RDBMS and SQL

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Lecture 9, 22 October 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Relational database design

- Set of attributes that one needs to keep track of
- Why not combine into a single table?

Relational database design

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

dept_name	building	budget
Biology	Watson	90000
Comp. Sci.	Taylor	100000
Elec. Eng.	Taylor	85000
Finance	Painter	120000
History	Painter	50000
Music	Packard	80000
Physics	Watson	70000

• Combine these into a single table?

Relational database design

- Redundant storage
- Maintaining consistency
 - Updates
 - Inserts and deletes

ID	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

Decomposition and information

- (customer_name,regd_phone,regd_email)
- Decompose as (customer_name,regd_phone) and (customer_name,regd_email)
- Name is not unique loss of information
- Recombining decomposed relation should not add tuples
- Lossless decomposition
 - Decompose R as R_1 and R_2
 - Want $R = R_1 \bowtie R_2$ Natural join

F2

N

N

N PI

NPZ

PI

61

NGI

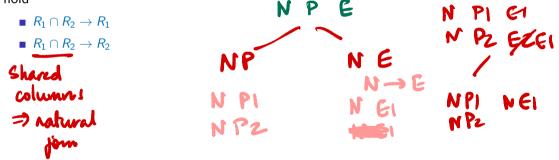
NE2

э

P2 E2

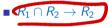
Functional dependencies

$$\blacksquare A_1, A_2, \ldots, A_k \to B_1, B_2, \ldots, B_n$$


- LHS attributes uniquely fix RHS attributes
- Must hold for every instance
 semantic property of attributes
- Need not correspond to superkeys
 - dept_name \rightarrow building
 - $\blacksquare \texttt{ dept_name} \to \texttt{budget}$
- Use to identify sources of redundancy, guide decomposition

ID	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	> 70000
12121	Wu	90000	Finance	rainter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Doimer	120000

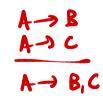
later, Assumption about


Lossless decomposition and functional dependencies

- Decompose R as R_1 and R_2
- Decomposition is lossless if at least one of the following functional dependencies hold

Lossless decomposition and functional dependencies

- Decompose R as R_1 and R_2
- Decomposition is lossless if at least one of the following functional dependencies hold
 - $\blacksquare R_1 \cap R_2 \to R_1$


- Decompose Instructor-Department as Instructor and Department
 - Instructor \cap Department is dept_name
 - dept_name is primary key for Department

Lossless decomposition and functional dependencies

- Decompose R as R_1 and R_2
- Decomposition is lossless if at least one of the following functional dependencies hold
 - $\blacksquare R_1 \cap R_2 \to R_1$
 - $\blacksquare R_1 \cap R_2 \to R_2$

Decompose Instructor-Department as Instructor and Department

- Instructor \cap Department is dept_name
- dept_name is primary key for Department
- In general need to compute all implied dependencies
 - From $A \rightarrow B$ and $B \rightarrow C$, conclude that $A \rightarrow C$
- Closure of a set of dependencies F denoted F⁺

Instructor - Dept Instruct Dept + Blog Dept + Bulger

Computing the closure of a set of attributes

Given $\mathcal{A} = \{A_1, A_2, \dots, A_k\}$ and B, does $A_1, A_2, \dots, A_k \rightarrow B$?

Madhavan Mukund

• • = • • = • RDBMS-SQL, Lecture 9, 22 Oct 2024 8/16

3

Computing the closure of a set of attributes

- Given $\mathcal{A} = \{A_1, A_2, \dots, A_k\}$ and B, does $A_1, A_2, \dots, A_k \rightarrow B$?
- Iterative algorithm check if *B* is in closure \mathcal{A}^+

A→B 6→c Initialize \mathcal{A}^+ to $\{A_1, A_2, \ldots, A_k\}$ Onginel et repeat for each $\beta \rightarrow \gamma$ in *F* if $\beta \subset \mathcal{A}^+$, add γ to \mathcal{A}^+ end **until** no change in \mathcal{A}^+

$$\alpha, \beta$$
 sets of attributes
 $\alpha \rightarrow \beta \in F^+$ if $\beta \in \alpha^+$

Normal forms

Criteria to determine if the collection of tables is "good"

3

Normal forms

- Criteria to determine if the collection of tables is "good"
- Normalization decompose tables till they achieve a normal form

-

Normal forms

- Criteria to determine if the collection of tables is "good"
- Normalization decompose tables till they achieve a normal form
- Guided by functional dependencies

Relational schema R, set of functional dependencies F

Madhavan Mukund

4 E

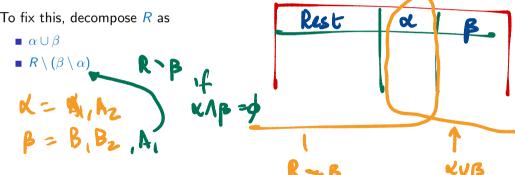
Relational schema R, set of functional dependencies F

• Write α , β to represent sequences of attributes $A_1, A_2, \ldots, A_k, B_1, B_2, \ldots, B_m$

- Relational schema R, set of functional dependencies F
- Write α , β to represent sequences of attributes $A_1, A_2, \ldots, A_k, B_1, B_2, \ldots, B_m$
- **R** is in BCNF if, for every $\alpha \rightarrow \beta \in F^+$, one of the following holds

Instruction ID-> Name TO-> Dept ID-> Salay Key

- Relational schema R, set of functional dependencies F
- Write α , β to represent sequences of attributes $A_1, A_2, \ldots, A_k, B_1, B_2, \ldots, B_m$
- **R** is in BCNF if, for every $\alpha \rightarrow \beta \in F^+$, one of the following holds
 - $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
 - α is a superkey for *R*
- InstructorDepartment(ID,name,salary,dept_name,building,budget) not in BCNF


- Relational schema R, set of functional dependencies F
- Write α , β to represent sequences of attributes $A_1, A_2, \ldots, A_k, B_1, B_2, \ldots, B_m$
- **R** is in BCNF if, for every $\alpha \rightarrow \beta \in F^+$, one of the following holds
 - $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
 - α is a superkey for *R*
- InstructorDepartment(ID,name,salary,dept_name,building,budget) not in BCNF
- Instructor(ID,name,dept_name,salary) and Department(dept_name,building,budget) are in BCNF

• $\alpha \rightarrow \beta \in F^+$ is a BCNF violation for R if neither of the following holds

- $\alpha \to \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
- \bullet α is a superkey for *R*

• $\alpha \rightarrow \beta \in F^+$ is a BCNF violation for R if neither of the following holds

- $\alpha \to \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
- \bullet α is a superkey for R
- To fix this, decompose R as

• $\alpha \rightarrow \beta \in F^+$ is a BCNF violation for R if neither of the following holds

- $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
- α is a superkey for R
- To fix this, decompose *R* as
 - $\blacksquare \ \alpha \cup \beta$
 - $R \setminus (\beta \setminus \alpha)$
- Example: dept_name → building, budget is a BCNF violation for InstructorDepartment(ID, name, salary, dept_name, building, budget)

• $\alpha \rightarrow \beta \in F^+$ is a BCNF violation for R if neither of the following holds

- $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
- α is a superkey for R
- To fix this, decompose R as
 - $\blacksquare \ \alpha \cup \beta$
 - $R \setminus (\beta \setminus \alpha)$
- Example: dept_name → building_budget is a DCME violation for InstructorDepartment(ID,name,salary,dept_name,building,budget)

Decompose as

- Department(dept_name,building,budget)
- Instructor(ID,name,dept_name,salary)

- Advisor(student_id,faculty_id,dept_name)
- Each faculty member is in only one department
- Students can be across multiple departments

✓ fac -id -> dept

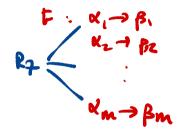
stud-id wh a key

- Advisor(student_id,faculty_id,dept_name)
- Each faculty member is in only one department
- Students can be across multiple departments
- Each student has at most one advisor in each department
- BCNF decomposition is (student_id,faculty_id), (faculty_id,dept_name)

Facul - Sept

- Advisor(student_id,faculty_id,dept_name)
- Each faculty member is in only one department
- Students can be across multiple departments
- Each student has at most one advisor in each department
- BCNF decomposition is (student_id,faculty_id), (faculty_id,dept_name)
- Functional dependencies
 - $\blacksquare \texttt{ faculty_id} \to \texttt{dept_name}$
 - $\blacksquare \texttt{student_id,dept_name} \rightarrow \texttt{faculty_id}$

- Advisor(student_id,faculty_id,dept_name)
- Each faculty member is in only one department
- Students can be across multiple departments
- Each student has at most one advisor in each department
- BCNF decomposition is (student_id,faculty_id), (faculty_id,dept_name)
- Functional dependencies
 - $\blacksquare \texttt{ faculty_id} \rightarrow \texttt{dept_name}$
 - student_id,dept_name \rightarrow faculty_id
- Need join to check second dependency

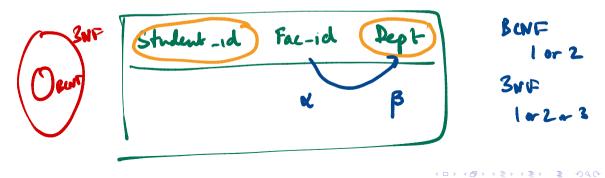

be checked without

Given a set of dependencies F and a decomposition of R as R_1, R_2, \ldots, R_k

Given a set of dependencies F and a decomposition of R as R_1, R_2, \ldots, R_k

• Can locally check a dependency $\alpha \rightarrow \beta$ in R_i if $\alpha \cup \beta \subseteq R_i$

- Given a set of dependencies F and a decomposition of R as R_1, R_2, \ldots, R_k
- Can locally check a dependency $\alpha \rightarrow \beta$ in R_i if $\alpha \cup \beta \subseteq R_i$
- Let F_i be set of dependencies in F^+ locally checkable in R_i


- Given a set of dependencies F and a decomposition of R as R_1, R_2, \ldots, R_k
- Can locally check a dependency $\alpha \rightarrow \beta$ in R_i if $\alpha \cup \beta \subseteq R_i$
- Let F_i be set of dependencies in F^+ locally checkable in R_i
- Let $G = F_1 \cup F_2 \cup \cdots \cup F_k$. Is $G^+ = F^+$

- Given a set of dependencies F and a decomposition of R as R_1, R_2, \ldots, R_k
- Can locally check a dependency $\alpha \rightarrow \beta$ in R_i if $\alpha \cup \beta \subseteq R_i$
- Let F_i be set of dependencies in F^+ locally checkable in R_i
- Let $G = F_1 \cup F_2 \cup \cdots \cup F_k$. Is $G^+ = F^+$
- How do we compute F_i for each R_i ?
 - Let R_i have attributes A_1, A_2, \ldots, A_m
 - For each subset α of A_1, A_2, \ldots, A_m , compute α^+ with respect to F^+
 - For each $B \in \alpha^+ \cap \{A_1, A_2, \dots, A_m\}$, add $\alpha \to B$ to R_i

Third normal form (3NF)

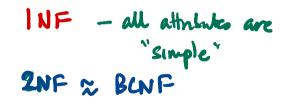
- **R** is in 3NF if, for every $\alpha \rightarrow \beta \in F^+$, one of the following holds
 - $\alpha \to \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
 - **2** $\boldsymbol{\alpha}$ is a superkey for *R*

Stul, Dept -> Fac Each attribute A in $\beta \setminus \alpha$ is contained in some candidate key for R

FacId -> Dept

$B \rightarrow C, D$

A, C is a key E, D is a key


Third normal form (3NF)

- **R** is in 3NF if, for every $\alpha \rightarrow \beta \in F^+$, one of the following holds
 - $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
 - α is a superkey for R
 - Each attribute A in $\beta \setminus \alpha$ is contained in some candidate key for R
- BCNF is a stricter condition than 3NF

Third normal form (3NF)

R is in 3NF if, for every $\alpha \rightarrow \beta \in F^+$, one of the following holds

- $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
- α is a superkey for R
- Each attribute A in $\beta \setminus \alpha$ is contained in some candidate key for R
- BCNF is a stricter condition than 3NF
- Priorities
 - Lossless decomposition
 - BCNF
 - Dependency preservation

Suppose we collect emergency contact details for each students — phone and email

At least two emergency contacts of each type

Suppose we collect emergency contact details for each students — phone and email

- At least two emergency contacts of each type
- Consider a table Emergency(student_id,phone,email)
 - Two phone numbers and two emails will generate four rows

- Suppose we collect emergency contact details for each students phone and email
 - At least two emergency contacts of each type
- Consider a table Emergency(student_id,phone,email)
 - Two phone numbers and two emails will generate four rows
- This redundancy cannot be explained in terms of functional dependencies

- Suppose we collect emergency contact details for each students phone and email
 - At least two emergency contacts of each type
- Consider a table Emergency(student_id,phone,email)
 - Two phone numbers and two emails will generate four rows
- This redundancy cannot be explained in terms of functional dependencies
- Multivalued dependency closure under swaps

- Suppose we collect emergency contact details for each students phone and email
 - At least two emergency contacts of each type
- Consider a table Emergency(student_id,phone,email)
 - Two phone numbers and two emails will generate four rows
- This redundancy cannot be explained in terms of functional dependencies
- Multivalued dependency closure under swaps

4NF

Validating functional dependencies

Practical matters

- Validating functional dependencies
- Redundancy vs computing joins materialized views