PROGRAMMING,
DATA STRUGTURES AND
ALGORITHMS IN PYTHON

Week 5, Lecture 1

http://www.cmi.ac.in/~madhavan

When things go wrong

x/z, but z has value 0

1nt(s), but string s is not a valid integer

5*x, but x does not have a value

*
< g < e
|

* y = 1[1], but 1 is not a valid index for list 1

* Try to read from a file, but the file does not exist

* Try to write to a file, but the disk is full

When things go wrong ...

* Some errors can be anticipated
* Others are unexpected
* Predictable error — exception
* Normal situation vs exceptional situation

* Contingency plan — exception handling

Exception handling

* |f something goes wrong, provide “corrective
action”

* File not found — display a message and ask
user to retype filename

* List index out of bounds — provide diagnostic
information to help debug error

* Need mechanism to internally trap exceptions

* An untapped exception will abort the program

lypes of errors

* Python notifies you of different types of errors
* Most common error, invalid Python code
SyntaxError: invalid syntax
* Not much you can do with this!

* \We are Interested In errors that occur when
code is being executed

lypes of errors

Some errors while code is executing (run-time errors)

* Name used before value is defined

NameError: name 'x' 1s not defined

* Division by zero in arithmetic expression
ZeroDivisionEkrror: division by zero

* |nvalid list index

IndexError: list assignment index out of range

lerminology

* Raise an exception

* Run time error — signal error type, with
diagnostic information

NameError: name 'x' 1s not defined
* Handle an exception

* Anticipate and take corrective action based on
error type

* Unhandled exception aborts execution

Handling exceptions

try:
«— Code where error may occur

except IndexError:
: «— What to do if IndexError occurs
except (NameError,KeyError):

«— Common code to handle multiple errors
exeept .

«— Catch all other exceptions
else:

«— Execute if try terminates normally, no errors

"Positive” use of exceptions

* Add a new entry to this dictionary
scores = {'Dhawan':[3,22], 'Kohl1':[200,3]}
* Batsman b already exists, append to list
scores|[b].append(s)
* New batsman, create fresh entry

scores[b] = [s]

"Positive” use of exceptions

* Traditional approach * Using exceptions

1B 1h scores keysC)y: try:
scores[b].append(s) scores[b].append(s)

else: except KeyError:
scores[b] = [s] scores[b] = [s]

Flow Of control

x <46y,

Flow Of control

x = £Cy,2)
def f(a,b):

é&a)

Flow Of control

x = £Cy,2)
def f(a,b):

é&a)

def g(m):

h(m)

Flow Of control

x = £Cy,2)
def f(a,b):

é&a)

def g(m):

h(m)

def h(s):

Flow Of control

X = £(y,2)
def fCa.b):

ééa}
def g(m):

H&m)
def h(s):

IndexError, not handled in h()— - -

Flow Of control

X = £(y,2)
def fCa.b):

ééa}
def g(m):

IndexError inherited from h()— h(m)
def h(s):

IndexError, not handled in h()— - -

Flow Of control

X = £(y,2)
def fCa.b):

g(a) <«—IndexError inherited from g()
def g(m):

IndexError inherited from h()— h(m)
Not handled? def h(s).

IndexError, not handled in h()— - -

Flow Of control

x = f(y,2)
IndexError def fCa,b):
inherited . . | |
from f() g(a) <—IndexError inherited from g()

Not handled?
def g(m):

IndexError inherited from h()— h(m)
Not handled? def h(s).

IndexError, not handled in h()— - -

Flow Of control

A= f(y,z)
IndexError def f(a,b):
inherited
from f()

Not handled?
Abort!

g(a) <«—IndexError inherited from g()
Not handled?

def g(m):

IndexError inherited from h()— h(m)
Not handled? def h(s).

IndexError, not handled in h()— - -

Summary

* Exception handling allows us to gracefully deal
with run time errors

* Can check type of error and take appropriate
action based on type

* Can change coding style to exploit exception
handling

* When dealing with files and input/output,
exception handling becomes very important

