
e The statement (m,n) = (n,m) isareassignment and creates new values inside the function

swap(13,14)

13,14

(r1, 2, 31, [4, 5, 6])



e Be careful not to mix reassignment with in-place modification
e What is the outcome of the following?

def myappend(1,x):
1 = l.append(x)
return(l)

11 = [1,2]
11 = myappend(11,3)

11

print(11)

None

e None is aspecial value in Python that explicitly represents that no value is assigned
e A function that does not return a value returns None
e In the notebook, the value is "empty", but print() displaysitas None
= Inother words, str(None) convertsthe value None to the string "None"
e None has its own type which is not compatible with any other type, so no operations are legal
str(None)
'None'
print(None)
None

type(None)

NoneType

e Setting a variable to None is different from leaving it undefined
x =17

type(x)
int

del(x)

NameError Traceback (most recent call last)
Cell In[53], line 1
----> 1 X

NameError: name 'x' is not defined

X = None

e We can test if a variable is set to None
e We will use this later

X == None

True

More on equality

e x ==y checksthat x and y contain the same value
e Anassignment 12 = 11 aliases 12 to pointto the samelistas 11

= Naturally, we expect 12 == 11 tobe True

= But there is a stronger relationship, because 11 and 12 are the same value
e x is y checksif x and y refer to the same value

» If x is y holds, it must be that x ==

= Converse is not true



11 = [1,2,3]
12 =11
13 = 11[:]

11 == 12, 11 == 13
(True, True)

11 is 12, 11 is 13

(True, False)

e X is y can also be tested for immutable values, but the outcome is not useful or reliable

x is y # Not useful for immutable values

True

X =5
y=5

X is y
True

"hello"

%]
nn



