
Lecture 10, 17 September 2024

Arrays
Contiguous block of memory
Typically size is declared in advance, all values are uniform
a[0] points to first memory location in the allocated block

Locate a[i] in memory using index arithmetic
Skip i blocks of memory, each block's size determined by value stored in array

Random access -- accessing the value at a[i] does not depend on i
Useful for procedures like sorting, where we need to swap out of order values a[i] and a[j]

a[i], a[j] = a[j], a[i]

Cost of such a swap is constant, independent of where the elements to be swapped are in the array
Inserting or deleting a value is expensive
Need to shift elements right or left, respectively, depending on the location of the modification

Lists
Each location is a cell, consisiting of a value and a link to the next cell

Think of a list as a train, made up of a linked sequence of cells
The name of the list l gives us access to l[0] , the first cell
To reach cell l[i] , we must traverse the links from l[0] to l[1] to l[2] to l[i-1]] to l[i]

Takes time proportional to i
Cost of swapping l[i] and l[j] varies, depending on values i and j
On the other hand, if we are already at l[i] modifying the list is easy

Insert - create a new cell and reroute the links
Delete - bypass the deleted cell by rerouting the links

Each insert/delete requires a fixed amount of local "plumbing", independent of where in the list it is performed

Dictionaries
Values are stored in a fixed block of size
Keys are mapped to
Hash function maps a large set of keys to a small range
Simple hash function: interpret as a bit sequence representing a number in binary, and compute , where
Mismatch in sizes means that there will be collisions -- , but
A good hash function maps keys "randomly" to minimize collisions
Hash can be used as a signature of authenticity

Modifying slightly will drastically alter
No easy way to reverse engineer a to map to a given
Use to check that large files have not been tampered with in transit, either due to network errors or malicious intervention

Dictionary uses a hash function to map key values to storage locations
Lookup requires computing which takes roughly the same time for any

Compare with computing the offset a[i] for any index i in an array
Collisions are inevitable, different mechanisms to manage this, which we will not discuss now
Effectively, a dictionary combines flexibility with random access

Lists in Python

Flexible size, allow inserting/deleting elements in between
However, implementation is an array, rather than a list
Initially allocate a block of storage to the list
When storage runs out, double the allocation
l.append(x) is efficient, moves the right end of the list one position forward within the array
l.insert(0,x) inserts a value at the start, expensive because it requires shifting all the elements by 1

We will run experiments to validate these claims

Measuring execution time

Call time.perf_counter()
Actual return value is meaningless, but difference between two calls measures time in seconds

import time

…

m

{0, 1,… ,m− 1}
h : K → S K S

k ∈ K nk nk mod m |S| = m

k1 ≠ k2 h(k1) = h(k2)

k h(k)

k′ h(k)

h(k) k

In [1]:

 appends to an empty Python list

start = time.perf_counter()

l = []

for i in range(10000000):

 l.append(i)

elapsed = time.perf_counter() - start

print(elapsed)

0.6168232130003162

Doubling the work approximately doubles the time, linear

start = time.perf_counter()

l = []

for i in range(20000000):

 l.append(i)

elapsed = time.perf_counter() - start

print(elapsed)

1.4875409450032748

 inserts at the beginning of a Python list

start = time.perf_counter()

l = []

for i in range(100000):

 l.insert(0,i)

elapsed = time.perf_counter() - start

print(elapsed)

1.4217620529816486

Doubling and tripling the work multiplies the time by and , respectively, so quadratic

start = time.perf_counter()

l = []

for i in range(200000):

 l.insert(0,i)

elapsed = time.perf_counter() - start

print(elapsed)

5.139741463994142

start = time.perf_counter()

l = []

for i in range(300000):

 l.insert(0,i)

elapsed = time.perf_counter() - start

print(elapsed)

11.383465348975733

Creating entries in an empty dictionary

start = time.perf_counter()

d = {}

for i in range(10000000,0,-1):

 d[i] = i

elapsed = time.perf_counter() - start

print(elapsed)

1.0553472369792871

Doubling the operations, doubles the time, so linear
Dictionaries are effectively random access

start = time.perf_counter()

d = {}

for i in range(20000000,0,-1):

 d[i] = i

elapsed = time.perf_counter() - start

print(elapsed)

2.602921769954264

Insert keys in random order
Use the library function random.shuffle(l) to permute the elements of l

107

In [2]:

In [3]:

105

In [4]:

4 9

In [5]:

In [6]:

107

In [7]:

In [9]:

import random

lhundred = list(range(100))

random.shuffle(lhundred)

print(lhundred)

[11, 37, 34, 12, 46, 41, 96, 6, 16, 13, 97, 76, 26, 47, 27, 28, 99, 62, 90, 0, 51, 81, 79, 35, 5, 48, 84, 53, 6

5, 85, 25, 82, 52, 57, 78, 23, 98, 54, 20, 63, 91, 19, 38, 75, 80, 7, 3, 64, 74, 2, 31, 72, 93, 39, 56, 71, 14,

30, 77, 40, 55, 43, 68, 69, 61, 29, 33, 9, 44, 36, 15, 32, 18, 94, 21, 24, 60, 49, 70, 22, 45, 92, 89, 17, 58, 1

0, 73, 66, 50, 59, 87, 4, 8, 1, 95, 88, 83, 67, 42, 86]

Insert keys in random order
Note that we start the counter after we shuffle the list of keys, so we count only the time required to populate the dictionary

import random

keylist = list(range(1000000,0,-1))

rndkeylist = keylist[:]

random.shuffle(rndkeylist)

d = {}

start = time.perf_counter()

for i in keylist:

 d[i] = i

elapsed = time.perf_counter() - start

print("Sequential keys:", elapsed)

d = {}

start = time.perf_counter()

for i in rndkeylist:

 d[i] = i

elapsed = time.perf_counter() - start

print("Shuffled keys:", elapsed)

Sequential keys: 0.09673382097389549

Shuffled keys: 0.39740611804882064

Double the number of keys to

import random

keylist = list(range(2000000,0,-1))

rndkeylist = keylist[:]

random.shuffle(rndkeylist)

d = {}

start = time.perf_counter()

for i in keylist:

 d[i] = i

elapsed = time.perf_counter() - start

print("Sequential keys:", elapsed)

d = {}

start = time.perf_counter()

for i in rndkeylist:

 d[i] = i

elapsed = time.perf_counter() - start

print("Shuffled keys:", elapsed)

Sequential keys: 0.21819286403479055

Shuffled keys: 0.6841557070147246

Triple the number of keys to

import random

keylist = list(range(3000000,0,-1))

rndkeylist = keylist[:]

random.shuffle(rndkeylist)

d = {}

start = time.perf_counter()

for i in keylist:

 d[i] = i

elapsed = time.perf_counter() - start

print("Sequential keys:", elapsed)

d = {}

start = time.perf_counter()

for i in rndkeylist:

 d[i] = i

elapsed = time.perf_counter() - start

print("Shuffled keys:", elapsed)

Sequential keys: 0.35756950796348974

Shuffled keys: 1.1829602149664424

In [10]:

106

In [11]:

2 × 106

In [12]:

3 × 106

In [14]:

Using shuffled keys is about 3 times slower than inserting keys in sequence
However, even after shuffling, the time taken grows approximately linearly

Implementing a "real" list using dictionaries

def createlist(): # Equivalent of l = [] is l = createlist()

 return({})

def listappend(l,x):

 if l == {}:

 l["value"] = x

 l["next"] = {}

 return

 node = l

 while node["next"] != {}:

 node = node["next"]

 node["next"]["value"] = x

 node["next"]["next"] = {}

 return

def listinsert(l,x):

 if l == {}:

 l["value"] = x

 l["next"] = {}

 return

 newnode = {}

 newnode["value"] = l["value"]

 newnode["next"] = l["next"]

 l["value"] = x

 l["next"] = newnode

 return

def printlist(l):

 print("{",end="")

 if l == {}:

 print("}")

 return

 node = l

 print(node["value"],end="")

 while node["next"] != {}:

 node = node["next"]

 print(",",node["value"],end="")

 print("}")

 return

Display a small list as nested dictionaries

start = time.perf_counter()

l = createlist()

for i in range(10):

 listappend(l,i)

elapsed = time.perf_counter() - start

print(elapsed)

print(l)

0.013133806001860648

{'value': 0, 'next': {'value': 1, 'next': {'value': 2, 'next': {'value': 3, 'next': {'value': 4, 'next': {'valu

e': 5, 'next': {'value': 6, 'next': {'value': 7, 'next': {'value': 8, 'next': {'value': 9, 'next': {}}}}}}}}}}}

Insert elements at the beginning in this implementation of a list

start = time.perf_counter()

l = createlist()

for i in range(1000000):

 listinsert(l,i)

elapsed = time.perf_counter() - start

print(elapsed)

1.2849651229917072

Doubling the work doubles the time, so linear

start = time.perf_counter()

l = createlist()

In [15]:

In [16]:

107

In [21]:

In [22]:

for i in range(2000000):

 listinsert(l,i)

elapsed = time.perf_counter() - start

print(elapsed)

3.5748096029856242

Append elements in this implementation of a list

start = time.perf_counter()

l = createlist()

for i in range(10000):

 listappend(l,i)

elapsed = time.perf_counter() - start

print(elapsed)

2.831144590047188

Halving the work takes 1/4 of the time, so quadratic

start = time.perf_counter()

l = createlist()

for i in range(5000):

 listappend(l,i)

elapsed = time.perf_counter() - start

print(elapsed)

0.6491393339820206

Defining our own data structures
We have implemented a "linked" list using dictionaries
The fundamental functions like listappend , listinsert , listdelete modify the underlying list
Instead of mylist = {} , we wrote mylist = createlist()
To check empty list, use a function isempty() rather than mylist == {}
Can we clearly separate the interface from the implementation
Define the data structure in a more "modular" way

104

In [23]:

In [24]:

