Lecture 10, 17 September 2024

Arrays

« Contiguous block of memory
o Typically size is declared in advance, all values are uniform
e a[0] points to first memory location in the allocated block
e Locate a[i] in memory using index arithmetic
= Skip i blocks of memory, each block's size determined by value stored in array
* Random access -- accessing the valueat a[i] doesnotdependon i
o Useful for procedures like sorting, where we need to swap out of order values a[i] and a[j]
= ali], aljl = aljl, alil
= Cost of such a swap is constant, independent of where the elements to be swapped are in the array
 Inserting or deleting a value is expensive

» Need to shift elements right or left, respectively, depending on the location of the modification

Lists

o Each location is a cell, consisiting of a value and a link to the next cell
= Think of a list as a train, made up of a linked sequence of cells
e Thename of thelist 1 givesusaccessto 1[0] , the first cell
e Toreachcell 1[i] , we musttraverse the linksfrom 1[0] to 1[1] to 1[2] ...to 1[i-1] Jto 1[i]
= Takes time proportionalto i
e Costofswapping L[i] and 1[j] varies, dependingonvalues i and j
e On the other hand, if we are already at 1[1] modifying the list is easy
= Insert - create a new cell and reroute the links
= Delete - bypass the deleted cell by rerouting the links

o Each insert/delete requires a fixed amount of local "plumbing", independent of where in the list it is performed

Dictionaries

e Values are stored in a fixed block of size m
» Keysare mappedto {0,1,...,m — 1}
e Hash function h : K — S maps a large set of keys K to a smallrange S
» Simple hash function: interpret k € K as a bit sequence representing a number ny in binary, and compute nj, mod m, where |S| = m
« Mismatch in sizes means that there will be collisions -- k1 # k, but h(k1) = h(kz)
e Agood hash function maps keys "randomly" to minimize collisions
» Hash can be used as a signature of authenticity
= Modifying k slightly will drastically alter h(k)
= No easy way to reverse engineer a k¥’ to map to a given h(k)
= Use to check that large files have not been tampered with in transit, either due to network errors or malicious intervention
e Dictionary uses a hash function to map key values to storage locations
 Lookup requires computing h(k) which takes roughly the same time for any k
= Compare with computing the offset a[i] foranyindex i inanarray
e Collisions are inevitable, different mechanisms to manage this, which we will not discuss now

» Effectively, a dictionary combines flexibility with random access

Lists in Python

» Flexible size, allow inserting/deleting elements in between

« However, implementation is an array, rather than a list

« Initially allocate a block of storage to the list

* When storage runs out, double the allocation

« Ll.append(x) is efficient, moves the right end of the list one position forward within the array

« Ll.insert(0,x) insertsa value at the start, expensive because it requires shifting all the elements by 1

* We will run experiments to validate these claims

Measuring execution time

o Call time.perf counter()

e Actual return value is meaningless, but difference between two calls measures time in seconds

import time

« 107 appends to an empty Python list

start = time.perf counter()
1 =11
for i in range(10000000):
1.append (i)
elapsed = time.perf counter() - start
print(elapsed)

0.6168232130003162
e Doubling the work approximately doubles the time, linear

start = time.perf_counter()
1=1]
for i in range(20000000) :
1.append(i)
elapsed = time.perf counter() - start
print(elapsed)

1.4875409450032748
« 10 inserts at the beginning of a Python list

start = time.perf counter()
1 =11
for i in range(100000):
l.insert(0,1)
elapsed = time.perf counter() - start
print(elapsed)

1.4217620529816486
« Doubling and tripling the work multiplies the time by 4 and 9, respectively, so quadratic

start = time.perf counter()
1=1]
for i in range(200000):
l.insert(0,1i)
elapsed = time.perf counter() - start
print(elapsed)

5.139741463994142

start = time.perf_counter()
1=1]
for i in range(300000):
l.insert(0,1)
elapsed = time.perf counter() - start
print(elapsed)

11.383465348975733

e Creating 107 entries in an empty dictionary

start = time.perf counter()

d={}
for i in range(10000000,0,-1):
d[i] = i
elapsed = time.perf counter() - start
print(elapsed)

1.0553472369792871

« Doubling the operations, doubles the time, so linear

« Dictionaries are effectively random access

start = time.perf_counter()

d={}
for i in range(20000000,0,-1):
d[i] = i
elapsed = time.perf counter() - start
print(elapsed)

2.602921769954264

e Insert keys in random order
e Use the library function random.shuffle(1l) topermute the elementsof 1

import random

lhundred = list(range(100))
random.shuffle(lhundred)
print(lhundred)

[11, 37, 34, 12, 46, 41, 96, 6, 16, 13, 97, 76, 26, 47, 27, 28, 99, 62, 90, 0, 51, 81, 79, 35, 5, 48, 84, 53, 6

5, 85, 25, 82, 52, 57, 78, 23, 98, 54, 20, 63, 91,

19, 38, 75, 80, 7, 3, 64, 74, 2, 31, 72, 93, 39, 56, 71, 14,

30, 77, 40, 55, 43, 68, 69, 61, 29, 33, 9, 44, 36, 15, 32, 18, 94, 21, 24, 60, 49, 70, 22, 45, 92, 89, 17, 58, 1
0, 73, 66, 50, 59, 87, 4, 8, 1, 95, 88, 83, 67, 42, 86]

« Insert 10® keys in random order

» Note that we start the counter after we shuffle the list of keys, so we count only the time required to populate the dictionary

import random

keylist = list(range(1000000,0,-1))
rndkeylist = keylist[:]
random.shuffle(rndkeylist)

d={}
start = time.perf counter()
for i in keylist:
dfi] = i
elapsed = time.perf counter() - start
print("Sequential keys:", elapsed)

d={}
start = time.perf counter()
for i in rndkeylist:
d[i] = i
elapsed = time.perf counter() - start
print("Shuffled keys:", elapsed)

Sequential keys: 0.09673382097389549
Shuffled keys: 0.39740611804882064

» Double the number of keys to 2 x 10°

import random

keylist = list(range(2000000,0,-1))
rndkeylist = keylist[:]
random.shuffle(rndkeylist)

d={}
start = time.perf counter()
for i in keylist:
d[i] = i
elapsed = time.perf counter() - start
print("Sequential keys:", elapsed)

d={}
start = time.perf counter()
for i in rndkeylist:
dfi] = i
elapsed = time.perf counter() - start
print("Shuffled keys:", elapsed)

Sequential keys: 0.21819286403479055
Shuffled keys: 0.6841557070147246

« Triple the number of keys to 3 x 10°

import random

keylist = list(range(3000000,0,-1))
rndkeylist = keylist[:]
random.shuffle(rndkeylist)

d={}
start = time.perf_counter()
for i in keylist:
d[i] = i
elapsed = time.perf counter() - start
print("Sequential keys:", elapsed)

d={}
start = time.perf counter()
for i in rndkeylist:
dfi] = i
elapsed = time.perf counter() - start
print("Shuffled keys:", elapsed)

Sequential keys: 0.35756950796348974
Shuffled keys: 1.1829602149664424

» Using shuffled keys is about 3 times slower than inserting keys in sequence
« However, even after shuffling, the time taken grows approximately linearly

Implementing a "real" list using dictionaries

def createlist(): # Equivalent of 1 = [] is 1 = createlist()
return({})

def listappend(1,x):
if 1 == {}:
1["value"] = x
1 "next"] = {}
return

node = 1
while node["next"] != {}:
node = node["next"]

node["next"]["value"] = x
node["next"]["next"] = {}
return

def listinsert(l,x):
A7 U == s
1["value"] = x
1["next"] = {}
return

newnode = {}

newnode["value"] = 1["value"]
newnode["next"] = 1["next"]
1["value"] = x

1["next"] = newnode

return

def printlist(l):
print("{",end="")

A7 U == s
print("}")
return

node = 1

print(node["value"],end="")
while node["next"] != {}:
node = node["next"]
print(",",node["value"],end="")
print("}")
return

« Display a small list as nested dictionaries

start = time.perf counter()
1 = createlist()
for i in range(10):
listappend(l,1i)
elapsed = time.perf counter() - start
print(elapsed)
print(l)

0.013133806001860648
{'value': 0, 'next': {'value': 1, 'next': {'value': 2, 'next': {'value': 3, 'next': {'value': 4, 'next': {'valu
e': 5, 'next': {'value': 6, 'next': {'value': 7, 'next': {'value': 8, 'next': {'value': 9, 'next': {}}}}}}}}}}}

« Insert 107 elements at the beginning in this implementation of a list

start = time.perf counter()

1 = createlist()

for i in range(1000000):
listinsert(l,1i)

elapsed = time.perf counter() - start

print(elapsed)

1.2849651229917072

» Doubling the work doubles the time, so linear

start = time.perf_counter()
1 = createlist()

for i in range(2000000):
listinsert(l,1)

elapsed = time.perf counter() - start

print(elapsed)

3.5748096029856242
« Append 10* elements in this implementation of a list

start = time.perf counter()

1 = createlist()

for i in range(10000):
listappend(l,1i)

elapsed = time.perf counter() - start

print(elapsed)

2.831144590047188
e Halving the work takes 1/4 of the time, so quadratic

start = time.perf counter()
1 = createlist()
for i in range(5000):
listappend(l,1i)
elapsed = time.perf counter() - start
print(elapsed)

0.6491393339820206

Defining our own data structures

* We have implemented a "linked" list using dictionaries

e The fundamental functions like listappend, listinsert, listdelete modify the underlying list
o Instead of mylist = {} ,wewrote mylist = createlist()

e Tocheck empty list, use a function isempty() ratherthan mylist == {}

o Can we clearly separate the interface from the implementation

o Define the data structure in a more "modular" way

