
RDBMS and SQL

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Lecture 12, 7 November 2024



Transactions

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 07 Nov 2029 2 / 18

Transfer money Ticket booking
Delit A Availa , liby
Credit B

Payment details It
A tnothing Passayer details Fails

What does this mean ?



Desirable properties

Atomicity

Consistency

Isolation

Durability

ACID properties

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 07 Nov 2029 3 / 18

-#ornothing wit possible interruptions/factures
OTP fails
Not enough balance

Intermediate state never visible



Desirable properties

Atomicity

Consistency

Isolation

Durability

ACID properties

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 07 Nov 2029 3 / 18

Internel keys - uniquene foreyn keys,
mill values

Invariana
money in

all accounts



Desirable properties

Atomicity

Consistency

Isolation

Durability

ACID properties

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 07 Nov 2029 3 / 18

Atomcty in the presence of concurrey

I
transfer (A , B , xe)

I ande
aSalance)

transac A = A-x
& for a in accords :

B=B +x Sum :sumt



Desirable properties

Atomicity

Consistency

Isolation

Durability

ACID properties

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 07 Nov 2029 3 / 18

g
- Persistence of update



Desirable properties

Atomicity

Consistency

Isolation

Durability

ACID properties

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 07 Nov 2029 3 / 18

What is the issue?

- Failures

- Efficiency , concurrent
transactions



Transaction logs

Log each update before it happens

Rollback updates in case of failure

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 07 Nov 2029 4 / 18

Transaction roll back

"Ophmusha" execution
Operatea fais
Operatosj

Operation k



Concurrent execution and schedules

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 07 Nov 2029 5 / 18

Scheduler
-

A, B

A% B



Concurrent execution and schedules

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 07 Nov 2029 6 / 18

- 1000 :A

comsignals successful ↓
end of transaction

↓



Concurrent execution and schedules

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 07 Nov 2029 6 / 18

- lowo

=> 100



Concurrent execution and schedules

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 07 Nov 2029 6 / 18

Wo Ayo
to as

EfE



Concurrent execution and schedules

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 07 Nov 2029 6 / 18

1000 -

What constitutes - love

-

a "good" schedule ? ↑ - 900

as-erases



Serializability

Serial schedule — each transaction executes as a block, no interleaving

Serializable schedule — equivalent to some serial schedule

Conflicting operations — two operations on the same value where at least one is a
write

Conflict equivalence — one schedule can be transformed into the other by
reordering non-conflicting operations

Conflict serializable — can be reordered to a conflict-equivalent serial schedule

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 07 Nov 2029 7 / 18

Di Ea
↳



Serializability

Serial schedule — each transaction executes as a block, no interleaving

Serializable schedule — equivalent to some serial schedule

Conflicting operations — two operations on the same value where at least one is a
write

Conflict equivalence — one schedule can be transformed into the other by
reordering non-conflicting operations

Conflict serializable — can be reordered to a conflict-equivalent serial schedule

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 07 Nov 2029 7 / 18



Serializability

Serial schedule — each transaction executes as a block, no interleaving

Serializable schedule — equivalent to some serial schedule

Conflicting operations — two operations on the same value where at least one is a
write

Conflict equivalence — one schedule can be transformed into the other by
reordering non-conflicting operations

Conflict serializable — can be reordered to a conflict-equivalent serial schedule

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 07 Nov 2029 7 / 18

Write updates (destroys) a value

W + WJ R + Rv
R+ wX
wo R



Serializability

Serial schedule — each transaction executes as a block, no interleaving

Serializable schedule — equivalent to some serial schedule

Conflicting operations — two operations on the same value where at least one is a
write

Conflict equivalence — one schedule can be transformed into the other by
reordering non-conflicting operations

Conflict serializable — can be reordered to a conflict-equivalent serial schedule

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 07 Nov 2029 7 / 18

-

equivalence - reorderly
RAR same variabl- Any ops on different vanath



Serializability

Serial schedule — each transaction executes as a block, no interleaving

Serializable schedule — equivalent to some serial schedule

Conflicting operations — two operations on the same value where at least one is a
write

Conflict equivalence — one schedule can be transformed into the other by
reordering non-conflicting operations

Conflict serializable — can be reordered to a conflict-equivalent serial schedule

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 07 Nov 2029 7 / 18



Conflict equivalence

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 07 Nov 2029 8 / 18

---
-

T

35 ↓



Conflict equivalence

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 07 Nov 2029 8 / 18

Serializable
T
,
then2

T



Testing for conflict serializability

Start with a schedule — interleaved sequence of operations from multiple
transactions

Build a graph, with transactions as nodes

Edge Ti → Tj if an earlier operation in Ti conflicts with a later operation in Tj

If this conflict graph has cycles, there is a circular dependency, not conflict
serializable

If the conflict graph is acyclic, use topological sort to order the transactions into a
serial schedule.

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 07 Nov 2029 9 / 18



Testing for conflict serializability

Start with a schedule — interleaved sequence of operations from multiple
transactions

Build a graph, with transactions as nodes

Edge Ti → Tj if an earlier operation in Ti conflicts with a later operation in Tj

If this conflict graph has cycles, there is a circular dependency, not conflict
serializable

If the conflict graph is acyclic, use topological sort to order the transactions into a
serial schedule.

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 07 Nov 2029 9 / 18



Testing for conflict serializability

Start with a schedule — interleaved sequence of operations from multiple
transactions

Build a graph, with transactions as nodes

Edge Ti → Tj if an earlier operation in Ti conflicts with a later operation in Tj

If this conflict graph has cycles, there is a circular dependency, not conflict
serializable

If the conflict graph is acyclic, use topological sort to order the transactions into a
serial schedule.

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 07 Nov 2029 9 / 18

T
↓E

TTj As
)



Testing for conflict serializability

Start with a schedule — interleaved sequence of operations from multiple
transactions

Build a graph, with transactions as nodes

Edge Ti → Tj if an earlier operation in Ti conflicts with a later operation in Tj

If this conflict graph has cycles, there is a circular dependency, not conflict
serializable

If the conflict graph is acyclic, use topological sort to order the transactions into a
serial schedule.

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 07 Nov 2029 9 / 18

Th T2

T-E r(A) T
& W(A)& r(A) ↓

WCA T3

rw(



Testing for conflict serializability

Start with a schedule — interleaved sequence of operations from multiple
transactions

Build a graph, with transactions as nodes

Edge Ti → Tj if an earlier operation in Ti conflicts with a later operation in Tj

If this conflict graph has cycles, there is a circular dependency, not conflict
serializable

If the conflict graph is acyclic, use topological sort to order the transactions into a
serial schedule.

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 07 Nov 2029 9 / 18

-

Directed Acyclic
Graph



Must be aTi

without an

--- incoming edge*To
it Yi-

ET

+ i2 Tz T4
T
, in Tz is



Transactions in SQL

START TRANSACTION, COMMIT, ROLLBACK

Isolation levels

Serializable

Repeatable read

Read committed

Read uncommitted

SET TRANSACTION ISOLATION LEVEL READ COMMITTED

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 07 Nov 2029 13 / 18



Transactions in SQL

START TRANSACTION, COMMIT, ROLLBACK

Isolation levels

Serializable

Repeatable read

Read committed

Read uncommitted

SET TRANSACTION ISOLATION LEVEL READ COMMITTED

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 07 Nov 2029 13 / 18



Transactions in SQL

START TRANSACTION, COMMIT, ROLLBACK

Isolation levels

Serializable

Repeatable read

Read committed

Read uncommitted

SET TRANSACTION ISOLATION LEVEL READ COMMITTED

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 07 Nov 2029 13 / 18



Transactions in SQL

START TRANSACTION, COMMIT, ROLLBACK

Isolation levels

Serializable

Repeatable read

Read committed

Read uncommitted

SET TRANSACTION ISOLATION LEVEL READ COMMITTED

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 07 Nov 2029 13 / 18



Transactions in SQL

START TRANSACTION, COMMIT, ROLLBACK

Isolation levels

Serializable

Repeatable read

Read committed

Read uncommitted

SET TRANSACTION ISOLATION LEVEL READ COMMITTED

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 07 Nov 2029 13 / 18



Transactions in SQL

START TRANSACTION, COMMIT, ROLLBACK

Isolation levels

Serializable

Repeatable read

Read committed

Read uncommitted

SET TRANSACTION ISOLATION LEVEL READ COMMITTED

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 07 Nov 2029 13 / 18



Transactions in SQL

START TRANSACTION, COMMIT, ROLLBACK

Isolation levels

Serializable

Repeatable read

Read committed

Read uncommitted

SET TRANSACTION ISOLATION LEVEL READ COMMITTED

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 07 Nov 2029 13 / 18



Concurrency control

Ensure that only serializable schedules are generated

Allow concurrency

Control access to data to avoid conflicts

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 07 Nov 2029 14 / 18



Concurrency control using locks

Each data item has an associated lock

Transaction locks an item before accessing

Transaction unlocks the item when done

Ensures non-interference

Shared and exclusive locks

To just read a value, use a shared lock — Lock-S(A)

Multiple transactions can simultaneously hold a shared lock

To write a value, use a exclusive lock — Lock-X(A)

Only one transaction can hold an exclusive lock

Can upgrade shared lock to exclusive lock, downgrade exclusive lock to shared lock

Lock manager handles lock requests

Maintain data structure about items, locks and pending requests — fairness, starvation

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 07 Nov 2029 15 / 18



Concurrency control using locks

Each data item has an associated lock

Transaction locks an item before accessing

Transaction unlocks the item when done

Ensures non-interference

Shared and exclusive locks

To just read a value, use a shared lock — Lock-S(A)

Multiple transactions can simultaneously hold a shared lock

To write a value, use a exclusive lock — Lock-X(A)

Only one transaction can hold an exclusive lock

Can upgrade shared lock to exclusive lock, downgrade exclusive lock to shared lock

Lock manager handles lock requests

Maintain data structure about items, locks and pending requests — fairness, starvation

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 07 Nov 2029 15 / 18



Concurrency control using locks

Each data item has an associated lock

Transaction locks an item before accessing

Transaction unlocks the item when done

Ensures non-interference

Shared and exclusive locks

To just read a value, use a shared lock — Lock-S(A)

Multiple transactions can simultaneously hold a shared lock

To write a value, use a exclusive lock — Lock-X(A)

Only one transaction can hold an exclusive lock

Can upgrade shared lock to exclusive lock, downgrade exclusive lock to shared lock

Lock manager handles lock requests

Maintain data structure about items, locks and pending requests — fairness, starvation

Madhavan Mukund RDBMS and SQL RDBMS-SQL, Lecture 12, 07 Nov 2029 15 / 18



With locks

-> Ensure non conflicting access

TI Tz

lock-X(A) - rock-X(B)
lock-x (B)= lock-X(A)

deadlock

so
10%

A+ B A+ B

Unlock(A) unlock (B)
unlock(B) Unlock (A)


