Lecture 09, 12 September 2024

Scope and global variables

e The scope of a variable refers to the portion of the program where its value is available
o If we refer to a value that is not defined in a function, it is looked up in the global context

def f():
y =X + 22
print(y)
return

x =7
f()

29

e As soon as we assign a variable a value inside a function, all instances of that variable are treated as local to the function

e This decision is static based on the program text. In the code below, we cannot be sure that the assignment x = 33 will
execute, but Python still denotes x to belocalto f()

def f():
y = X + 22
print(y)
if y > 1000:
X = 33
return

UnboundLocalError Traceback (most recent call last)
Cell In[2], line 9

6 return
8 x =7
----> 9 f()

Cell In[2], line 2, in f()
1 def f():

—-e> 2 y =X + 22
3 print(y)
4 if y > 1000:

UnboundLocalError: cannot access local variable 'x' where it is not associated with a value

e More examples of using global values within a function without redefining the variable

def display count():
print(count)
return

def display upto count():
for i in range(count):
print(count+i)
return

count = 7

display count()

display upto_count()

7
8
9
10
11
12
13

e If we try to update count inside the function, both occurrences become local
e The occurrence on the right hand side of the assignment generates an error because its value is now undefined



def increment_local(k):
count = count+k
return

increment local(2)

UnboundLocalError Traceback (most recent call last)
Cell In[9], line 1
----> 1 increment_local(2)

Cell In[8], line 2, in (k)
1 def increment local(k):

----> 2 count = count+k
8 return

UnboundLocalError: cannot access local variable 'count' where it is not associated with a value
e Reassigning a variable within a function disconnects it from the external variable with the same name

def reset local(k):
count = k
return

reset local(77)

count

7

e We can declare a variable to be global to override Python's default scope rules

def increment global(k):
global count
count = count+k
return

increment_global(8)

display count()
15

e The default rule about local scope applies to mutable values as well

def concat local():

11 =11+ 12
return

11 = [1,2,3]

12 = [4,5,6]

concat local()

UnboundLocalError Traceback (most recent call last)
Cell In[17], line 3

111 = [1,2,3]

2 12 = [4,5,6]
----> 3 concat_local()

Cell In[16], line 2, in ()
1 def concat local():

ce-> 2 11 = | + 12
8 return

UnboundLocalError: cannot access local variable 'l11' where it is not associated with a value

def concat global():

global 11
11 =11 + 12
return

11 = [1,2,3]

12 = [4,5,6]

concat _global()

11, 12

(1, 2, 3, 4, 5, 61, [4, 5, 6])



e We can define a value inside a function and "export" it outside by declaring it global

del(11)
del(12)

def concat_global():
global 11
11 = [1,2,3]
11 =11 + 12
return

12 = [4,5,6]
concat _global()

11

[1, 2, 3, 4, 5, 6]



