RDBMS and SQL

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Lecture 8, 17 October 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

■ Join — cartesian product combined with selection

3

イロト 不得下 イヨト イヨト

Joins in SQL

- Join cartesian product combined with selection
- Three specific types of join
 - Natural join
 - Outer join
 - Inner join

э

- Match tuples with the same values for all common attributes
- Retain only one copy of each common column.

э

- Match tuples with the same values for all common attributes
- Retain only one copy of each common column.
- List the names of instructors along with the course ID of the courses that they taught

```
select name, course_id
from students, takes
where student.ID = takes.ID;
```

- Match tuples with the same values for all common attributes
- Retain only one copy of each common column.
- List the names of instructors along with the course ID of the courses that they taught

```
select name, course_id
from students, takes
where student.ID = takes.ID;
```

Same query in SQL with natural join select name, course_id from student natural join takes;

- Match tuples with the same values for all common attributes
- Retain only one copy of each common column.
- List the names of instructors along with the course ID of the courses that they taught

```
select name, course_id
from students, takes
where student.ID = takes.ID;
```

- Same query in SQL with natural join select name, course_id from student natural join takes;
- Can join multiple relations at a time select A1, A2, ..., Am from r1 natural join r2 natural join ... natural join rn where P ;

Student Relation

(ID	name	dept_name	tot_cred
	00128	Zhang	Comp. Sci.	102
	12345	Shankar	Comp. Sci.	32
	19991	Brandt	History	80
	23121	Chavez	Finance	110
	44553	Peltier	Physics	56
	45678	Levy	Physics	46
	54321	Williams	Comp. Sci.	54
	55739	Sanchez	Music	38
	70557	Snow	Physics	0
	76543	Brown	Comp. Sci.	58
	76653	Aoi	Elec. Eng.	60
	98765	Bourikas	Elec. Eng.	98
	98988	Tanaka	Biology	120

Takes Relation

(ID	course_id	sec_id	semester	year	grade
V	00125	CS-101	1	Fall	2017	Α
	00128	CS-347	1	Fall	2017	A-
	12345	CS-101	1	Fa11	2017	С
	12345	CS-190	2	Spring	2017	Α
	12345	CS-315	1	Spring	2018	Α
	12345	CS-347	1	Fall	2017	Α
	19991	HIS-351	1	Spring	2018	В
	23121	FIN-201	1	Spring	2018	C+
	44553	PHY-101	1	Fall	2017	B-
	45678	CS-101	1	Fall	2017	F
	45678	CS-101	1	Spring	2018	B+
	45678	CS-319	1	Spring	2018	В
	54321	CS-101	1	Fall	2017	A-
	54321	CS-190	2	Spring	2017	B+
	55739	MU-199	1	Spring	2018	A-
	76543	CS-101	1	Fall	2017	Α
	76543	CS-319	2	Spring	2018	Α
	76653	EE-181	1	Spring	2017	С
	98765	CS-101	1	Fall	2017	C-
	98765	CS-315	1	Spring	2018	В
	98988	BIO-101	1	Summer	2017	Α
	98988	BIO-301	1	Summer	2018	null

student natural join takes

only me upy of D

V								
ID	name	dept_name	tot_cred	course_id	sec_id	semester	year	grade
00128	Zhang	Comp. Sci.	102	CS-101	1	Fall	2017	Α
00128	Zhang	Comp. Sci.	102	CS-347	1	Fall	2017	A-
12345	Shankar	Comp. Sci.	32	CS-101	1	Fall	2017	С
12345	Shankar	Comp. Sci.	32	CS-190	2	Spring	2017	Α
12345	Shankar	Comp. Sci.	32	CS-315	1	Spring	2018	Α
12345	Shankar	Comp. Sci.	32	CS-347	1	Fall	2017	Α
19991	Brandt	History	80	HIS-351	1	Spring	2018	В
23121	Chavez	Finance	110	FIN-201	1	Spring	2018	C+
44553	Peltier	Physics	56	PHY-101	1	Fall	2017	B-
45678	Levy	Physics	46	CS-101	1	Fall	2017	F
45678	Levy	Physics	46	CS-101	1	Spring	2018	B+
45678	Levy	Physics	46	CS-319	1	Spring	2018	В
54321	Williams	Comp. Sci.	54	CS-101	1	Fall	2017	A-
54321	Williams	Comp. Sci.	54	CS-190	2	Spring	2017	B+
55739	Sanchez	Music	38	MU-199	1	Spring	2018	A-
76543	Brown	Comp. Sci.	58	CS-101	1	Fall	2017	Α
76543	Brown	Comp. Sci.	58	CS-319	2	Spring	2018	Α
76653	Aoi	Elec. Eng.	60	EE-181	1	Spring	2017	С
98765	Bourikas	Elec. Eng.	98	CS-101	1	Fall	2017	C-
98765	Bourikas	Elec. Eng.	98	CS-315	1	Spring	2018	В
98988	Tanaka	Biology	120	BIO-101	1	Summer	2017	Α
98988	Tanaka	Biology	120	BIO-301	1	Summer	2018	null

Indert

Dangerous in Natural Join

- Beware of unrelated attributes with same name which get equated incorrectly
- Example -- List the names of students instructors along with the titles of courses that they have taken
 - Correct version

select name, title
from student natural join takes, course
where takes.course_id = course.course_id;

Incorrect version

select name, title from student natural join takes natural join course;

- This query omits all (student name, course title) pairs where the student takes a course in a department other than the student's own department.
- The correct version (above), correctly outputs such pairs.

lowe System towners - 7th Edition

List all players & rune scored Women's T20 WC Runs Scored Teams Player ID Name County PlayerID Runs

Outer Join

- An extension of the join operation that avoids loss of information
- Computes the join and then adds tuples form one relation that does not match tuples in the other relation to the result of the ioin.
- Uses *null* values
- Three forms of outer join:

 - left outer join crotra value on left right outer join crotra value on right full outer join crotra value on John sides

Outer Join Examples

Relation course

	course_id	title	dept_name	credits
	BIO-301	Genetics	Biology	4
\checkmark	CS-190	Game Design	Comp. Sci.	4
7	CS-315	Robotics	Comp. Sci.	3

Relation prereq

Observe that

course information is missing for CS-437 *prereg* information is missing for CS-315

Left Outer Join

course natural left outer join prereq

course_id	title	dept_name	credits	prereq_id
BIO-301	Genetics	Biology	4	BIO-101
CS-190	Game Design	Comp. Sci.	4	CS-101
CS-315	Robotics	Comp. Sci.	3	null

■ In relational algebra: course 🛏 prereq

Right Outer Join

course natural right outer join prereq

course_id	title	dept_name	credits	prereq_id
BIO-301	Genetics	Biology	4	BIO-101
CS-190	Game Design	Comp. Sci.	4	CS-101
CS-347	<i>null</i>	<i>null</i>	null	CS-101

■ In relational algebra: course 🗠 prereq

Full Outer Join

course natural full outer join prereq

course_id	title	dept_name	credits	prereq_id
BIO-301	Genetics	Biology	4	BIO-101
CS-190	Game Design	Comp. Sci.	4	CS-101
CS-315	Robotics	Comp. Sci.	3	<i>null</i>
CS-347	null	null	null	CS-101

■ In relational algebra: course 🔀 prereq

Joined Types and Conditions

- Join operations take two relations and return as a result another relation.
- These additional operations are typically used as subquery expressions in the **from** clause
- Join condition defines which tuples in the two relations match, and what attributes are present in the result of the join.
- Join type defines how tuples in each relation that do not match any tuple in the other relation (based on the join condition) are treated.

Join types	
inner join	
left outer join	
right outer join	
full outer join	

natural			
on <p< th=""><th>redicate></th></p<>	redicate>		
naina	(1. 1. 1)		

Joined Relations – Examples

course natural right outer join prereq

course_id	title	dept_name	credits	prereq_id
BIO-301	Genetics	Biology	4	BIO-101
CS-190 CS-347	Game Design	Comp. Sci.	4 null	CS-101 CS-101

course full outer join prereq using (course_id)

course_id	title	dept_name	credits	prereq_id
BIO-301	Genetics	Biology	4	BIO-101
CS-190	Game Design	Comp. Sci.	4	CS-101
CS-315	Robotics	Comp. Sci.	3	null
CS-347	null	null	null	CS-101

Joined Relations – Examples

course inner join prereq on course.course_id = prereq.course_id

course_id	title	dept_name	credits	prereq_id	course_id
BIO-301	Genetics	Biology	4	BIO-101	BIO-301
CS-190	Game Design	Comp. Sci.	4	CS-101	CS-190

- What is the difference between the above, and a natural join?
- course left outer join prereq on course.course_id = prereq.course_id

course_id	title	dept_name	credits	prereq_id	course_id
BIO-301 CS-190	Genetics Game Design	Biology Comp. Sci.	4	BIO-101 CS-101	BIO-301 CS-190
CS-315	Robotics	Comp. Sci.	3	null	null

Views in SQL

Views are virtual tables

Views are virtual tables

■ Hide sensitive information from some users — hide salary

select ID, name, dept_name from instructor

э

- Views are virtual tables
- Hide sensitive information from some users hide salary

select ID, name, dept_name
from instructor

Create convenient "intermediate tables"

select instructor.name, course.title
from instructor,course natural join teaches

View Definition and Use

Faculty (1D, name dept no A view of instructors without their salary name create view faculty as select ID, name, dept name to populate view from instructor Find all instructors in the Biology department select name from faculty where dept name = 'Biology' Create a view of department salary totals create view departments total salary(dept name, total salary) as select dept_name, sum (salary) from instructor group by dept_name; No go

Views Defined Using Other Views

- One view may be used in the expression defining another view
- A view relation v₁ is said to *depend directly* on a view relation v₂ if v₂ is used in the expression defining v₁
- A view relation v₁ is said to depend on view relation v₂ if either v₁ depends directly to v₂ or there is a path of dependencies from v₁ to v₂
- A view relation *v* is said to be *recursive* if it depends on itself.

V K V2 Avoid cyclic dependencie

Views Defined Using Other Views

- create view physics_fall_2017 as select course course_id_sec_id, building, room_number from course, section where course.course_id = section.course_id and course.dept_name = 'Physics' and section.semester = 'Fall' and section.year = '20 17';
- create view physics_fall_2011_watson as select course_id, room_number from physics_fall_2017 where building= 'Watson';

Materialized Views

- Certain database systems allow view relations to be physically stored.
 - Physical copy created when the view is defined.
 - Such views are called Materialized view:
- If relations used in the query are updated, the materialized view result becomes out of date
 - Need to maintain the view, by updating the view whenever the underlying relations are updated.

Update of a View

- Add a new tuple to *faculty* view which we defined earlier insert into *faculty* values ('30765', 'Green', 'Music');
- This insertion must be represented by the insertion into the instructor relation
 - Must have a value for salary.
- Two approaches
 - Reject the insert
 - Inset the tuple

('30765', 'Green', 'Music', null)

into the instructor relation

Some Updates Cannot be Translated Uniquely

- create view instructor_info as select ID, name, building from instructor, department where instructor.dept_name= department.dept_name;
- insert into instructor_info

values ('69987', 'White', 'Taylor');

- Issues
 - Which department, if multiple departments in Taylor?
 - What if no department is in Taylor?

And Some Not at All

- create view history_instructors as select * from instructor where dept_name= 'History';
- What happens if we insert ('25566', 'Brown', 'Biology', 100000) into history_instructors?

View Updates in SQL

- Most SQL implementations allow updates only on simple views
 - The **from** clause has only one database relation.
 - The **select** clause contains only attribute names of the relation, and does not have any expressions, aggregates, or **distinct** specification.
 - Any attribute not listed in the **select** clause can be set to null
 - The query does not have a **group** by or **having** clause.

Built-in Data Types in SQL

- date: Dates, containing a (4 digit) year, month and date
 - Example: date '2005-7-27'
- time: Time of day, in hours, minutes and seconds.
 - Example: time '09:00:30' time '09:00:30.75'
- timestamp: date plus time of day
 - Example: timestamp '2005-7-27 09:00:30.75'
- interval: period of time
 - Example: interval '1' day
 - Subtracting a date/time/timestamp value from another gives an interval value
 - Interval values can be added to date/time/timestamp values

Advanced SQL

Many other features

- Cascading updates to maintain referential integrity
- Assertions and triggers
- Transactions
- ...

э

Many other features

- Cascading updates to maintain referential integrity
- Assertions and triggers
- Transactions
- • •
- Can call SQL from other programming languages
 - Almost every language has library functions to invoke SQL
 - Transfer data between online forms and databases
 - **.**..

Security — SQL injection attacks

- User input can be malicious commands to corrupt database
- Always validate data entered in a form before passing on to SQL

Security — SQL injection attacks

- User input can be malicious commands to corrupt database
- Always validate data entered in a form before passing on to SQL

Set of attributes that one needs to keep track of

- Set of attributes that one needs to keep track of
- Why not combine into a single table?

ID	name	dept_name	salary	dept_name	building	budg
10101	Srinivasan	Comp. sci.	65000	Biology	Watson	9000
12121	Wu	Finance	90000	Comp. Sci.	Taylor	10000
15151	Mozart	Music	40000	Elec. Eng.	Taylor	8500
22222	Einstein	Physics	95000	Finance	Painter	12000
32343	El Said	History	60000	History	Painter	5000
33456	Gold	Physics	87000	Music	Packard	8000
45565	Katz	Comp. Sci.	75000	Physics	Watson	7000
58583	Califieri	History	62000			
76543	Singh	Finance	80000			
76766	Crick	Biology	72000			
83821	Brandt	Comp. Sci.	92000			
98345	Kim	Elec. Eng.	80000			

э

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

dept_name	building	budget
Biology	Watson	90000
Comp. Sci.	Taylor	100000
Elec. Eng.	Taylor	85000
Finance	Painter	120000
History	Painter	50000
Music	Packard	80000
Physics	Watson	70000

• Combine these into a single table?

ID	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

э

Redundant storage

ID	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

- Redundant storage
- Maintaining consistency
 - Updates
 - Inserts and deletes

ID	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

alismpose Starby Point

(1日) (1日) (1日) RDBMS-SQL. Lecture 8, 17 Oct 2024 10/19

э

(customer_name,regd_phone,regd_email)

(customer_name,regd_phone,regd_email)

- (customer_name,regd_phone,regd_email)
- Decompose as (customer_name,regd_phone) and (customer_name,regd_email)
- Name is not unique loss of information

- (customer_name,regd_phone,regd_email)
- Decompose as (customer_name,regd_phone) and (customer_name,regd_email)
- Name is not unique loss of information
- Recombining decomposed relation should not add tuples

- (customer_name,regd_phone,regd_email)
- Decompose as (customer_name,regd_phone) and (customer_name,regd_email)
- Name is not unique loss of information
- Recombining decomposed relation should not add tuples
- Lossless decomposition
 - Decompose R as R_1 and R_2
 - Want $R = R_1 \bowtie R_2$

Functional dependencies

$$\blacksquare A_1, A_2, \ldots, A_k \to B_1, B_2, \ldots B_m$$

- LHS attributes uniquely fix RHS attributes
- Must hold for every instance
 semantic property of attributes

ID	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Timanec	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

Functional dependencies

$$\blacksquare A_1, A_2, \ldots, A_k \to B_1, B_2, \ldots B_m$$

- LHS attributes uniquely fix RHS attributes
- Must hold for every instance
 semantic property of attributes
- Need not correspond to superkeys
 - dept_name → building
 - $\blacksquare \texttt{ dept_name} \to \texttt{budget}$

ID	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

Functional dependencies

$$\blacksquare A_1, A_2, \ldots, A_k \to B_1, B_2, \ldots B_m$$

- LHS attributes uniquely fix RHS attributes
- Must hold for every instance
 semantic property of attributes
- Need not correspond to superkeys
 - dept_name → building
 - $\blacksquare \texttt{ dept_name} \to \texttt{budget}$
- Use to identify sources of redundancy, guide decomposition

ID	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

RDBMS-SQL, Lecture 8, 17 Oct 2024 12 / 19

Lossless decomposition and functional dependencies

• Decompose R as R_1 and R_2

Lossless decomposition and functional dependencies

- Decompose R as R_1 and R_2
- Decomposition is lossless if at least one of the following functional dependencies hold
 - $\blacksquare R_1 \cap R_2 \to R_1$
 - $\blacksquare R_1 \cap R_2 \to R_2$

```
Use this to
guide
decompositro
```


RDBMS-SQL, Lecture 8, 17 Oct 2024 13 / 19