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Abstract

Asynchronous automata are a natural distributed machine model for recognizing

trace languages|languages de�ned over an alphabet equipped with an independence

relation.

To handle in�nite traces, Gastin and Petit introduced B�uchi asynchronous au-

tomata, which accept precisely the class of !-regular trace languages. Like their

sequential counterparts, these automata need to be non-deterministic in order to

capture all !-regular languages. Thus complementation of these automata is non-

trivial. Complementation is an important operation because it is fundamental for

treating the logical connective \not" in decision procedures for monadic second-

order logics.

Subsequently, Diekert and Muscholl solved the complementation problem by

showing that with a Muller acceptance condition, deterministic automata su�ce for

recognizing !-regular trace languages. However, a direct determinization procedure,

extending the classical subset construction, has proved elusive.

In this paper, we present a direct determinization procedure for B�uchi asyn-

chronous automata, which generalizes Safra's construction for sequential B�uchi au-

tomata. As in the sequential case, the blow-up in the state space is essentially that

of the underlying subset construction.
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Introduction

Finite-state automata are, by de�nition, sequential. To describe �nite-state concurrent

computations, Zielonka introduced asynchronous automata [Zie1]. An asynchronous au-

tomaton consists of a set of independent processes which cooperate to read their input.

Each letter a in the alphabet is associated with a subset �(a) of processes which jointly

decide on a move when a is read.

4

The distribution function � introduces an independence

relation I between letters: (a; b) 2 I i� a and b are read by disjoint sets of processes.

Earlier, Mazurkiewicz had proposed a framework for studying concurrent systems

where the alphabet � comes equipped with a pre-speci�ed independence relation I, de-

scribing the concurrency in the system [Maz]. In this setting, two words w and w

0

describe

the same computation i� w

0

can be obtained from w by a �nite sequence of permutations

of adjacent independent letters. This gives rise to an equivalence relation on words over

�. The equivalence class [w] containing w is called a trace. A set of words L is said to be

a trace language if it obeys the equivalence relation generated by I| for each word w in

L, all of [w] is contained in L.

Zielonka proved that any regular trace language over a concurrent alphabet (�; I)

can be recognized by a deterministic asynchronous automaton over a distributed alphabet

(�; �), such that the independence relation generated by � is exactly I.

Gastin and Petit have extended the connection between asynchronous automata and

trace languages to the setting of in�nite inputs. In [GP], they introduce the class of B�uchi

asynchronous automata which accept precisely the class of !-regular trace languages.

Like automata over in�nite strings, B�uchi asynchronous automata have close connec-

tions to logic [EM, Thi]. In order to exploit these connections|for instance, to automate

veri�cation of formulae de�ned using these logics|we need to develop techniques for

manipulating these automata. Basic operations include complementation, which in logic

is the equivalent of replacing a second-order existential quanti�er with a second-order

universal quanti�er, and determinization, which is equivalent to replacing a second-order

quanti�er by �rst-order quanti�ers.

As in the sequential case, complementing B�uchi asynchronous automata is non-trivial,

since they are necessarily non-deterministic: deterministic B�uchi asynchronous automata

cannot recognize all !-regular trace languages [GP]. With a Muller acceptance condition,

deterministic automata su�ce [DM], but a direct determinization procedure has so far

been elusive.

Contributions of this paper

We extend the subset construction for asynchronous automata [KMS] to a direct deter-

minization construction for B�uchi asynchronous automata, based on Safra's technique for

determinizing B�uchi automata on in�nite strings [Saf]. The determinized automaton we

construct has an acceptance condition described in terms of \Rabin pairs". As in the

sequential case, we can easily complement the determinized automaton by viewing the

Rabin condition as a Streett condition. This Streett automaton can then be converted

e�ciently into a non-deterministic B�uchi asynchronous automaton. So, we also have a

4

Calling these automata asynchronous is, in a sense, misleading. The processes communicate syn-

chronously. The asynchrony refers to the fact that di�erent components of the network can proceed

independently while reading the input.
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direct complementation construction for B�uchi asynchronous automata. In both the de-

terminized Rabin automaton and the complementary B�uchi automaton, the number of

local states of each process is exponential in the number of global states of the original

automaton. As in Safra's original construction, this blow-up is essentially that of the

underlying subset construction for these automata.

In related work, Muscholl [Mus] has described a complementation construction for

B�uchi asynchronous cellular automata, which are an alternative distributed model for

recognizing trace languages [Zie2]. Her construction does not involve determinization|

she makes use of progress measures [Kla] and directly constructs a non-deterministic

complement automaton.

An asynchronous cellular automaton allocates a separate process for each letter in the

input alphabet|even when the underlying system is completely sequential, a cellular au-

tomaton will have a number of components. Processes communicate using a non-standard

variant of a shared memory. As a result, though both the approaches are formally equiv-

alent, asynchronous automata seem to be more natural models for describing distributed

systems.

Converting between asynchronous automata and asynchronous cellular automata in-

volves a blow-up in the state space of each process which is exponential in j�j, the size

of the input alphabet. However, since j�j could itself be exponential in the size of the

global state space of the automaton, there is e�ectively a double exponential blow-up

in this translation. So, complementing asynchronous automata directly using our con-

struction can be signi�cantly more e�cient than complementing them indirectly via the

construction described in [Mus].

In general, it appears to be advantageous to work directly with asynchronous au-

tomata for automating decision procedures in logic, instead of using asynchronous cellular

automata. Incorporating the alphabet into the state space of the automaton is known

to be expensive in such applications|for example, the decision procedure for monadic

second-order logic on strings generates alphabets that are exponential in the number

of free variables in the input formula; see [HJJ] for techniques which allow automata

with exponentially sized alphabets to be represented and manipulated within polynomial

bounds.

Working directly with asynchronous automata is also relevant to model checking|

a technique for mechanically verifying if a program satis�es a property speci�ed in a

logical language. If the same kind of automata are used both for describing the program

and for checking satis�ability, the model checking problem reduces to a simple intersection

problem involving the automata [VW]. Since asynchronous automata are a natural model

for distributed programs, automata-theoretic model checking can be applied to the logics

considered in [EM, Thi].

The paper is organized as follows. We begin with some de�nitions regarding asyn-

chronous automata. In Section 2 we introduce B�uchi and Rabin asynchronous automata

and formulate the problem. The next three sections recapitulate some basic techniques

developed in [KMS, MS] for manipulating asynchronous automata. In Section 6 we show

how to apply these techniques to determinize B�uchi asynchronous automata. To preserve

continuity, some detailed explanations, examples and proofs have been moved from the

main text into separate Appendices.
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1 Preliminaries

The following de�nitions are essentially those of [KMS] adapted to the setting of in�nite

inputs.

Distributed alphabets Let P be a �nite set of processes, where the size of P is N .

A distributed alphabet is a pair (�; �) where � is a �nite set of actions and � : � ! 2

P

assigns a non-empty set of processes to each a 2 �.

State spaces With each process p, we associate a �nite set of states denoted V

p

. Each

state in V

p

is called a local state. For P � P, V

P

denotes the product

Q

p2P

V

p

. An element

~v of V

P

is a tuple or joint state that determines a local state for each p in P . We refer to

a joint state from V

P

as a P -state. A P-state is also called a global state.

Given ~v 2 V

P

, and P

0

� P , ~v

P

0

denotes the projection of ~v onto V

P

0

. Also, ~v

P

0

abbreviates ~v

P�P

0

. For a singleton p 2 P , we write ~v

p

for ~v

fpg

. For a 2 �, we write V

a

to

mean V

�(a)

and V

a

to mean V

�(a)

. Similarly, if ~v 2 V

P

and �(a) � P , we write ~v

a

for ~v

�(a)

and ~v

a

for ~v

�(a)

.

Asynchronous automata An asynchronous automaton A over (�; �) is of the form

(fV

p

g

p2P

; f!

a

g

a2�

;V

0

); where !

a

� V

a

� V

a

is the local transition relation for a, and

V

0

� V

P

is a set of initial global states. Each relation!

a

speci�es how the processes �(a)

that meet on a may decide on a joint move. Other processes do not change their state.

Thus we de�ne the global transition relation ) � V

P

� � � V

P

by ~v

a

=) ~v

0

if ~v

a

!

a

~v

0

a

and ~v

a

= ~v

0

a

.

A is called deterministic if the global transition relation of A is a function from V

P

��

to V

P

and if the set of initial states V

0

is a singleton.

Runs Let � be an in�nite word over �. It is convenient to think of � as a function of

time; i.e., � : N ! �. (We use N to denote the set f1; 2; : : :g and N

0

for f0; 1; 2; : : :g.)

We shall also deal with �nite words over �. Let u 2 �

�

be a word of length m. We denote

u as a function u : [1::m]! �, where [i::j] abbreviates the set fi; i+1; : : : ; jg.

A global run of A on a word � : N ! � is a function � : N

0

! V

P

such that

�(0) 2 V

0

and, for i 2 N, �(i�1)

�(i)

=) �(i). Similarly, a global run of A on a �nite word

u : [1::m] ! � is a function � : [0::m] ! V

P

such that �(0) 2 V

0

and, for i 2 [1::m],

�(i�1)

u(i)

=) �(i).

For P � P, �

P

denotes the projection of � onto the P -components. Note that �

P

is a

sequence of P -states. As usual, inf (�

P

) denotes the set of P -states which occur in�nitely

often in �

P

; i.e., inf (�

P

) = f~v 2 V

P

j for in�nitely many i; �

P

(i) = ~vg:

2 Asynchronous automata on in�nite inputs

To de�ne how an asynchronous automaton accepts an in�nite input �, we have to analyze

the communication pattern between processes in the limit, as � is being processed.
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Limit graphs With each in�nite word �, we associate an undirected graph G

�

= (P; E

�

)

called the limit graph of �. The graph has an edge between processes p and q provided

they synchronize in�nitely often while A processes �. In other words, (p; q) 2 E

�

i� for

in�nitely many i, fp; qg � �(�(i)). Let Conn

�

denote the maximal connected components

of G

�

.

Let Finite

�

denote the set of processes which move only �nitely often while A reads

�|i.e., p belongs to Finite

�

if there are only �nitely many i such that p 2 �(�(i)).

Clearly, if p 2 Finite

�

then the singleton fpg belongs to Conn

�

.

B�uchi asynchronous automata A B�uchi asynchronous automaton is a pair BA =

(A;T

B

) where A is an asynchronous automaton and T

B

is a B�uchi acceptance table. The

table T

B

is a list (�

1

; �

2

; : : : ; �

k

). Each entry �

i

in T

B

is of the form (C; T; f(p

C

; G

C

)g

C2C

),

where C is a partition of P, T is a subset of P and, for each subset C 2 C, p

C

is a designated

process from C and G

C

is a set of p

C

-states. We call the processes fp

C

g

C2C

the signalling

processes in �

i

.

A run � of the automaton BA = (A;T

B

) on an input � is said to satisfy an entry

� = (C; T; f(p

C

; G

C

)g

C2C

) in T

B

provided C = Conn

�

, T = Finite

�

and, for each signalling

process p

C

, inf (�

p

C

) \ G

C

6= ;. The automaton accepts � if there is a run � on � and a

table entry � such that � satis�es � .

Recall that every process p in Finite

�

constitutes a separate singleton component in

Conn

�

. For a signalling process p 2 T , the set G

p

denotes the set of possible terminating

states for p. On the other hand, for a signalling process p which does not belong to T ,

G

p

is a set of recurring states, one of which must be visited in�nitely often by A for � to

satisfy � .

Our de�nition of B�uchi asynchronous automata is adapted from [Mus] and di�ers from

the original formulation of Gastin and Petit [GP]. We discuss the relationship between the

two de�nitions in Appendix A. The crucial part of our de�nition is the extra information

we record about Conn

�

in each entry of the acceptance table. This allows us to separate

the processes in A into independent groups. After a �nite pre�x of � has been read, there

will be no further synchronizations between processes in di�erent connected components

of G

�

. So, in the limit, each subset C 2 Conn

�

moves as a separate, independent unit.

As in the case of B�uchi automata on in�nite strings, non-deterministic B�uchi asyn-

chronous automata are strictly more powerful than their deterministic counterparts [GP].

So, to determinize these automata, we have to strengthen the acceptance condition. We

shall work with a generalization of the \pairs" condition proposed by Rabin [Rab].

Rabin asynchronous automata A Rabin asynchronous automaton is a pair RA =

(A;T

R

) where A is an asynchronous automaton and T

R

is a Rabin acceptance table. The

table T

R

is a list (�

1

; �

2

; : : : ; �

k

). Each entry �

i

in T

R

is of the form (C; T; f(p

C

; pairs

C

)g

C2C

),

where C, T and p

C

are as in a B�uchi acceptance table and, for each signalling process p

C

,

pairs

C

is a list f(G

j

C

; R

j

C

)g

j2[1::k

C

]

such that for each pair (G

j

C

; R

j

C

), both G

j

C

and R

j

C

are

subsets of V

p

C

.

The automaton RA = (A;T

R

) accepts an input � if there is a run � of A on �

such that for some entry � = (C; T; f(p

C

; pairs

C

)g

C2C

) in the table T

R

, C = Conn

�

,

T = Finite

�

and, for each signalling process p

C

, there is an entry (G

j

C

; R

j

C

) in pairs

C

such

that inf (�

p

C

) \ G

j

C

6= ; and inf (�

p

C

) \R

j

C

= ;.
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The problem For a given non-deterministic B�uchi asynchronous automaton BA =

(A;T

B

) over (�; �), construct a deterministic Rabin asynchronous automaton RB =

(B;T

R

) over (�; �), such that BA and RB accept the same set of in�nite words over

�.

Notice that an asynchronous automaton where P is a singleton fpg is just a conven-

tional sequential �nite state automaton. Further, if P = fpg, our de�nitions of B�uchi and

Rabin asynchronous automata reduce to the standard formulations of these automata in

the setting of in�nite strings [Tho].

For sequential B�uchi automata, Safra has described an elegant determinization con-

struction [Saf]|see Appendix B for a brief sketch of the construction. To determinize

B�uchi asynchronous automata, we shall apply Safra's construction in a distributed set-

ting. Let BA = (A;T

B

) be a B�uchi asynchronous automaton. Our strategy will be to

construct a deterministic Rabin automaton RB

�

= (B

�

;T

R

�

) corresponding to each entry

� in the table T

B

. The automaton RB

�

accepts an input � provided there is a run � of

BA which satis�es � . We can then combine the individual automata fRB

�

g

�2T

B

into

a deterministic Rabin automaton RB which accepts exactly the same in�nite strings as

BA.

To construct the automaton RB

�

for the table entry � = (C; T; f(p

C

; G

C

)g

C2C

) we

have to check that for each signalling process p

C

, �

p

C

\G

C

6= ;. To do this, we run Safra's

construction for each signalling process p

C

, using the subset construction for asynchronous

automata [KMS] in place of the classical subset construction for sequential automata.

The catch is that each signalling process p

C

may meet its recurring set G

C

in�nitely

often along a di�erent run. So, we have to further ensure that the accepting runs detected

by the independent copies of Safra's construction at each signalling process are mutually

consistent. This will involve some analysis of the way information is passed between the

components before they branch out as independent groups.

3 Local and global views

We represent words over a distributed alphabet as labelled partial orders. The notions we

use are essentially those of trace theory [Maz]. Appendix C has a few examples illustrating

the ideas introduced in the next couple of sections.

Events With � : N ! �, we associate a set of events E

�

. Each event (i; �(i)) consists

of a letter �(i) together with the time i of its occurrence. In addition, we de�ne an initial

event denoted 0. The initial event marks the beginning when all processes synchronize

and agree on an initial global state. Usually, we will write E for E

�

. If e = (i; a) is an

event, then we may use e instead of a in abbreviations such as V

e

, which stands for V

a

,

i.e., V

�(a)

, or !

e

, which is just !

a

. For p 2 P and e = (i; a), we write p 2 e to denote

that p 2 �(a) when e 6= 0; for e = 0, we de�ne p 2 e to hold for all p 2 P. If p 2 e, then

we say that e is a p-event .

Ordering relations on E The word � naturally imposes a total order � on events:

e � f if e happens at time i and f happens at time j with i � j.

Each process p imposes a total order �

p

on the events in which is participates. Thus

e �

p

f if p participates in both e and f and e � f . If e is the p-event that immediately
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precedes the p-event f , then we write e/

p

f . Thus e/

p

f if e �

p

f and no g with e < g < f

is a p-event.

The asynchronous nature of the automaton is reected more accurately by the partial

order generated by the relations f/

p

g

p2P

than by the temporal order �. We say that e is

an immediate predecessor of f and write e / f if e /

p

f for some p. Let v be the reexive

and transitive closure of /. If e v f , then we say e is below f . Note that the initial event

0 is below any event. The set of events below e is denoted e#. They represent the only

synchronizations that may have a�ected the state of A at e.

Ideals An ideal I is any set of events closed with respect to v. Ideals represent possible

partial computations of the system. We assume that every ideal I we consider is non-

empty|i.e., 0 always belongs to I. Let �

m

denote the pre�x of � of length m. Then

the events f(i; �(i)) j i � mg [ f0g form an ideal. Conversely, every ideal gives rise to a

subword of �|if I is the �nite ideal f0; (i

1

; a

1

); (i

2

; a

2

); : : : ; (i

m

; a

m

)g, then �[I] : [1::m]!

� is the word �(i

1

)�(i

2

) � � ��(i

m

) = a

1

a

2

� � � a

m

. Similarly, we can associate in�nite ideals

in E with in�nite subsequences of �. Even when I is �nite, �[I] is not, in general, a pre�x

of � because of the asynchronous manner in which � is processed. Clearly the entire set

E is an ideal, as is the set e# for any event e 2 E.

P -views Let I be an ideal. The p-view of I, @

p

(I), is the set fe 2 I j 9f 2 I: p 2 f and

e v fg. So, @

p

(I) is the set of all events in I which p can \see". If the number of p-events

in I is �nite|for instance, if I itself is �nite|it is easy to see that @

p

(I) = max

p

(I)#,

where max

p

(I) is the maximum p-event in I with respect to v.

For P � P, the P -view of I, denoted @

P

(I), is

S

p2P

@

p

(I). Notice that @

P

(I) is always

an ideal. In particular, we have @

P

(I) = I.

4 Local runs and histories

For the rest of this section, we �x a (non-determinstic) asynchronous automaton A =

(fV

p

g

p2P

; f!

a

g

a2�

;V

0

).

Neighbourhoods The neighbourhood of an event e, nbd(e), consists of e together with

its immediate predecessors; i.e., nbd(e) = feg [ ff j f / eg. Notice that if e 2 @

P

(I) for

some P � P, then nbd(e) � @

P

(I) as well.

Local runs A local run on an ideal I assigns a joint state to each event in I in such a

way that all neighbourhoods are consistently labelled. More precisely, a local run on I is

a function r that assigns to each e 2 I an e-state|i.e., a state in V

e

|such that r(0) 2 V

0

and for all e 6= 0, r is consistent with !

e

in nbd (e) in the following sense: suppose that ~v

is the e-state whose p-component, for each p 2 e, is the same as the p-component of r(f

p

),

where f

p

is the immediate p-predecessor of e. In other words, for each p 2 e, ~v

p

= r(f

p

)

p

,

where f

p

/

p

e. Then r is such that ~v !

e

r(e). Given a local run r, there is a natural \last"

global state ~v de�ned by ~v

p

= r(max

p

(I)) for all p. We say that ~v is a state of A on I.

Similarly, a P -state of A on I is ~v

P

, where ~v is a state of A on I.

Let R(I) denote the set of all local runs on I. The following is easy to verify.
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Proposition 1 Let � :N! � and I � E

�

an ideal. Then, there is a 1{1 correspondence

between R(I) and the set of global runs of A on �[I].

Histories A history on an ideal I is a partial function h that assigns joint states to

some events in I. Thus dom(h) � I and when h(e) is de�ned it denotes a tuple in V

e

. A

history is reachable if there is some local run r on I such that h(e) = r(e) for e in dom(h).

A set of histories H is consistent if each pair of histories h and h

0

in the set agree on all

common events; i.e., for each h; h

0

2 H, for each e in dom(h) \ dom(h

0

), h(e) = h(e

0

).

History Products Let I = fI

1

; I

2

; : : : ; I

n

g be a set of ideals with J =

S

j2[1::n]

I

j

. Let

fh

1

; h

2

; : : : ; h

n

g be a consistent set of histories such that h

j

is a history over I

j

for each

j 2 [1::n]. We de�ne the product h =

N

j2[1::n]

h

j

as follows:

dom(h) = fe 2 J j for all j 2 [1::n], if e 2 I

j

then e 2 dom(h

j

)g

h(e) = h

k

(e);where k is such that e 2 dom(h

k

) (the choice of k does not

matter since fh

j

g

j2[1::n]

is consistent).

In other words, h is a history over J which inherits its values from the set fh

j

g

j2[1::n]

.

The value h(e) is de�ned whenever h

j

(e) is de�ned for all j such that e 2 I

j

. This means

that if e is in I

j

\ I

k

for some pair fI

j

; I

k

g � I and e 2 dom(h

j

) but e =2 dom(h

k

), then

e =2 dom(h).

We can extend the notion of product to sets of histories spanning a set of ideals.

Let I = fI

1

; I

2

; : : : ; I

n

g be a set of ideals as before, with J =

S

j2[1::n]

I

j

. Let H

I

=

fH

1

;H

2

; : : : ;H

n

g where H

j

is a set of histories over I

j

for each j 2 [1::n]. A choice from

H

I

is a set fh

j

g

j2[1::n]

which picks out a history h

j

2 H

j

for each j 2 [1::n]. The choice is

consistent if the set fh

j

g

j2[1::n]

is. We can then de�ne

O

H

I

= f

O

j2[1::n]

h

j

j fh

j

g

j2[1::n]

is a consistent choice from H

I

g:

So,

N

H

I

contains all histories on J that may be pieced together frommutually consistent

histories in the collection H

I

.

Products of histories play a crucial role in the subset construction for asynchronous

automata [KMS]. When determinizing an asynchronous automaton, it is not su�cient

for each process to maintain just the subset of states it can be in after reading a part of

the input. Suppose X

p

and X

q

are the sets of possible states of p and q on ideal I. The

set of possible joint fp; qg-states on I is not , in general, the na��ve product X

p

�X

q

. To

determine which states from X

p

�X

q

are valid fp; qg-states on I, p and q have to record

additional information about the runs leading to each state in the current subsets X

p

and

X

q

. Since the amount of information that a process can store is bounded, it can at best

record histories de�ned over a �nite subset of the events it has seen.

In the subset construction of [KMS], after an ideal I, each process p maintains the set

H

p

of all reachable histories over a speci�c bounded subset of @

p

(I). This subset includes

max

p

(I), so H

p

has, in particular, information about all the possible states that p can be

in on I. Suppose a subset P � P synchronizes after reading a part of the input. In terms

of the notation above, we have I = f@

p

(I)g

p2P

, J = @

P

(I) and H

I

= fH

p

g

p2P

. The

goal is to ensure that

N

H

I

generates all possible consistent \joint" histories of P over

7



an appropriate subset of @

P

(I). This will allow the processes in P to jointly compute all

the possible moves they can make on reading the new letter from the input.

The key step is to characterize when the product of a set of reachable histories

fh

j

g

j2[1::n]

over I = fI

1

; I

2

; : : : ; I

n

g remains a reachable history over the joint ideal

J =

S

j2[1::n]

I

j

. For this, we need the notion of a frontier.

Frontiers Let I and J be ideals and p a process. We say that event e of I is an p-sentry

for I relative to J if e is also in J and its p-successor is in J but not in I. Thus the process

p \leaves" I at e. Let border(I; J) be the set of all such sentries. Note that there is at most

one p-sentry for each p, so there are at most N events in border(I; J)|recall that N =

jPj. In general, border(I; J) 6= border(J; I). We are normally interested in the two sets

together, which we denote frontier(I; J); i.e., frontier(I; J) = border(I; J)[ border(J; I).

It is clear that frontier(I; J) = frontier(J; I) and frontier(I; I) = ;. We then have the

following crucial result which is proved in [KMS].

Lemma 2 Let I = fI

1

; I

2

; : : : ; I

n

g be a set of ideals and fh

j

g

j2[1::n]

a consistent set of

histories such that for each j 2 [1::n]:

(i) h

j

is a reachable history over I

j

; and

(ii) dom(h

j

) includes

S

k2[1::n]

frontier(I

j

; I

k

).

Then h =

N

j2[1::n]

h

j

is a reachable history over J =

S

j2[1::n]

I

j

.

So, whenever the reachable histories fh

j

g

j2[1::n]

span all the frontiers between the ideals

in I = fI

1

; I

2

; : : : ; I

n

g, their product is also reachable.

Recall that each process pmaintainsH

p

, the set of all reachable histories over a speci�c

subset of @

p

(I). Suppose that this speci�c subset of @

p

(I) includes frontier

p

(I), where

frontier

p

(I) =

[

q2P

frontier(@

p

(I); @

q

(I)):

Then, if I = f@

p

(I)g

p2P

and H

I

= fH

p

g

p2P

, the previous lemma guarantees that every

history in

N

H

I

is reachable in @

P

(I).

The problem now is for a process p to compute the bounded set of events frontier

p

(I).

This can be done using slightly larger, but still bounded, sets of events called primary

and secondary information, which between them subsume the frontiers.

5 Primary and secondary information

Primary information Let I be a �nite ideal. Recall that max

p

(I) denotes the v-

maximum p-event in I. The primary information of I, primary(I), is the set of events

fmax

p

(I)g

p2P

. We can de�ne primary(I) analogously for in�nite ideals as well, where

we include the events max

p

(I) for only those processes p such that there are only �nitely

many p-events in I.

8



Secondary and tertiary information Let I be a �nite ideal. The secondary informa-

tion in I, secondary(I), is the set of events

S

p2P

primary(@

p

(I)). The tertiary information

in I, tertiary(I), is the set of events

S

p;q2P

primary(@

p

(@

q

(I))).

The primary information of I represents the latest information available in I about

each process in the system. Similarly, the secondary information primary(@

p

(I)) is the

latest information that process p has in I about the other processes in the system, while

the tertiary information primary(@

q

(@

p

(I))) is the latest information that p has about the

primary information of q in I.

It is clear that every event in primary(I) also belongs to secondary(I), since

max

p

(@

p

(I)) = max

p

(I) for all p 2 P . Similarly, every event in secondary(I) belongs

to tertiary(I). (Actually, primary(I), secondary(I) and tertiary(I) are indexed sets of

events|an event e 2 I may be both max

p

(I) and max

q

(I) for di�erent processes p and

q and must hence be represented twice in primary(I), say as the pairs (e; p) and (e; q).

However, we shall normally ignore this aspect and just treat all these indexed collections

as sets of events.)

Let I and J be ideals. If I and J satisfy a simple condition, the events in frontier(I; J)

can be characterized in terms of the primary and secondary information of I and J , as

described in the following lemma. (A proof of the lemma can be found in [KMS].)

Lemma 3 Let I and J be ideals such that I = @

P

(K) and J = @

Q

(K), where K is an ideal

and P;Q � P are sets of processes. Let e be a p-sentry for I with respect to J . Then e =

max

p

(I) and, for some process q, e = max

p

(@

q

(J)). Thus, e 2 primary(I)\secondary(J).

Let I be an ideal. From the previous lemma, it is clear that for a process P to maintain

reachable histories over frontier

p

(I), it is su�cient for p to maintain reachable histories

over secondary(@

p

(I)). Processes can unambiguously keep track of their primary and

secondary information by using time-stamps.

Time-stamps and the subset construction

Let I be a �nite ideal. Then, there are at most N

3

distinct events in tertiary(I). We can

thus use a �nite set L of labels to time-stamp each event in this set. We can denote the

assignment of time-stamps to the events in tertiary(I) as a function � : tertiary(I)! L.

For p 2 P, let �

p

denote the restriction of � to @

p

(I). It turns out that the processes in P

can locally maintain and update the functions �

p

so that, overall, the events in tertiary(I)

are assigned consistent time-stamps.

Theorem 4 (Time-stamping [MS]) For any distributed alphabet (�; �), we can �x a

�nite set of labels L and construct a deterministic asynchronous automaton A

T

over (�; �)

in which, on any �nite ideal I, each process p maintains �

p

: secondary(@

p

(I)) ! L,

where �

p

is the restriction to @

p

(I) of a consistent labelling � : tertiary(I) ! L. Process

p maintains �

p

as a function from P� P to L. The value �

p

(q; r) is the label assigned to

the event max

r

(max

q

(@

p

(I))).

The automaton A

T

allows each process to maintain reachable histories over the set

secondary(@

p

(I))|each history h is maintained as a partial function assigning joint states

to labels in L such that whenever �(e) = ` for some event e 2 secondary(@

p

(I)), h(`) is

9



de�ned and yields an e-state. In conjunction with Lemmas 2 and 3, this yields the

following result.

Theorem 5 (Subset construction [KMS]) Let A be a non-deterministic asynchronous

automaton over (�; �). Then, we can construct a deterministic asynchronous automaton

A

S

over (�; �) such that for any �nite ideal I, the unique global state ~v reached by A

S

on

I has the following properties:

(i) For each process p, ~v

p

contains H

p

, the set of all reachable histories over secondary(@

p

(I)).

(ii) For any subset P of P, we can compute the set of all possible P -states of A on I

from the information in the P -state ~v

P

. In particular, from ~v we can recover the set

of possible global states of A on I.

6 Determinizing B�uchi asynchronous automata

We now have enough machinery at hand to apply Safra's construction in a distributed

setting. Recall that we are initially given a non-deterministic B�uchi asynchronous au-

tomaton BA = (A;T

B

). Our goal is to construct a deterministic Rabin asynchronous

automaton RB = (B;T

R

) which accepts the same set of in�nite strings that BA does.

As we remarked earlier, our strategy is to construct a separate deterministic Rabin

automatonRB

�

= (B

�

;T

R

�

) for each entry � in the B�uchi table T

B

such thatRB

�

accepts

an input � i� there is a run � of BA on � which satis�es � . We shall then combine these

individual automata fRB

�

g

�2T

B

into a single automaton RB which accepts the same

inputs as BA.

Let � = (C; T; f(p

C

; G

C

)g

C2C

) be an entry from T

B

. We �rst describe how to construct

the corresponding Rabin automaton RB

�

. For simplicity, we assume that T = ;|i.e., a

run � of BA on an input � can satisfy � only if Finite

�

= ;. In other words, every process

moves in�nitely often as A reads �. Later, we shall see how to eliminate this \progress"

assumption.

The automaton RB

�

has to check that there is a run � of A on � such that along

�, each signalling process p

C

visits some recurring state from G

C

in�nitely often. Each

process p

C

can detect whether there is some local run r

C

of A on � which meets G

C

in�nitely often by running Safra's construction locally. However, we have to check that

the individual runs fr

C

g

C2C

are mutually consistent.

Let I

�

= fI

C

g

C2Conn

�

be the set of ideals such that I

C

= @

C

(E) for each C 2 Conn

�

.

(Recall that each set C is a subset of P, so the C-view of E is well-de�ned.) If there is a

run of A satisfying � , it must be the case that C = Conn

�

, so we can alternatively regard

I

�

as the collection f@

C

(E)g

C2C

.

Let I

joint

�

denote the set of events which occur in more than one ideal in the collection

I

�

|i.e., I

joint

�

= fe 2 E j 9C;C

0

2 C: C 6= C

0

and e 2 I

C

\ I

C

0

g. Since C = Conn

�

, it

must be the case that I

joint

�

is �nite|\above" I

joint

�

, the ideals in I

�

are pairwise disjoint.

Moreover, the union [I

�

is the entire set E. So, if we can ensure that the local runs

fr

C

g

C2C

agree on the events in I

joint

�

, they can be \pasted" together to form a global run

� of A satisfying � .

Actually, it is not necessary that the local runs fr

C

g

C2C

agree on the entire set I

joint

�

in order to synthesize a global run � satisfying � . It is su�cient for these local runs to

agree along the frontiers of the ideals in I

�

.
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Lemma 6 Let � : N ! � be an in�nite word. For I

C

2 I

�

, let frontier(I

C

;I

�

) denote

the set of events spanning the frontiers of I

C

with respect to all the ideals in I

�

|i.e.,

frontier(I

C

;I

�

) =

S

C

0

2C

frontier(I

C

; I

C

0

).

Let R = fr

C

g

C2C

be a set of local runs of A on � such that:

(i) For C 2 C, r

C

is a local run over I

C

.

(ii) For each pair C;C

0

2 C, the local runs r

C

and r

C

0

agree on frontier(I

C

; I

C

0

).

Then, there is a local run r of A over E which agrees with each run r

C

2 R for all events

e 2 I

C

\above" frontier(I

C

;I

�

). In other words, for each C 2 C, for each e 2 I

C

, if there

exists f 2 frontier(I

C

;I

�

) such that f v e, then r(e) = r

C

(e).

Proof For C 2 C, let h

C

be the history generated by restricting r

C

to the set fe 2 I

C

j

9f 2 frontier(I

C

;I

�

): f v eg. It is easy to check that the histories in fh

C

g

C2C

satisfy the

assumptions of Lemma 2. So h =

N

C2C

h

C

is a reachable history over [I

�

= E. Let r be

the local run extending h to all of E. 2

So, if the local runs fr

C

g

C2C

detected by the copies of Safra's construction agree along

the frontiers in I

�

, we can synthesize a local run r over E which agrees with each local

run r

C

outside I

joint

�

. It is clear that the global run � of A on � which corresponds to r

does in fact satisfy � . Of course, to check the conditions of the previous lemma, we have

to verify that, in the limit, the local runs detected by each signalling process agree on the

frontier events. In principle, this involves an in�nite amount of computation. However,

since there is only a �nite amount of communication across the ideals in I

�

, the frontier

events of interest get \frozen" at some �nite stage.

Lemma 7 Let � :N! � be an in�nite word. Let J be an ideal such that I

joint

�

� J � E.

Then, for each pair fC;C

0

g in Conn

�

, frontier(@

C

(J); @

C

0

(J)) = frontier(@

C

(E); @

C

0

(E)).

Proof Observe that for every J such that I

joint

�

� J , and for every pair fC;C

0

g in Conn

�

,

@

C

(J) \ @

C

0

(J) = @

C

(E) \ @

C

0

(E). The result then follows. 2

Let � be an in�nite word and C;C

0

be components in Conn

�

. From Lemma 3, we

know that the events in frontier(@

C

(E); @

C

0

(E)) are contained in secondary(@

C

(E)) and

secondary(@

C

0

(E)).

Let p

C

and p

C

0

be processes in C and C

0

respectively. From the de�nition of Conn

�

, it

follows that @

C

(E) = @

p

C

(E) and @

C

0

(E) = @

p

C

0

(E). So, frontier(@

C

(E); @

C

0

(E)) is, in fact,

contained in the secondary information of both @

p

C

(E) and @

p

C

0

(E).

Let e 2 secondary(@

p

C

(E)). From the de�nition of secondary information, e =

max

r

(@

q

(@

p

C

(E))) for some pair of processes q and r. In other words, there are only

�nitely many r-events in @

q

(@

p

C

(E)). There are two possibilities:

� The ideal @

q

(@

p

C

(E)) is itself �nite, in which case q 2 (P� C).

� The ideal @

q

(@

p

C

(E)) is in�nite, but the number of r-events in @

q

(@

p

C

(E)) is �nite.

This means that q 2 C but r 2 (P� C).

This observation prompts the following de�nition:
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Stable information Let � : N ! � be an in�nite word and let p

C

2 C for some

connected component C 2 Conn

�

. For any ideal I, the stable information of p

C

in I,

stable-info

p

C

(I) is the subset of secondary(@

p

C

(I)) given by

fmax

r

(@

q

(@

p

C

(I))) j q =2 C; r 2 Pg [ fmax

r

(@

q

(@

p

C

(I))) j q 2 C; r =2 Cg:

The events in stable-info

p

(I) are frozen once I grows beyond the �nite initial portion I

joint

�

in E. In other words, for any ideal J � I

joint

�

, stable-info

p

C

(J) = stable-info

p

C

(E). By

our earlier observations, this means that for any J � I

joint

�

, stable-info

p

C

(J) subsumes the

events lying in the sets

S

C

0

2Conn

�

frontier(@

C

(E); @

C

0

(E)).

Let us get back to our distributed version of Safra's construction corresponding to an

entry � = (C; T; f(p

C

; G

C

)g

C2C

) in T

B

. Suppose that each signalling process p

C

ensures

that it has crossed the �nite portion I

joint

�

before starting Safra's construction. Then,

along with each successful run r

C

on @

C

(E) that it detects, it can record the value of r

C

on stable-info

p

C

(E). If the successful runs fr

C

g

C2C

agree on the stable information across

all the signalling processes, we know that the runs satisfy the assumption of Lemma 6,

which means that there is some global run of A on � which satis�es � .

The catch is that the signalling processes have no way of knowing when the �nite

portion I

joint

�

is over. However, since B

�

includes the subset automaton for A, B

�

also

incorporates the time-stamping automaton A

T

which maintains consistent labels across

tertiary(I) at the end of any ideal I. If the time-stamps assigned by A

T

to the events in

stable-info

p

C

(I) change, the process p

C

knows that I

joint

�

is not yet over.

So, we adopt the following strategy. Initially, each signalling process p

C

starts o�

Safra's construction. Whenever it detects that stable-info

p

C

(I) has changed, it \kills" the

old copy of Safra's construction and restarts a new copy. In fact, the process starts a

separate copy of Safra's construction for each distinct history over stable-info

p

C

(I). So, in

the limit, p

C

can signal whether or not there is an accepting local run r

C

for each history

over its stable information.

The structure of RB

�

Let � = (C; T; f(p

C

; G

C

)g

C2C

). The local state of each signalling process p

C

in B

�

consists

of the following information:

(i) The local state of the subset automaton for A. This includes the set H

p

C

of all

reachable histories over secondary(@

p

C

(I)) at the end of any input ideal I.

This component incorporates the local state of the time-stamping automaton A

T

,

which stores the labels of events in secondary(@

p

C

(I)) as a function �

p

C

: P�P! L.

The time-stamps assigned to the events in stable-info

p

C

(I) are the values �

p

(q; r)

where either q =2 C or (q 2 C and r =2 C).

(ii) Let H

S

be the set of reachable histories over stable-info

p

C

(I). For each h 2 H

S

, p

C

maintains an independent labelled coloured tree as dictated by Safra's construction.

The non-signalling processes need not run Safra's construction; it is su�cient for them to

maintain the �rst component of the state, corresponding to the subset automaton.

On reading an input letter a, each process p in �(a) updates its local states as follows:

(i) First p updates the local state components corresponding to the time-stamping

automaton and the subset automaton.
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(ii) If p is a signalling process and if the time-stamps assigned to stable-info

p

(I) have

not changed, then p updates the trees in each copy of Safra's construction using the

new information provided by the subset automaton.

On the other hand, if the time-stamp corresponding to any event in stable-info

p

(I)

changes, p erases all the existing copies of Safra's construction and begins a fresh

copy for each history in the new set H

S

.

The single entry � in T

B

generates a table T

R

�

in RB

�

with multiple entries. Each

possible history h over

S

C2C

stable-info

p

C

(E) generates a distinct entry �

h

of the form

(C; T; f(p

C

; pairs

C

)g

C2C

) in T

R

�

. In �

h

, the entries C, T and the set of signalling processes

fp

C

g

C2C

are as in the original entry � 2 T

B

.

Let jV

p

C

j = M

C

be the number of possible local states for p

C

in A. Then, there are 2M

C

possible pairs (G

j

C

; R

j

C

) in the list pairs

C

, corresponding to the labels f`

1

; `

2

; : : : ; `

2M

C

g

used by Safra's construction to label the nodes in the tree associated with the current

subset of possible p

C

states.

The set G

j

C

consists of all possible states of p

C

in which the set of histories over

stable-info

p

C

(E) includes the projection h

p

C

of h onto stable-info

p

C

(E) and, moreover, in

the labelled tree from Safra's construction corresponding to h

p

C

, the node labelled `

j

is

coloured green.

The set R

j

C

consists of all possible states of p

C

in which the set of histories over

stable-info

p

C

(E) includes the projection h

p

C

of h onto stable-info

p

C

(E) and, moreover, in

the labelled tree from Safra's construction corresponding to h

p

C

, there is no node labelled

`

j

.

It is straightforward though tedious to verify that RB

�

accepts an input � : N ! �

i� there is a run of BA on � satisfying � .

Removing the progress assumption So far we have assumed that T = ; in the

B�uchi table entry � . Suppose T 6= ; and there is a run of A on � which satis�es � . Then

each process p 2 T moves only �nitely often while A reads �. So, we just run the subset

construction for p and verify that it terminates in one of the states in G

p

.

In other words, for each entry �

h

of RB

�

, we have a single pair (G

1

p

; R

1

p

) in pairs

fpg

,

where R

1

p

= ; and G

1

p

consists of all possible states of the subset automaton such that

there is a history h

0

in H

p

which agrees with h on stable-info

p

(E) where the terminal state

assigned to p by h

0

belongs to G

p

.

Combining the individual automata fRB

�

g

�2T

B

We can combine the individual

automata fRB

�

g

�2T

B

using a standard product construction which preserves determinacy.

The construction is essentially the same as in the sequential case and we omit the details.

A complementation construction We can complement a Rabin asynchronous au-

tomaton by viewing the acceptance table as a Streett condition, as in sequential automata

[Tho]. This Streett condition can then be checked e�ciently by a non-deterministic B�uchi

asynchronous automaton using the technique proposed by Vardi (described in [Saf]). So,

from RB we can construct an B�uchi automaton BA such that BA accepts an in�nite

string � i� RB does not accept �. Since RB accepts the same inputs that BA does, BA

is a complement automaton for BA. See Appendix D for details of how to construct BA.

13



Complexity analysis In the input automaton BA = (A;T

B

), let N be the number of

processes in A, M the size of the largest set in the collection fV

p

g

p2P

and K the number

of entries in T

B

.

Then, in the deterministic Rabin automaton RB which we construct, the number of

local states of each process p is bounded by 2

KM

O(N

3

)

, while in the complement automaton

BA, the number of local states of each process p is bounded by 2

K

2

M

O(N

4

)

. Details of how

these bounds are derived can be found in Appendix E.

In [KMS], it is shown that in the subset automaton for A, the number of states of each

process p is bounded by 2

M

O(N

3

)

. So, the blow-up involved in the construction of RB and

BA is essentially the same as that of the subset construction.

Consolidating the results of this section, we have the main result of this paper.

Theorem 8 Let BA = (A;T

B

) be a non-deterministic B�uchi asynchronous automaton

over (�; �). Then, we can construct a deterministic Rabin asynchronous automaton RB =

(B;T

R

) over (�; �) such that RB accepts the same set of in�nite strings that BA does.

From RB, we can construct a complementary non-deterministic B�uchi automaton BA

over (�; �) which accepts an in�nite string � i� the original automaton BA does not

accept �.

The number of local states of each process in RB and BA is essentially exponential in

the number of global states of the original automaton BA.

14
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A Comparison with Gastin-Petit automata

The original formulation of B�uchi asynchronous automata by Gastin and Petit [GP] di�ers

from the one we use in this paper. In the original de�nition, information about Conn

�

and Finite

�

is not part of the acceptance condition. Instead, in the acceptance table,

each entry is a tuple of the form fG

p

g

p2P

. A run � is accepting if there is some table

entry fG

p

g

p2P

such that inf (�

p

) � G

p

for each process p. It is not di�cult to verify that

our automata are equivalent to those of Gastin and Petit.

Notice that the Gastin-Petit acceptance table uses a \covering" condition on the sets

G

p

, rather than the simple recurring set condition we have in our automata. This covering

condition is awkward to work with when trying to determinize these automata.

Actually, to eliminate the \covering" condition it is su�cient to record information

about Finite

�

in the acceptance table [Nie]. The extra information we record about

Conn

�

allows us to separate the processes in A into independent groups. After a �nite

pre�x of � has been read, there will be no further synchronizations between processes in

di�erent connected components of G

�

. So, in the limit, each subset C 2 Conn

�

moves as

a separate unit, independent of the others.

From Gastin-Petit automata to our automata : : :

We can use our automata to simulate B�uchi automata with Gastin-Petit acceptance tables

as follows. On reading an input �, the simulating automaton guesses a partition C of P

corresponding to Conn

�

together with a set of processes T corresponding to Finite

�

. It

also guesses a table entry � = fG

p

g

p2P

from the Gastin-Petit table. It then generates a

run � of the original automaton on the input � and checks if � satis�es � .

To do this, we �x a signalling process p

C

2 C for each component C 2 C. The process

p

C

has to verify that every other process p

0

2 C meets every state in G

p

0

in�nitely often

along the run being simulated. This can be achieved by organizing the processes in C in

a spanning tree rooted at p

C

, where the edges in the tree come from the graph G

�

.

Each process p

`

corresponding to a leaf in this spanning tree can check that it meets

G

p

`

in�nitely often using a simple counter. Each time p

`

cycles through G

p

`

completely,

it informs its parent in the tree|if C = Conn

�

, p

`

will synchronize in�nitely often with

its parent and so will pass on this signal in�nitely often.

Each internal process p

i

in the tree maintains two counters: one for itself and one

correponding to its children. The �rst counter checks that p

i

cycles through G

p

i

in�nitely

often. The second counter checks that all the children report success in�nitely often. Each

time both counters complete a cycle, p

i

informs its parent in the tree.

Eventually, all the information propagating up the tree reaches the root, which is the

signalling process p

C

. So, p

C

can use a simple recurring B�uchi condition to check that

all the processes in C meet their \covering" B�uchi condition corresponding to the table

entry � .

The blow-up in this simulation corresponds to guessing a partition C, a set T and a

table entry � . The number of choices of C is bounded by 2

N

2

, where N is the number of

processes|each choice of C corresponds to dropping some edges from the complete graph

on N vertices, which has N

2

edges. The number of choices for T is bounded by 2

N

, while

the choice of � depends on K, the number of entries in the original table. Thus, overall

the blow-up is O(K2

N

2

).
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(Actually, we can do better. The connectivity we begin with does not correspond, in

general, to the complete graph on N vertices. The alphabet (�; �) restricts the communi-

cation pattern in the system. So, the number of di�erent ways of partitioning the processes

in P is actually bounded by 2

jEj

, where E is the number of edges in the \connectivity

graph" induced by (�; �). The overall blow-up is then O(K2

jEj

).)

: : :and back

The simulation in the other direction is as follows. Let BA = (A;T

B

) be one of our B�uchi

asynchronous automata. At the initial state, the simulating automaton guesses an entry

� = (C; T; f(p

C

; G

C

)g

C2C

) in T

B

and sees if BA has a run on the input which satis�es � .

The simulating automaton has to check the following:

� While reading the input, each process in T must move only �nitely often, while each

process outside T must move in�nitely often.

� Each component C 2 C must actually constitute a connected component in the

limit graph of the input.

� For each component C 2 C, the signalling process p

C

must visit G

C

in�nitely often

along the run.

The �rst condition can be checked by tagging the state space of each process with a

two element counter.

For processes in T , one of the counter values denotes that it is \live" and the other

that it is \dead"|in other words, that it will not make any further moves. There are no

transitions enabled from the \dead" part of the state space. The simulating automaton

non-deterministically sends each terminated process into a dead state when it feels that

it has �nished its �nite quota of moves over a particular input.

For processes not in T , the simulating automaton ensures that with each move, the

process switches between the counter values. So, the simulating automaton can record

whether or not a process moves in�nitely often in the original automaton by checking

that it visits both copies of the state space in�nitely often. Notice that to check this, the

simulating automaton must use a covering B�uchi condition|in general, a simple recurring

B�uchi condition will not su�ce.

To check the second condition, the simulating automaton keeps track of when the

gossip information of each process changes. Let p belong to a component C 2 C. Then,

while reading the input, p's primary information about other processes in C must change

in�nitely often, while p's primary information about processes outside C becomes frozen

at some stage. So, p non-deterministically guesses when the primary information of all

processes outside C is frozen. After this, if p ever has to update it primary information

for some q outside C, it moves into a reject state.

After making this guess, p uses a counter to cycle through the processes in C, waiting

for its primary information about each process to change. When it completes each cycle,

it goes into a \good" state.

It is easy to verify that C is a connected component of the limit graph i� p does not

go into its reject state and, in addition, p visits its \good" state in�nitely often.
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Finally, each signalling process p

C

can easily check on the side that it visits some state

from G

C

in�nitely often.

The blow-up in the state space is linear in the size of T

B

|each entry of the table

generates a copy of the original state space together with at most two counters, one of

size two and one whose size is bounded by N , the number of processes in the system.

However, the number of entries in the new table could be exponential in the size of T

B

since recurring B�uchi conditions in the original automaton have to be encoded in terms

of covering B�uchi conditions in the simulating automaton.

B Safra's construction

Let BA be a non-deterministic sequential B�uchi automaton with n states and a set G of

recurring states. Safra constructs a deterministic sequential Rabin automaton RA with

a table f(G

j

; R

j

)g

j2[1::2n]

such that RA accepts an input � i� there is some run of BA

passing through G in�nitely often.

Safra uses the classical subset construction of Rabin and Scott to record the possible

states that BA can be in after reading any �nite pre�x of �. The subset of possible states

is maintained as a labelled tree|the elements of the subset are in 1{1 correspondence

with the nodes of the tree and each node has a distinct label drawn from a set of names

of size 2n. In addition, each node of the tree is coloured either white or green.

After reading a letter from the input, the subset construction updates the set of

possible current states of BA. As a result, the shape of the corresponding tree changes.

In the process some nodes are discarded from the tree and some new nodes are added.

However, Safra's construction ensures that the labels associated with the old nodes are

not reused in the same step for the new nodes. In other words, if a node is dropped at

some stage from the tree, its label temporarily disappears from the tree.

These labelled trees are used to keep track of runs in the underlying computation. The

colours white and green are used to signal when a run of BA visits the recurring states G.

Thus, when updating the trees, the colours of the nodes may also change. When a node

is added to the tree, it is assigned the colour white. During its \lifetime" in the tree, it

may periodically change colour from white to green and back to white again.

Recall that nodes are labelled using a set of names of size 2n, say f`

1

; `

2

; : : : ; `

2n

g. Let

us look at the entry (G

j

; R

j

) in the table for RA. Condition R

j

says that the label `

j

disappears from the tree only �nitely often. In other words, a node with label `

j

is added

to the tree at some point and this node is never deleted during the rest of the run of RA.

Condition G

j

then guarantees that this node turns green in�nitely often.
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C Examples

Consider the word � = bacbacd

!

over the alphabet (�; �) for P = fp; q; r; sg, where � =

fa; b; c; dg and �(a) = fp; qg, �(b) = fq; rg, �(c) = fr; sg and �(d) = fpg. The set of events

E

�

is then fe

0

; e

1

; e

2

; e

3

; e

4

; e

5

; e

6

; e

7

; e

8

; : : :g = f0; (1; b); (2; a); (3; c); (4; b); (5; a); (6; c);

(7; d); (8; d); : : :g.

Figure 1 describes (E

�

;v). The arrows between the events indicate the relations /

p

,

/

q

, /

r

and /

s

. For example, e

0

/

r

e

1

holds, but e

0

/

p

e

1

does not hold.

�

-

�

-

�

-

�

-

�

-

� � �

�

-

�

-

�

-

�

-

�

�

-

�

-

�

-

�

-

�

�

-

�

-

�

p

q

r

s

b

a c

b

a c

d d

e

0

e

1

e

2

e

3

e

4

e

5

e

6

e

7

e

8

Figure 1: An example

Ideals and views The set of events e

7

# is fe

0

; e

1

; e

2

; e

3

; e

4

; e

5

; e

7

g while e

6

# is fe

0

; e

1

; e

2

;

e

3

; e

4

; e

6

g.

In this example, @

r

(E) = max

r

(E)#= e

6

#= fe

0

; e

1

; e

2

; e

3

; e

4

; e

6

g. On the other hand,

@

p

(E) = fe

0

; e

1

; e

2

; e

3

; e

4

; e

5

; e

7

; e

8

: : :g = E� fe

6

g. Notice that max

p

(E) is unde�ned.

Neighbourhoods The neighbourhood of e

5

, nbd(e

5

), is fe

2

; e

4

; e

5

g.

Let A = (fV

p

g

p2P

; f!

a

g

a2�

;V

0

) be an asynchronous automaton over (�; �). Each process

has four local states. Thus, V

p

= f1

p

; 2

p

; 3

p

; 4

p

g, V

q

= f1

q

; 2

q

; 3

q

; 4

q

g etc.

Let the local transition relations of A be de�ned as in the table below:

!

a

!

b

!

c

!

d

f(h1

p

; 2

q

i; h3

p

; 3

q

i) f(h1

q

; 1

r

i; h2

q

; 2

r

i) f(h2

r

; 1

s

i; h4

r

; 4

s

i) f(h3

p

i; h4

p

i)

(h1

p

; 3

q

i; h4

p

; 4

q

i) (h1

q

; 1

r

i; h3

q

; 3

r

i) (h2

r

; 3

s

i; h4

r

; 4

s

i) (h4

p

i; h3

p

i)g

(h3

p

; 2

q

i; h4

p

; 4

q

i) (h3

q

; 4

r

i; h2

q

; 2

r

i) (h2

r

; 4

s

i; h1

r

; 1

s

i)

(h4

p

; 2

q

i; h3

p

; 3

q

i)g (h4

q

; 3

r

i; h2

q

; 2

r

i)g (h3

r

; 1

s

i; h3

r

; 3

s

i)g

V

0

= fh1

p

; 1

q

; 1

r

; 1

s

ig and V

F

= fh4

p

; 3

q

; 1

r

; 1

s

i; h3

p

; 4

q

; 4

r

; 4

s

ig.

Local runs Let I be the ideal fe

0

; e

1

; e

2

; e

3

; e

4

; e

5

; e

6

; e

7

g. Then, the local runs corre-

sponding to the only two possible global runs of A on I are shown in Figure 2. The left

half of each event is labelled by the �rst run and the right half by the second run.
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- - -

- - - -

- - - -

- -

p

q

r

s

b

a c

b

a c

d

e

0

e

1

e

2

e

3

e

4

e

5

e

6

e

7

1

p

1

p

3

p

4

p

4

p

3

p

3

p

4

p

1

q

1

q

2

q

3

q

3

q

4

q

2

q

2

q

4

q

3

q

1

r

1

r

2

r

3

r

4

r

3

r

2

r

2

r

1

r

4

r

1

s

1

s

4

s

3

s

1

s

4

s

Figure 2: Local runs

Histories and products For p, let h

1

p

and h

2

p

be two histories over @

p

(I) where

h

1

p

= f(e

3

7! h4

r

; 4

s

i; e

4

7! h2

q

; 2

r

i; e

5

7! h4

p

; 4

q

i; e

7

7! h3

p

i)g, and

h

2

p

= f(e

3

7! h3

r

; 3

s

i; e

4

7! h2

q

; 2

r

i; e

5

7! h3

p

; 3

q

i; e

7

7! h4

p

i)g.

For s, let h

1

s

and h

2

s

be two histories over @

s

(I) where

h

1

s

= f(e

2

7! h3

p

; 3

q

i; e

4

7! h2

q

; 2

r

i; e

6

7! h4

r

; 4

s

i)g, and

h

2

s

= f(e

2

7! h4

p

; 4

q

i; e

4

7! h2

q

; 2

r

i; e

6

7! h1

r

; 1

s

i)g.

All four of these histories are reachable. The product

N

n

fh

1

p

; h

2

p

g; fh

1

s

; h

2

s

g

o

generates

four possible runs over @

fp;sg

(I). However, only two of these runs are reachable|those

generated by h

1

p


 h

1

s

and h

2

p


 h

2

s

. The \bad" entry h

2

p


 h

1

s

implies that h4

p

; 3

q

; 1

r

; 1

s

i is

a valid global state of A after I, which is not the case.

D Streett asynchronous automata and complemen-

tation

Let RA = (A;T

R

) be a Rabin asynchronous automaton. Then, it is easy to verify that

RA does not accept an input � i� for every run � of A on � and for every entry � =

(C; T; f(p

C

; pairs

C

)g

C2C

) in TR, the following holds:

If C = Conn

�

and T = Finite

�

then 9C 2 C: 8i 2 [1::k

C

]: (inf

p

C

(�) \ G

p

C

6= ;)) (inf

p

C

(�) \ R

p

C

6= ;):

This corresponds to a \complemented pairs" condition, �rst investigated by Streett in the

setting of automata over in�nite strings [Tho].

So, we can formally de�ne a Streett asynchronous automaton as a pair SA = (A;T

S

)

where the table T

S

has the same structure as a Rabin table|i.e., each entry � in T

S

is of

the form (C; T; f(p

C

; pairs

C

)g

C2C

).

A run � of A on � satis�es � provided it meets the condition described above. The

automaton A accepts � if there is a run � on � which satis�es every table entry in T

S

.

(Actually, due to the extra quanti�cation over the partitions in C, this de�nition of

a Streett asynchronous automaton is perhaps not the natural one. A more intuitive

condition for a run � over � to satisfy a table entry � = (C; T; f(p

C

; pairs

C

)g

C2C

) is to
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stipulate that the following holds:

If C = Conn

�

and T = Finite

�

then 8C 2 C: 8i 2 [1::k

C

]: (inf

p

C

(�) \ G

p

C

6= ;)) (inf

p

C

(�) \ R

p

C

6= ;):

This de�nition is not complementary to that of Rabin acceptance in our setting. Since

our primary goal is to complement the given Rabin automaton, we shall stick to our

\unnatural" de�nition of a Streett automaton.)

To complement B�uchi asynchronous automata using our determinization construction,

it su�ces to be able to simulate a deterministic Streett asynchronous automaton by a

B�uchi asynchronous automaton. Starting with a non-deterministic B�uchi asynchronous

automaton BA = (A;T

B

), determinization produces an equivalent Rabin asynchronous

automaton RB = (B;T

R

). SinceRB is deterministic, if we interpret T

R

as a Streett table

T

S

, we get a deterministic Streett automaton SB = (B;T

S

) which is complementary to

BA. We can then simulate SB using a non-deterministic B�uchi asynchronous automaton

to obtain the complementary automaton BA which we set out to construct.

To simulate a deterministic Streett asynchronous automaton SA by a non-deterministic

B�uchi asynchronous automata BB, we proceed as follows:

(i) The simulating automaton should accept an input � if there is no entry � =

(C; T; f(p

C

; pairs

C

)g

C2C

) for which C = Conn

�

and T = Finite

�

. This can be

achieved using an automaton which has just one state for each process along with

one table entry for each pair (C; T ) which does not occur in the table for SA. In all

these new table entries, the B�uchi condition for each process is the trivial one.

(ii) If the �rst case does not hold, let X

�

= f�

1

; �

2

; : : : ; �

m

g be the set of all entries

in T

S

such that each entry �

i

2 X

�

is of the form (C; T; f(p

C

; pairs

C

)g

C2C

) where

C = Conn

�

and T = Finite

�

.

In [Saf], Safra describes an elegant construction due to Vardi for simulating a (se-

quential) Streett automaton by a (sequential) B�uchi automaton. For each entry

�

i

2 X

�

, we construct a B�uchi asynchronous automaton BB

i

in which each sig-

nalling process p

C

runs Vardi's construction to check if the (unique) run of the

original automaton on � satis�es all the complemented pairs f(G

j

C

; R

j

C

)g

j2[1::k

C

]

.

The acceptance table for BB

i

has one entry �

C

for each C 2 C. All entries in the

new table have the same partition C and set of terminated processes T as in �

i

. The

di�erence between the entries lies in the acceptance condition|the recurring set

for p

C

in the entry �

C

checks that p

C

satis�es its complemented pairs condition in

the original automaton. The recurring condition in �

C

for signalling processes p

C

0

corresponding to components C

0

6= C is the trivial one.

It is straightforward to see that BB

i

accepts an input � provided the (unique) run

�

�

of SA on � satis�es �

i

. Notice that �

�

trivially satis�es all table entries not in X

�

.

We can check that �

�

satis�es all the entries in X

�

by intersecting the automata

fBB

i

g

i2[1::m]

. (We omit the details of how to intersect two B�uchi asynchronous

automata.)

Overall, we can partition T

S

according to the values of C and T in the entries. For

each pair (C; T ), we can then construct a B�uchi asynchronous automaton as described in

21



step (ii) above. To get a single B�uchi automaton simulating SA, we take the union of all

the automata constructed in this fashion together with the automaton of step (i) which

catches all inputs which do not match any of the table entries.

E Complexity analysis

Determinization In the input automaton BA = (A;T

B

), let N be the number of

processes in A, M the size of the largest set in the collection fV

p

g

p2P

and K the number

of entries in T

B

.

We �rst estimate the number of bits required to describe the state of a signalling

process p

C

in RB

�

corresponding to a single entry � 2 T

B

. This state consists of the state

of the subset automaton for A together with one copy of the labelled tree used by Safra's

construction for each history in H

S

, the set of histories over stable-info

p

C

(I).

The state of the subset automaton for A can be written down using M

O(N

3

)

bits.

Each labelled tree maintained by Safra's construction requires O(M logM) bits [Saf]. In

[KMS], it is shown that there are at mostM

O(N

3

)

elements in H

p

C

, the set of all reachable

histories over secondary(@

p

C

(I)). Since this is also a bound on jH

S

j, p

C

maintains at most

M

O(N

3

)

copies of Safra's construction and, overall, the state of p

C

can be written down

using M

O(N

3

)

�O(M logM) = M

O(N

3

)

bits. Thus, the number of local states of p

C

in RB

�

is 2

M

O(N

3

)

, which is essentially the same as in the subset construction of [KMS].

When combining the individual automata in fRB

�

g

�2T

B

, we take the K-fold product

of the state space of each individual process p. So, overall, the number of local states of

a process is 2

KM

O(N

3

)

.

The number of entries in the Rabin table T

R

of the �nal deterministic automaton

RB = (B;T

R

) is KM

O(N

4

)

: each individual automaton RB

�

= (B

�

;T

R

�

) has as many

entries in T

R

�

as there are possible histories over the events

S

C2C

stable-info

p

C

(I). The

number of such histories is bounded by M

O(N

4

)

. Taking the product of the automata

fRB

�

g

�2T

B

results in the tables fT

R

�

g

�2T

B

being concatenated together. Since K copies

are concatenated, the �nal table has at most KM

O(N

4

)

entries.

The product construction does not a�ect the lengths of the lists pairs

C

. So, for each

entry �

R

= (C; T; f(p

C

; pairs

C

)g

C2C

) in T

R

, the number of pairs in the list pairs

C

for each

C 2 C is bounded by 2M .

Complementation The complexity of complementation is that of determinzation to-

gether with the cost of simulating a Streett automaton by a B�uchi automaton. Let us

analyze the second cost independently.

In the input Streett automaton SA = (A;T

S

), let N

0

be the number of processes in A,

M

0

the size of the largest set in the collection fV

p

g

p2P

, K

0

the number of entries in T

S

and

L

0

the length of the longest list of pairs fG

j

C

; R

j

C

g

j2[1::k

C

]

across all signalling processes

and all table entries.

Vardi's procedure for simulating an n-state Streett automaton with h pairs in the

acceptance condition generates a B�uchi automaton with n2

h

states. So, in step (ii) of

the simulation procedure for Streett automata, each signalling process in the automa-

ton BB

i

we construct will have at most M

0

2

L

0

local states. The intersection of the

automata fBB

i

g

�

i

2X

�

will involve at most K

0

automata at a time, since the number of
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table entries overall is bounded by K

0

. Intersecting K

0

B�uchi asynchronous automata

essentially generates the K

0

fold product of each process's local state space together with

a modulo K

0

counter. Thus, each process in the resulting automaton will e�ectively have

(M

0

2

L

0

)

K

0

=M

0K

0

2

K

0

L

0

local states.

When we take the union of all the automata constructed according to step (ii), we will

make upto K

0

disjoint copies of each process's local state space. We then merge this with

the trivial automaton constructed in step (i), which has only one local state per process.

So, overall the B�uchi asynchronous automaton simulating SA will have not more than

K

0

M

0K

0

2

K

0

L

0

local states for each process.

If we plug in values for K

0

;M

0

and L

0

after determinization, we see that K

0

=

KM

O(N

4

)

, M

0

= 2

KM

O(N

3

)

and L

0

= 2M , where K, M and N are the parameters corre-

sponding to the original non-deterministic B�uchi asynchronous automaton. So, number

of local states of each process in the complementary B�uchi asynchronous automaton BA

is bounded by KM

O(N

4

)

� (2

KM

O(N

3

)

)

KM

O(N

4

)

� 2

KM

O(N

4

)

�2M

, which is 2

K

2

M

O(N

4

)

.
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