
PROGRAMMING,  
DATA STRUCTURES AND
ALGORITHMS IN PYTHON

Madhavan Mukund, Chennai Mathematical Institute
http://www.cmi.ac.in/~madhavan

Week 5, Lecture 1

NPTEL MOOC

http://www.cmi.ac.in/~madhavan

When things go wrong

y = x/z, but z has value 0

y = int(s), but string s is not a valid integer

y = 5*x, but x does not have a value

y = l[i], but i is not a valid index for list l

Try to read from a file, but the file does not exist

Try to write to a file, but the disk is full

When things go wrong …

Some errors can be anticipated

Others are unexpected

Predictable error — exception

Normal situation vs exceptional situation

Contingency plan — exception handling

Exception handling
If something goes wrong, provide “corrective
action”

File not found — display a message and ask
user to retype filename

List index out of bounds — provide diagnostic
information to help debug error

Need mechanism to internally trap exceptions

An untapped exception will abort the program

Types of errors

Python notifies you of different types of errors

Most common error, invalid Python code

SyntaxError: invalid syntax

Not much you can do with this!

We are interested in errors that occur when
code is being executed

Types of errors

Some errors while code is executing (run-time errors)

Name used before value is defined
NameError: name 'x' is not defined

Division by zero in arithmetic expression
ZeroDivisionError: division by zero

Invalid list index
IndexError: list assignment index out of range

Terminology
Raise an exception

Run time error → signal error type, with
diagnostic information
NameError: name 'x' is not defined

Handle an exception

Anticipate and take corrective action based on
error type

Unhandled exception aborts execution

Handling exceptions

try:  
 . . .  
 . . .  
except IndexError:  
 . . .  
except (NameError,KeyError):  
 . . .  
except:  
 . . .  
else:  
 . . .

⟵ Code where error may occur

⟵ What to do if IndexError occurs

⟵ Common code to handle multiple errors

⟵ Catch all other exceptions

⟵ Execute if try terminates normally, no errors

“Positive” use of exceptions

Add a new entry to this dictionary

scores = {'Dhawan':[3,22],'Kohli':[200,3]}

Batsman b already exists, append to list

scores[b].append(s)

New batsman, create fresh entry

scores[b] = [s]

Traditional approach

if b in scores.keys():  
 scores[b].append(s)  
else:  
 scores[b] = [s]

“Positive” use of exceptions

Using exceptions

try:  
 scores[b].append(s)  
except KeyError:  
 scores[b] = [s]

Flow of control
..  
x = f(y,z)

Flow of control
..  
x = f(y,z)

def f(a,b):  
 ..  
 g(a)

Flow of control
..  
x = f(y,z)

def f(a,b):  
 ..  
 g(a)

def g(m):  
 ..  
 h(m)

Flow of control
..  
x = f(y,z)

def f(a,b):  
 ..  
 g(a)

def g(m):  
 ..  
 h(m)

def h(s):  
 ..  
 ..

Flow of control
..  
x = f(y,z)

def f(a,b):  
 ..  
 g(a)

def g(m):  
 ..  
 h(m)

def h(s):  
 ..  
 ..IndexError, not handled in h()⟶

Flow of control
..  
x = f(y,z)

def f(a,b):  
 ..  
 g(a)

def g(m):  
 ..  
 h(m)

def h(s):  
 ..  
 ..IndexError, not handled in h()⟶

IndexError inherited from h()⟶

Flow of control
..  
x = f(y,z)

def f(a,b):  
 ..  
 g(a)

def g(m):  
 ..  
 h(m)

def h(s):  
 ..  
 ..IndexError, not handled in h()⟶

IndexError inherited from h()⟶
Not handled?

⟵IndexError inherited from g()

Flow of control
..  
x = f(y,z)

def f(a,b):  
 ..  
 g(a)

def g(m):  
 ..  
 h(m)

def h(s):  
 ..  
 ..IndexError, not handled in h()⟶

IndexError inherited from h()⟶
Not handled?

⟵IndexError inherited from g()
Not handled?

IndexError 
inherited  
from f()

Flow of control
..  
x = f(y,z)

def f(a,b):  
 ..  
 g(a)

def g(m):  
 ..  
 h(m)

def h(s):  
 ..  
 ..IndexError, not handled in h()⟶

IndexError inherited from h()⟶
Not handled?

⟵IndexError inherited from g()
Not handled?

IndexError 
inherited  
from f()
Not handled? 
Abort!

Summary

Exception handling allows us to gracefully deal
with run time errors

Can check type of error and take appropriate
action based on type

Can change coding style to exploit exception
handling

When dealing with files and input/output,
exception handling becomes very important

