
Solving the insecurity problem for assertions
R. Ramanujam Envelope

The Institute of Mathematical Sciences, Chennai (Retd.)
Homi Bhabha National Institute, Mumbai (Retd.)
Azim Premji University, Bengaluru (Visiting)

Vaishnavi Sundararajan Envelope

Indian Institute of Technology Delhi, New Delhi, India

S. P. Suresh1 Envelope
Chennai Mathematical Institute, Chennai, India
CNRS UMI 2000 ReLaX

Abstract
In the symbolic verification of cryptographic protocols, a central problem is deciding whether a protocol
admits an execution which leaks a designated secret to the malicious intruder. In [38], it is shown that,
when considering finitely many sessions, this “insecurity problem” is NP-complete. Central to their proof
strategy is the observation that any execution of a protocol can be simulated by one where the intruder only
communicates terms of bounded size. However, when we consider models where, in addition to terms, one
can also communicate logical statements about terms, the analysis of the insecurity problem becomes tricky
when both these inference systems are considered together. In this paper we consider the insecurity problem
for protocols with logical statements that include equality on terms and existential quantification. Witnesses for
existential quantifiers may be unbounded, and obtaining small witness terms while maintaining equality
proofs complicates the analysis considerably. We extend techniques from [38] to show that this problem is
also in NP.
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1 Introduction

1.1 Symbolic analysis of cryptographic protocols

Symbolic analysis of cryptographic protocols is a long-standing field of study, with the Dolev-Yao
model [22] being the standard. In this model, cryptographic operations are abstracted as operators
in a term algebra, and the ability to build newmessages from old ones is specified by rewrite rules
or a proof system. Themodel includes an intruder who controls the network, and can see, block,
inject, redirect, as well as derive terms, but cannot break cryptography. Informally, protocols are
specified as a finite sequence of communications between principals/agents. We illustrate this model
with the following example.

▶ Example 1. Alice sends to Bob her public key as well as a randomly-chosen value encrypted in
Bob’s public key. Bob receives it, decrypts it using his private key, encrypts it in Alice’s public key,
and sends it back to her. We split each communication into a send and a receive. We formalize
the protocol as two roles: an initiator role init(A,B) (left column) and a responder role resp(B) (right
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column). We use !C and ?C to denote a send and a receive respectively by an agent C ∊ {A,B}. kA and
kB stand for the private keys of A and B respectively, pk(k) stands for the public key corresponding
to a key k, and {t}k stands for the encryption of a message t using a key k.

A ∶ Generate fresh m

!A ∶ (pk(kA), {m}pk(kB))

?A ∶ {m}pk(kA)

?B ∶ (x, {y}pk(kB))

!B ∶ {y}x

The protocol itself can be thought of as a program running potentially unboundedly-many
copies (sessions) of init and resp in parallel. Each copy instantiates parameters A and Bwith agent
names, while x and y denote parts of messages received while participating in a session, and will be
instantiated accordingly. An execution (run) of a protocol is an interleaving of a finite set of sessions,
such that every sent message can be generated by the sender (based on their current knowledge),
and received messages by the intruder I (since every received message comes from the channel,
and could have been potentially tampered with by the intruder).

Is there any execution of this protocol at the end of which the intruder can derive m? This
property is called confidentiality. In fact, the intruder can effect the following man-in-the-middle
attack, at the end of which A thinks m is secret between her and B, while B thinks m is secret
between him and I. B receives a message where x can be matched with pk(kI) and ywith m, and
thus sends out {m}pk(kI).

!A ∶ (pk(kA), {m}pk(kB))

?B ∶ (pk(kI), {m}pk(kB))

!B ∶ {m}pk(kI)
?A ∶ {m}pk(kA)

1.2 Communicating “assertions”

TheDolev-Yao model and its extensions have been studied extensively over the last forty years.
People have studied extensions that express richer classes of protocols and security properties [1,
7, 10, 17], and associated decidability and complexity results [2, 8, 9, 12, 14–16, 18, 20, 23, 30, 36, 37].
Various verification tools have also been built based on these formal models [10, 11, 13, 21, 33].
In this paper, we consider an extension introduced in [35], which gives agents the power to

communicate terms as well as logical formulas about them. These formulas, called assertions, involve
equality of terms, existential quantification, conjunction, and disjunction. For instance, we can
reveal partial information about some encrypted term {m}k to a recipient who does not know the
key k (for instance, that the value of m is either 0 or 1, without revealing which) by sending the
assertion ∃xy �{x}y = {m}k ∧ x ∊ {0, 1}�. So we see that assertions allow us to model protocols
that involve some kinds of certification. Traditionally, such certification is often modelled using
zero-knowledge proofs.
The Dolev-Yao model can also be extended with a special class of zero-knowledge terms [6, 7].

But in these extensions, one important component is missing: logical reasoning over certificates.
This is especially important in situations where certificates communicate partial information.
For example, two partial-information certificates of the form x ∊ {0, 1} and x ∊ {0, 2} can lead to
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the inference of strictly greater information, namely x = 0, potentially violating some security
guarantees. This is one of the main features of the model in [35]. Making “assertions”, as that
paper refers to such logical statements, first-class citizens provides a threefold advantage: a more
transparent specification of protocols which captures design intent better, the ability to explicitly
reason about certificates and thus analyze protocols more precisely, and the ability to state some
security properties more easily. In [35], the authors express examples (the FOO [24] and Helios [3]
e-voting protocols) and specify security properties using assertions. We describe the modelling of
the FOO protocol in detail in Section 2.3.
In [35], any communicated assertion is “believed” by the recipients. One way to implement

this feature is to communicate a zero knowledge proof of the assertion. But formally, we send the
assertion itself rather than a term standing for a zero-knowledge proof, which also allows us the
possibility of choosing other implementations for the assertion. Another way in which [35] differs
frommodelling assertions using ZKP terms is that these proofs need not be built ab initio every
time. One can compose a new proof by combining existing proofs. These can be implemented
using composable ZKPs [26]. These issues have been discussed in [31], which considers a logical
language with conjunction and existential quantification and modular construction of ZKPs for
these formulas. However, unlike [31], assertions also allow “destructive reasoning” from existing
knowledge via elimination rules.
The main focus in this paper is to solve an interesting technical problem in our model with

assertions – the insecurity problem for finitely many sessions.

1.3 The insecurity problem for finitely many sessions

The attack on Example 1 indicates that even for simple protocols, one needs to consider non-trivial
scenarios to detect security violations. A canonical problem of interest is the insecurity problem,
which asks if a given protocol admits a run that leaks a secret to the intruder. A run is characterized
by an interleaving of protocol roles (init and resp in Example 1), with a substitution for the variables
in messages received by agents during these roles. There can be infinitely many such substitutions,
i.e. a potentially infinite number of executions, and thus, the insecurity problem is undecidable in
general [4,23,27]. In [38], the authors consider a restricted set of runs, and show that the insecurity
problem is in NP when one considers at most K sessions, for some fixed K.
Even with only a finite number of sessions, the intruder can inject arbitrarily large terms in

place of variables. Thus, there is no bound on the size of terms encountered in a run. The work
in [38] gets around this complication by showing that if there is any attack at all given by an
interleaving of roles and a substitution, there is an attack given by the same interleaving and a
‘small’ substitution. This “new” attack is such that the intruder can derive the same terms at the
end, and the size of all messages transmitted is bounded by a polynomial in the size of the protocol
specification. Hence the insecurity problem with boundedly many sessions can be solved in NP.
As with terms, one can formulate the insecurity problem for assertions as well. The general

problem continues to be undecidable, so we consider the case of finitely many sessions. With
existential quantification, we now have two types of variables – those used to identify parts
of received messages (instantiated at runtime by the actual message sent by the intruder), and
quantified variables that occur in assertions. As earlier, there is no a priori bound on the size of
terms assigned to the first kind of variables. But there is another source of unboundedness: to
derive a quantified assertion ∃x. α, one must derive α(t) for some “witness” t. There is no a priori



4 Solving the insecurity problem for assertions

bound on the size of t either, and proof search is further complicated by any potential interaction
between these two sources of unboundedness. When we simulate a substitution for the “intruder”
variables with a small one, the witnesses for quantifiers might change too, but we still need to
preserve some derivations under these new witnesses.
We extend the techniques of [38], while considering interactions between multiple substitu-

tions and having to preserve more complex derivations, to obtain a somewhat surprising result –
the insecurity problem for assertions for finitely many sessions remains in NP.

1.4 Related work

There are many extensions of the basic Dolev-Yao model that aim to capture various cryptographic
operators and their properties [2,8,15–17,20,30]. Algebraic properties of operators like xor, blinding,
distributive encryption&c. are studied by means of equation theories, which are also referred to
as intruder theories in the security literature. Equations in these theories are implicitly universally
quantified, and the intention is that any termmatching one side of the equation may be replaced
by the other side. For example, if the theory contains a rule of the form

unblind(sign(blind(x, y), k), y) = sign(x, k),

it means that any instance of the LHS can be replaced by the corresponding instance of the RHS.
Such equations correspond to proof rules in the system for deriving terms in this paper (examples
of such systems are given in Section 2.1).
Equality assertions, on the other hand, are to be treated literally, and not as rewrite rules. For

instance, given an assertion of the form {x}k = {t}k, we cannot replace all terms of the form {u}k by
{t}k. In fact, these equality assertions are objects that are manipulated by proof rules, rather than
being another style of expressing derivations between terms.
Along with studying the derivability problem for such extensions, several of these papers also

extend the results of [38] by addressing the active intruder problem for finitely many sessions.
For instance, [15, 16] obtain NP decision procedures in the case of extending Dolev-Yao with rules
for xor. The current paper, however, extends [38] along a different dimension, to solve both the
passive and active intruder problems for assertions, and is thus not subsumed by any of these
works on equation theories.

1.5 Organization of the paper

In Section 2, we first introduce the syntax for terms and assertions. We present an example of
modelling with assertions via the FOO e-voting protocol, and then present the proof system for
assertions. Then we define protocols and runs for this new system. In Section 3, we first present a
high-level overview of the various steps involved in solving the insecurity problem, and then we
move on to Section 4, where we present the technical results in detail and prove that insecurity for
the assertion system is in NP.We present some ideas for future research in Section 5.
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X ⊢ t1 ⋯ X ⊢ tn

X ⊢ f(t1, … , tn)

X ⊢ f(t1, … , tn) X ⊢ u1 ⋯ X ⊢ um

X ⊢ ti

Figure 1General form of constructor and destructor rules

2 Modeling security protocols

2.1 Terms: Syntax and Derivation System

In this model, each communicatedmessage is modelled as a term in an algebra, which has operators
for pairing, encryption, hashing&c. New terms can be derived from old ones using proof rules,
which specify the behaviour of these operators. We begin with a set N of names (atomic terms,
with no further structure), and a set of variables V. We denote by A ⊆ N the set of agents, with
I ∊ A being the malicious intruder. We denote by Vq ⊂ V the variables used for quantification, and
by Vi the set V ∖ Vq. The set of terms, denoted by T, is given by

t ∊ T ∶∶= x ∣ m ∣ f(t1, … , tn)

where x ∊ V,m ∊ N, t1, … tn ∊ T, and f is an n-ary operator. The set of ground terms are those without
variables. A substitution σ is a partial function with finite support from Vi to T. Its domain is
denoted by dom(σ). We assume that σ(x) = x for x ∊̸ dom(σ). The set of subterms of t is denoted
by st(t), and defined as usual. The set of variables appearing in t is denoted by vars(t).
Each f has constructor rules and destructor rules, expressed in terms of sequents of the form

X ⊢ t (to be read as “t is derived from X”), where X ∪ {t} is a finite set of terms. Figure 1 gives the
general form of a constructor rule (on the left) and a destructor rule (on the right). In a destructor
rule, the conclusion ti is an immediate subterm of the leftmost premise, which is designated as
the major premise of the rule. The ax rule (which derives X ⊢ t when t ∊ X) is also considered a
destructor rule for technical purposes. We say X ⊢dy t if there is a proof of X ⊢ t using these
constructor and destructor rules, and X ⊢dy S to mean that X ⊢dy t for every t ∊ S.
For any proof π of X ⊢ t, we denote by axioms(π) the set X, by conc(π) the term t, and by

terms(π) all terms occurring in π. π is said to be normal if a constructor rule does not yield the
major premise of a destructor rule. We only consider proof systems which enjoy the following
three properties:

Normalization: Every proof π of X ⊢ t can be converted into a normal proof ϖ of the same.
Subterm property: For any normal proof ϖ of X ⊢ t, terms(ϖ) ⊆ st(X ∪ {t}), and if ϖ ends in a
destructor rule, terms(ϖ) ⊆ st(X).
Efficient derivability checks:There is a PTIME algorithm for checking derivability.

The normalization and subterm properties combined are referred to as locality in the security
literature. This is a notion identified in [32], and is crucially used in solving the derivability
problem for many classes of inference systems, including many intruder theories.

▶ Example 2. A term algebra with pairing, symmetric and asymmetric encryption operations,
where m, k ∊ N and t, u ∊ T is given by t ∶= m ∣ pk(k) ∣ (t, u) ∣ {t}k ∣ {|t|}pk(k). The proof system for
this algebra is shown in Table 1. This system enjoys normalization and the subterm property [38].
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ax
X ∪ {t} ⊢ t

X ⊢ (t1, t2)
split

X ⊢ ti

X ⊢ {t}k X ⊢ k
sdec

X ⊢ t

X ⊢ {|t|}pk(k) X ⊢ k
adec

X ⊢ t

X ⊢ k
pk

X ⊢ pk(k)

X ⊢ t X ⊢ u
pair

X ⊢ (t, u)

X ⊢ t X ⊢ k
senc

X ⊢ {t}k

X ⊢ t X ⊢ pk(k)
aenc

X ⊢ {|t|}pk(k)

Table 1 Proof system for the term algebra in Example 2

2.2 Assertions

We consider an assertion syntax which includes equality over terms (to avoid overloading the
= operator, we denote equality between t and u by t ⋈ u), predicates, conjunction, existentially
quantified assertions, list membership, and a says connective. Existential quantification allows us
to make statements that convey partial information about terms, in particular, allowing us to hide
terms or parts thereof. The says connective works like a signature over assertions, indicating who
endorses the fact conveyed by the assertion. List membership, which we denote by↞, acts as a
restricted form of disjunction. Predicates allow us to express some protocol-specific facts. As we
will see over the later sections, this fragment allows us to express example protocols of interest, as
well as yields a decidable active intruder problem for boundedly many sessions.
In the following, t, u ∊ T, P is an m-ary predicate, u1, … , um, t0 ∊ N ∪ V, and t1, … , tn ∊ N,2 x ∊ Vq,

and pk(k) is the public key corresponding to a secret key k.

α ∶∶= t ⋈ u ∣ P(u1, … , um) ∣ t0 ↞ [t1, … , tn] ∣ α0 ∧ α1 ∣ ∃x. α(x) ∣ pk(k) says α

By atomic assertions, we mean assertions that are not of the form α ∧ β or ∃xα.
We denote the free (resp. bound) variables occurring in an assertion α by fv(α) and bv(α).

vars(α) = fv(α) ∪ bv(α). The set of subterms (resp. subformulas) of α is given by st(α) (resp. sf(α)).
We can lift these notions to sets of assertions as usual. For a substitution λ, we obtain λ(α) by
replacing x in α by λ(x) for all x ∊ fv(α).
We now define the public terms of an assertion α. These are essentially the terms that α is “about”,

which are always communicated along with α. Quantified variables in an assertion stand for
“private” terms, so if a term t occurring in α has quantified variables, it cannot itself be public.
But it is not reasonable to declare all other subterms to be public terms either. For instance, if an
assertion talks about senc(v, k), the term senc(v, k) should be public, but probably not v or k itself.
Hence we define the public terms of α, denoted pubs(α), as the set of all maximal subterms of α
which contain no quantified variables. In other words, t ∊ pubs(α) iff t ∊ st(α), vars(t) ∩ Vq = ∅,
and ∀u ∊ st(α) ∶ t ∊ st(u) ⟹ vars(u) ∩ Vq ≠ ∅.

▶ Example 3. A (with secret key k) encrypts a vote v in a key r unknown to B and states that it is
one of two allowed values.

A → B ∶ {v}r, pk(k) says �∃xy.{x}y ⋈ {v}r ∧ x ↞ [0, 1]�

The set of public terms of this assertion is {{v}r, 0, 1}.

2 We could consider arbitrary terms in listmembership, but this simple syntax suffices formost examples. Similarly
for P(u1, … .um).
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Assertions, like terms, can be involved in sends and receives. However, since assertions are
logical formulas, we can also have agents check them for derivability and take some action based
on the result of this check, without any send/receive. We call such an action an assert. As part of an
assert α action, an agent A checks to see if α is derivable from their current knowledge. If it is, A
continues with their role, otherwise A aborts. An assert action allows us to model some minimal
branching based on the derivability of assertions from agents’ local states.
Note that this does not involve any absolute notion of the “truth” (or lack thereof) of an

assertion. An agent can only locally check if an assertion can be “verified”, i.e. obtained from what
they know about the system at that point in the execution. It might well be the case that while
an assert α check passes for an agent A, a different agent Bmight not have enough information to
be able to derive α, and abort. Conversely, if some agent’s internal state has been compromised
somehow and made inconsistent, they might even be able to assert something like 0 = 1, which is
patently false. We are only concerned with the verifiability of assertions, and not their absolute
truth values.
Having introduced this system, we nowpresent themodelling of the well-known FOO e-voting

protocol [24]. This is a minor modification of the presentation in [35].

2.3 Example: FOO e-voting Protocol

The FOO e-voting protocol was proposed in 1992 and closely mirrors the way one votes offline.
There is a voter V, an authority Awho verifies voter identities, and a collector C who computes the
final tally.
To model this using only terms [24, 29], blinding is used. One can use t and b to make a blind pair

blind(t, b), and get sign(t, k) from sign(blind(t, b), k) and b. The voter authenticates themselves to
the authority using their signing key skV , and uses the blinding operation to have the authority
certify it without knowing the actual vote. The authority’s signature sign(⋅, skA) percolates through
to the vote when the voter removes the blind, and the voter can then anonymously send (denoted
by↬) this signed vote to the collector for inclusion into the final tally. This specification is shown
below.

V → A ∶ sign(blind({v}r, b), skV)

A → V ∶ sign(blind({v}r, b), skA)

V ↬ C ∶ sign({v}r, skA)

Wemodel the voting phase of FOO as below, following [35]. In fact, the use of assertions allows
one to also specify an eligibility check for voters via an assert. If the user is not eligible, the protocol
aborts. Further, voters can also state that their vote is for an allowable candidate from the list l.
These are left implicit in the terms-only modelling.

V → A ∶ {v}p,V says �∃xr.{x}r ⋈ {v}p ∧ x ↞ l�

A ∶ assert el(V)

A → V ∶ A says �el(V) ∧ V says �∃xr.{x}r ⋈ {v}p ∧ x ↞ l��

V ↬ C ∶ {v}q, ∃Uys. A says �el(U) ∧ U says �∃xr.{x}r ⋈ {y}s ∧ x ↞ l�� ∧ �∃w.{y}w ⋈ {v}q�
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V first sends toA their encrypted vote alongwith an assertion claiming that it is for a candidate
from the list l. The authority checks the voter’s eligibility via the assert action on the el predicate. If
the check passes, the authority issues a certificate stating that the voter is allowed to vote, crucially,
without modifying the term containing the vote. V then existentially quantifies out their name
from this certificate, and anonymously sends to C a re-encryption of the vote authorized by A
along with a certificate to that effect. Here, p and q are freshly-generated ephemeral keys. Thus, the
intent behind the various communications is made more transparent than in the model with blind
signatures. One can show that this satisfies anonymity [35].
One can also specify security properties in a more natural manner (as compared to the terms-

onlymodel). For instance, one can say that vote secrecy is ensured in the above protocol if there is no
run where the intruder can derive the assertion ∃xy ∶ [{v}p = {x}y ∧ x = v]. Note that this means
that while anyone can derive the value of v, which is public, they should not be able to identify
the value inside the encrypted vote {v}p as being a particular public name. To express this in the
terms-only formulation, one has to check whether two runs that only differ in the vote v can be
distinguished by the intruder [19]. It can be seen from [35] that proving such properties might
involve considering multiple runs simultaneously, but their specification itself does not refer to a
notion of equivalence.

▶ Example 4. Consider a protocol where V sends to A the vote encrypted in a fresh key k, and an
assertion that the vote belongs to an allowable list l of candidates. This looks as follows. V → A ∶
{v}k , ∃xr. {{x}r ⋈ {v}k ∧ x ↞ l}.
Suppose this same protocol is used for two elections that V participates in simultaneously,

where the first election has candidates 0 and 1 (so l1 = [0, 1]) and the second has candidates 0 and
2 (so l2 = [0, 2]).
V wants to vote for 0 in both elections. Since the vote is for the same candidate, V (unwisely)

decides to reuse the same term, instead of re-encrypting in a fresh key. So we have a run where V
sends both ∃xr. {{x}r ⋈ {v}k ∧ x ↞ [0, 1]} and ∃ys. �{y}s ⋈ {v}k ∧ y↞ [0, 2]�. Now, since the same
term {v}k is involved in both assertions, an observer ought to be able to deduce that the vote is
actually for 0. This would allow them access to both the identity of a voter as well as their vote,
falsifying anonymity. The assertion system formally captures such inference via a proof system.

2.4 Abstractability and Proof System

Before we present the proof system, we need to fix under what conditions one can derive a new
assertion from existing ones. In a security context, it becomes important to distinguish when a
term is accessible inside an assertion versus when it is not. To substitute a term u (with, say, v)
inside a term t, an agentA essentially needs to break the term down to that position, replace uwith
v, and construct the whole term back. This depends on other terms A has access to. We formalize
this notion as “abstractability”, which requires us to first define the set of term positions of an
assertion.
We will view terms as trees, with ℙ(t) ⊆ ℕ∗ denoting the set of positions of the term t, and ε

the empty word inℕ∗. We will also view assertions as trees, with any operator forming the root of
its subtree, and its operands standing for its children. We will only be interested in the position
where terms occur in assertions, not those of the various operators. We define these as follows.
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▶ Definition 5 (Term positions of an assertion). We define the term positions of an assertion α, denotedℙ(α),
as follows:

ℙ(t ⋈ t′) = {0 ⋅ p ∣ p ∊ ℙ(t)} ∪ {1 ⋅ p ∣ p ∊ ℙ(t′)}
ℙ(P(u0, … , um)) = {0, … ,m}
ℙ(t ↞ [t1, … , tn]) = {0, 1, … , n}
ℙ(α ∧ β) = {0 ⋅ p ∣ p ∊ ℙ(α)} ∪ {1 ⋅ p ∣ p ∊ ℙ(β)}
ℙ(∃x.α) = {0 ⋅ p ∣ p ∊ ℙ(α)}
ℙ(pk(k) says α) = {0, 00} ∪ {1 ⋅ p ∣ p ∊ ℙ(α)}

For t, r ∊ T, and p ∊ ℙ(t), t|p is the subterm of t rooted at p. The set of positions of r in t is
ℙr(t) ≔ {p ∊ ℙ(t) ∣ t|p = r}. ForP ⊆ ℙ(t), t[r]P is obtained by replacing the subterm of t occurring
at each p ∊ Pwith r. We will use analogous notation for assertions.

▶ Definition 6 (Abstractable positions of a term). Let S∪ {t} ⊆ T. The set of abstractable positions of t w.r.t.
S, denoted 𝔸(S, t), is defined as follows. For p ∊ ℙ(t), letℚp = {ε} ∪ {qi ∊ ℙ(t) ∣ q is a proper prefix of p}.
Then𝔸(S, t) ≔ {p ∊ ℙ(t) ∣ S ⊢dy t|q for all q ∊ ℚp}.

For S = {{m}k}k′ , (n1, n2) and t = ({{m}k}k′ , (n1, n2)), ℙ(t) = {ε, 0, 1, 00, 01, 10, 11, 000, 001}
and𝔸(S, t) = {ε, 0, 1, 10, 11}. The abstractable positions are shown in bold in Figure 2.

pair

senc

senc

m
000

k
001

00 k′
01

0 pair

n1
10

n2
11

1

ε

Figure 2Abstractable positions w.r.t. S = {{m}k}k′ , (n1, n2)}

Now, an inductive definition seems like it might suffice to lift the notion of abstractable
positions for assertions. However, a problem arises when we consider an assertion of the form ∃x.α.
Let α = ∃b.{{m}b ⋈ {m}k}. Suppose we want to get ∃ab.{{a}b ⋈ {m}k} from α in the presence of the
set S = {m, k}. That position of m in αmust be abstractable w.r.t S, i.e. we require that S ⊢dy {m}b,
but S does not even contain the quantified variable b. Wemust therefore consider derivability from
S ∪ {b} in this case, not S.

▶ Definition 7 (Abstractable positions of an assertion). The set of abstractable positions of αw.r.t. S,
denoted by𝔸(S, α), is:

𝔸(S, t0 ⋈ t1) = {i ⋅ p ∣ i ∊ {0, 1}, p ∊ 𝔸(S, ti)}
𝔸(S,P(u1, … , um)) = {i ∣ 1 ⩽ i ⩽ m, S ⊢dy ui}
𝔸(S, t ↞ [t1, … , tn]) = {0}
𝔸(S, α0 ∧ α1) = {i ⋅ p ∣ i ∊ {0, 1}, p ∊ 𝔸(S, αi)}
𝔸(S, ∃x.α) = {0 ⋅ p ∣ p ∊ 𝔸(S ∪ {x}, α)}
𝔸(S, pk(k) says α) = {0} ∪ {1 ⋅ p ∣ p ∊ 𝔸(S, α)}
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Wenow state a fundamental property of abstractability, which will be used in some of themore
technical proofs later.

▶ Lemma 8. Let S ∪ {t, r} ⊆ T s.t. S ⊢dy r. If x ∊̸ vars(S) and P = ℙx(t) ⊆ 𝔸(S ∪ {x}, t), then
𝔸(S, t[r]P) ∩ ℙ(t) = 𝔸(S ∪ {x}, t). Similarly, if x ∊̸ vars(S) and P = ℙx(t) ⊆ 𝔸(S ∪ {x}, β), then
𝔸(S, β[r]P) ∩ ℙ(β) = 𝔸(S ∪ {x}, β).

Proof. We only prove the statement for terms. The statement for assertions follows from it. For
any term a and any set Q ⊆ ℙ(a), we let a|Q denote {a|q ∣ q ∊ Q }. We now observe some general
properties of abstractability.
For any T, a and q ∊ 𝔸(T, a) s.t. a|q = f(a0, … , an), either {q0, … , qn} ⊆ 𝔸(T, a) and a|{q0,…,qn} ⊢dy

a|q via a constructor rule, or q is a maximal position in 𝔸(T, a) (it is not the prefix of any other
position in the set). We have the following two properties.

1. LetM = {q ∊ ℙ(a) ∣ q is a maximal position in𝔸(T, a)}. Then for every p ∊ 𝔸(T, a), a|M ⊢dy a|p
via a proof consisting only of constructor rules.

2. SupposeQ ⊆ ℙ(a) is prefix-closed (if q ∊ Q and p is a prefix of q, then p ∊ Q ) and sibling-closed
(if qi ∊ Q and qj ∊ ℙ(a), then qj ∊ Q ). If T ⊢dy a|q for every maximal q ∊ Q , then Q ⊆ 𝔸(T, a).

We now prove the statement of the lemma. Let u = t[r]P, and let A and B denote 𝔸(S ∪ {x}, t)
and𝔸(S, u) ∩ℙ(t) respectively. Note that A and B are both prefix-closed and sibling-closed. LetM
(resp.N) be the set of maximal positions in A (resp. B).
Since P ⊆ A is the set of x-positions in t, P ⊆ M and no q ∊ M is a prefix of a position in P.

Thus, for every q ∊M, either t|q = x, or x ∊̸ vars(t|q). If t|q = x, u|q = r, and S ⊢dy u|q (since S ⊢dy r).
If x ∊̸ vars(t|q), then u|q = t|q and S ⊢dy u|q. This is because q ∊ 𝔸(S ∪ {x}, t), so S ∪ {x} ⊢dy t|q, but
x does not occur in the conclusion. Thus we have S ⊢dy u|q for every q ∊M. Since A is prefix-closed
and sibling-closed, by 2, we get A ⊆ 𝔸(S, u). Since A ⊆ ℙ(t) as well, we get A ⊆ B.
By similar reasoning as above, we can see that S ∪ {x} ⊢dy t|q for each q ∊ N. (For some of these

positions q, x does not occur at all in the subterm at that position, and t|q = u|q is derivable from S.
For other positions q, t|q = x and is derivable from S ∪ {x}.) Therefore B ⊆ A. ⊣

The assertion proof system is shown in Table 2. We say S;A ⊢a α if α can be derived from S;A
using these rules. We say S;A ⊢a Γ if S;A ⊢a γ for every γ ∊ Γ.
We say that S;A ⊢eq α if α can be derived from S;A by a proof which does not use any of the

rules from {∧i, ∧e, ∃i, ∃e, say}. Recall that an atomic assertion is one that is not of the form α ∧ β
or ∃x.α. The ⊢eq system is used typically when A ∪ {α} consists only of atomic assertions, and we
want to ensure that there is no use of the rules for ∧ and ∃ in these proofs. To ensure this, we also
need to avoid the say rule. Otherwise, we might allow a derivation of pk(k) says (α ∧ β) using α ∧ β,
which itself can be derived only using ∧i (since the LHS contains only atomic assertions).
The proofs in Section 4 crucially appeal to some properties of ⊢eq proofs, which we detail below.

▶ Definition 9. Suppose E ∪ {α} consists only of atomic formulas and π is a proof of (T;E) ⊢eq α. We use “r1
precedes r2 in π” to mean that the conclusion of some application of r1 is a premise of an application of r2 in π.
We say that π is normal if the following hold.

1. All⊢dy subproofs are normal.
2. sym is only preceded by ax or prom.
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ax
S;A ∪ {α} ⊢ α

S ⊢dy t
eq

S;A ⊢ t ⋈ t

S;A ⊢ t1 ⋈ u1 ⋯ S;A ⊢ tr ⋈ ur
cons

S;A ⊢ f(t1, … , tr) ⋈ f(u1, … , ur)

S;A ⊢ t ⋈ u
sym

S;A ⊢ u ⋈ t

S;A ⊢ t1 ⋈ t2⋯ S;A ⊢ tk ⋈ tk+1
trans

S;A ⊢ t1 ⋈ tk+1

S;A ⊢ f(t1, . . , tr) ⋈ f(u1, . . , ur)
proj†iS;A ⊢ ti ⋈ ui

S;A ⊢ α0 S;A ⊢ α1
∧i

S;A ⊢ α0 ∧ α1

S;A ⊢ α0 ∧ α1
∧ei

S;A ⊢ αi

S;A ⊢ t ↞ l S;A ⊢ t ⋈ u
subst

S;A ⊢ u↞ l

S;A ⊢ α[t]P S ⊢dy t
∃i‡

S;A ⊢ ∃x.α

S;A ⊢ ∃x.α S ∪ {y};A ∪ {α[y]P} ⊢ γ
∃e§

S;A ⊢ γ

S;A ⊢ α S ⊢dy k
say

S;A ⊢ pk(k) says α

S;A ⊢ t ↞ [n]
prom

S;A ⊢ t ⋈ n

S;A ⊢ t ↞ l1… S;A ⊢ t ↞ lm
int

S;A ⊢ t ↞ (l1 ∩ … ∩ lm)

S;A ⊢ t ⋈ ni S ⊢dy n1 ⋯ S ⊢dy nk
wk

S;A ⊢ t ↞ [n1, … , nk]

Table 2Derivation system ⊢a for assertions.
†: {0i, 1i ∣ i ⩽ r} ⊆ 𝔸(S, f(t1, … , tr) ⋈ f(u1, … , ur)). ‡: P = ℙx(α) ⊆ 𝔸(S ∪ {x}, α).
§: y ∊̸ fv(S) ∪ fv(A) ∪ fv(γ) and P = ℙx(α).

3. eq is only preceded by a destructor rule.
4. No premise of a trans is of the form a ⋈ a, or the conclusion of a trans.
5. Adjacent premises of a trans are not conclusions of cons.
6. int is not preceded by int or wk.
7. No subproof ending in proj contains cons.

Wewould like to prove a normalization theorem – whenever (T;E) ⊢eq α then there is a normal
proof of (T;E) ⊢ α in the ⊢eq system. But this is unfortunately not possible for arbitrary sets of
equalities E. Consider the following derivation of (T;E) ⊢ a ⋈ t, where T = {a, b, c, d, r, s, t, u} and
E = {f(a, b) ⋈ g(c, d), c ⋈ r, d ⋈ s, g(r, s) ⋈ f(t, u)}. (We omit the LHS in the proofs, for the sake of
readability.)

ax
f(a, b) ⋈ g(c, d)

ax
c ⋈ r

ax
d ⋈ s

cons
g(c, d) ⋈ g(r, s)

ax
g(r, s) ⋈ f(t, u)

trans
f(a, b) ⋈ f(t, u)

proj
a ⋈ t

The above proof is not normal (it ends in proj but contains an application of cons), and there
is no way to modify it to a normal proof. If E had contained the equalities f(a, b) ⋈ f(c, d) and
f(r, s) ⋈ f(t, u) instead of the ones involving g, then we would have the following normal proof of
a ⋈ t.

ax
f(a, b) ⋈ f(c, d)

proj
a ⋈ c

ax
c ⋈ r

ax
f(r, s) ⋈ f(t, u)

proj
r ⋈ t

trans
a ⋈ t
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The difference between the two cases is the presence of the equations of the form f(⋯) ⋈ g(⋯)
inE. We can capture thismore abstractlyby thenotion of consistency. We say that (T;E) is consistent
if there is a substitution λ such that λ(a) = λ(b)whenever (T;E) ⊢eq a ⋈ b and λ(t) ∊ {t1, … , tn}
whenever (T;E) ⊢eq t ↞ [t1, … , tn]. We will assume throughout the rest of the paper that we are
only dealing with consistent sets.3

We now state the normalization theorem and subterm property for ⊢eq proofs. First, we define
the following notions.

terms(π) ≔ {t ∣ a subproof of π derives α and t is a maximal subterm of α}.
lists(E) ≔ {l ∣ ∃t ∶ t ↞ l is in E}.
lists(π) ≔ {l ∣ a subproof of π derives t ↞ l}.

▶Theorem 10 (Normalization & Subterm Property for ⊢eq).

1. If (T;E) ⊢eq α then there is a normal proof of (T;E) ⊢ α in the⊢eq system.
2. For any normal proof π of T;E ⊢eq α, letting Y = st(T) ∪ st(E ∪ {α}), we have:

terms(π) ⊆ Y.
lists(π) ⊆ lists(E ∪ {α}) ∪ {[n] ∣ n ∊ Y}.

Armedwith these notions, we present a saturation-based procedure in Algorithm 1 for deciding
whether T;E ⊢eq α, where E ∪ {α} consists only of atomic assertions. The procedure computes the
set

EαT,E ≔ �β ∣ β is atomic, β ∊ Z, (T;E) ⊢eq β�

where Z is as defined in Algorithm 1, and checks if α ∊ EαT,E.

Algorithm 1Algorithm to compute EαT,E, given (T;E), α

1: Y ← st(S) ∪ st(E ∪ {α});
2: Z ← �β ∣ β is atomic, st(β) ∊ Y , lists(β) ⊆ lists(E) ∪ {[n] ∣ n ∊ Y}� ;
3: B ← ∅;
4: C ← E;
5: while (B ≠ C) do
6: B ← C;
7: C ← B ∪ �β ∊ Z ∣ β can be obtained from B using one application of any rule in ⊢a�;
8: end while
9: return B.

LettingM = |st(T) ∪ st(E ∪ {α})| andN = |lists(E)|, it can be seen that the algorithm runs in
time polynomial inM+ N. There are at most (M+ N)2 atomic formulas that can be added in C,
and hence the while loop runs for at most (M+ N)2 iterations. In each iteration, the amount of
work to be done is polynomial inM + N. (Recall that ⊢dy can be decided in PTIME.) Thus the
algorithm works in time polynomial inM+ N, and hence polynomial in the size of (T;E ∪ {α}).

3 The (T;E)we will encounter while solving the insecurity problem will be consistent, as we shall see later.
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2.5 Protocols and runs

Following [10, 38], a protocol is given by a finite set of roles, each role consisting of a finite sequence
of alternating receives and sends (each send triggered by a receive).4These are the actions of honest
agents. Every sent message is added to the Dolev-Yao intruder’s knowledge base. Each received
message is assumed to have come from the intruder, so it must be derivable by the intruder. We
assume that only assertions are communicated – a term t can be modelled via the assertion t ⋈ t,
whose only public term is t.
A protocol Pr is a finite set of roles, each of the form (β1, α1)… (βm, αm), where the αis and βis

are assertions. An x ∊ fv(Pr) is said to be an agent variable if it occurs first in an αi; otherwise it is
an intruder variable. Each role is a sequence of actions by an agent, receiving the βis and sending
the αis in response. The αis and βis can have bound variables from Vq as well as free variables
from Vi. Instantiating the free variables with appropriately-typed ground terms yields a session. A
run is obtained by interleaving a finite number of sessions that satisfy the required derivability
conditions. It is convenient to instantiate the free variables of a role in two stages. Agent variables
are instantiated with names before starting a session, but intruder variables can be mapped to
terms only at runtime.
A session of a protocol Pr is a sequence of the form u ∶ β1⇒α1 ⋯ u ∶ βl⇒αl where u ∊ A and

(β1, α1)⋯ (βl, αl) is a prefix of a role of Pr with all the agent variables instantiated by values fromN.
A set of sessions S of Pr is coherent if fv(ξ) ∩ fv(ξ′) = ∅ for distinct ξ, ξ′ ∊ S. One can always achieve
coherence by renaming intruder variables as necessary.
A run is an interleaving of sessionswhere eachmessage sent by an agent should be constructible

from their knowledge. A knowledge state is a pair (X;Φ)where X is a finite set of terms andΦ is a
finite set of assertions. A knowledge function k is such that dom(k) = A and for each a ∊ A, k(a) is a
knowledge state.
For a knowledge state (X;Φ) and an assertion α, update((X;Φ), α) ≔ (X ∪ pubs(α),Φ ∪ {α}).

▶ Definition 11. A run of a protocol Pr is a pair (ξ, σ) where:

ξ≔ u1 ∶ β1⇒α1, … , un ∶ βn⇒αn is an interleaving of a finite, coherent set of sessions of Pr.
σ is a ground substitution with dom(σ) = fv(ξ).
There is a sequence k0… kn of knowledge functions s.t.:

k0(a) = (Xa; ∅), where Xa is a finite set of initial terms known to a (a’s secret key, public keys, public
names etc).
For all i < n,

ki+1(a) =

⎧
⎪

⎨
⎪
⎩

ki(a) if a ≠ ui, a ≠ I

update(ki(a), βi) if a = ui
update(ki(a), αi) if a = I

For i ⩽ n, ki(ui) ⊢a αi and σ(ki−1(I)) ⊢a σ(βi).

4 Apart from send and receive actions, we can also consider actions of the form assert α to model rudimentary
branching in protocols, which we used for specifying the FOO protocol. But we omit these in the formal model,
for ease of presentation. We discuss handling such branching in Section 5.4.
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Note that honest agent derivations of the form ki(ui) ⊢a αi do not depend on accidental
unification with intruder variables under σ; rather, they hold even in the “abstract”.
We can write an A-session and a B-session for the Example 1 protocol as A ∶ β1 ⇒ α1,A ∶ β3 ⇒

α3 and B ∶ β2 ⇒ α2. (To save space, we denote by pA and pB the keys pk(kA) and pk(kB).) We assume
that A starts a session by receiving a dummy name s, and ends the session by sending s out, and
code up each communicated term t from Example 1 as the assertion t ⋈ t. Note that A,B, pA,m,
and pB are names used to instantiate agent variables in these sessions. The set of these two sessions
is coherent.

β1 = s ⋈ s α1 = {(pA, {m}pB) ⋈ (pA, {m}pB)}
β2 = {(x, {y}pB) ⋈ (x, {y}pB)} α2 = {{y}x ⋈ {y}x}
β3 = {{m}pA ⋈ {m}pA} α3 = s ⋈ s

Consider the substitution σ = [x ↦ pA, y ↦ m] applied to ξ = A ∶ β1 ⇒ α1,B ∶ β2 ⇒ α2,A ∶
β3 ⇒ α3. This would be a run (ξ, σ)where the intruder just observes traffic on the network, but
does not interfere otherwise.
LetXB = {A,B, pA, pB, kB}. k0(B) = (XB; ∅). Note that k1(B) = k0(B). There is an update to B’s

knowledge state only upon receipt of β2. So, k2(B) = update(k1(B), β2) is given by (X′;Φ)where
X′ = X ∪ {(pA, {m}pB)} andΦ = {{(pA, {m}pB) ⋈ (pA, {m}pB)}.
We can also consider a run with the same ξ under a substitution σ = [x ↦ pk(kI), y ↦ m],

which represents the man-in-the-middle attack shown earlier.
A secrecy property is given by an assertion γ that the intruder should not know. A K-bounded

attack which violates the secrecy of γ is a run of the protocol with at most K sessions where
σ(kn(I)) ⊢a σ(γ).

▶ Definition 12 (K-bounded insecurity problem). Given a protocol Pr and a designated assertion γ, check
whether there exists aK-bounded attack on Pr violating the secrecy of γ.

Wewill use “insecurity problem” to mean the K-bounded insecurity problem for some K.

3 Proof strategy for the insecurity problem

In subsequent sections, we will show that the K-bounded insecurity problem for assertions is in
NP. But first, we provide an overview of the proof strategy we will employ.
Given a protocol Pr, a secrecy property specified by an assertion γ and a bound K (in unary),

one way to check if there is aK-bounded attack works as follows: Guess a coherent set of sessions of
size K, an interleaving ξ = u1 ∶ β1⇒α1, … , un ∶ βn⇒αn, and a substitution σwith dom(σ) = fv(ξ),
and check that (ξ, σ) satisfies the conditions in Definition 11. For this, we need an effective check
for derivabilities of the form σ(ki−1(I)) ⊢a σ(βi).
As with terms, this needs us to bound the size of terms assigned to variables by σ. However,

we also have quantified variables in our proofs, for which witnesses need to be assigned. To check
whether a formula of the form ∃x. α is derivable, one would in general have to check if α(t) is
derivable for some t, which might be unboundedly large. To get an effective algorithm, we have to
show that if there is a witness at all, there is a witness of small size.
Oneway to represent thesewitnesses is via a substitution μwhichmaps each quantified variable

x to the appropriate witness. To obtain small witnesses, we adapt the techniques of [38]. For this,
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it is helpful to first simplify the LHS to contain only atomic formulas. Any normal proof of α
from such an LHS will not involve ∧e or ∃e. We further show, viaTheorem 16, that these proofs
can be decomposed into multiple proofs, one for each atomic subformula of α (with witnesses
instantiated by μ), and then applying ∧i and ∃i.
ApplyingTheorem 16 to each derivability check σ(ki−1(I)) ⊢a σ(βi) for 1 ⩽ i ⩽ n, we get a set

of witness substitutions {μ1, … , μn}. We would like to ensure that all of these, along with σ, can be
chosen to be “small”.
In order to obtain these small substitutions, we follow the techniques of [38]. This involves

identifying and mapping “zappable” variables to atomic terms – these are variables that do not
map to any term that “corresponds” to one in the protocol specification. However, unlike [38],
we need to do this simultaneously for multiple substitutions – σ (which instantiates intruder
variables) and μi (which instantiates quantified variables). The various μis might be influenced by
σ, so preserving derivabilities when moving to small substitutions becomes a challenge. In order
to do this, we employ a notion of “typed proofs”, both for the ⊢dy and ⊢eq systems. We show that
any proof can be converted to a typed equivalent, and typed proofs make it easier for us to replace
the substitutions therein with small ones while preserving derivations.
We will now present the solution in detail.

4 Solving the insecurity problem for ⊢a

We fix a protocol Pr and a run (ξ, σ) of Pr. By renaming variables if necessary, we can ensure that
fv(ξ) ∩ Vq = ∅. Thus, in all proof sequents that we consider, no variable has both free and bound
occurrences. We can also ensure that no variable is quantified by distinct quantifiers. Furthermore,
whenever we use (S;A), we mean that S is a set of terms, A is a set of assertions, and S derives the
public terms of all assertions in A.
We also use vars(S;A) to mean vars(S) ∪ vars(A) and fv(S;A) to mean vars(S) ∪ fv(A).
As a first step, wemove to an LHS consisting solely of atomic formulas. For this, wewill employ

the following two “left” properties enjoyed by the ⊢a system.

▶ Lemma 13.

1. (S;A ∪ {α ∧ β}) ⊢a γ iff (S;A ∪ {α, β}) ⊢a γ.
2. Let S,A, ∃x.α and γ be such that x ∊̸ vars(S) ∪ vars(A ∪ {γ}) and ℙx(α) ⊆ 𝔸(S ∪ {x}, α). Then
(S;A ∪ {∃x.α}) ⊢a γ iff (S ∪ {x};A ∪ {α}) ⊢a γ.

Proof. 1. To save space, we use A,φ to mean A ∪ {φ} in the proof to follow.
For the left to right direction, let π be a proof of S;A, α ∧ β ⊢ γ. The following is a proof of
S;A, α, β ⊢ γ.

ax
S;A, α, β ⊢ α

ax
S;A, α, β ⊢ β

∧i
S;A, α, β ⊢ α ∧ β

π
⋅
⋅
⋅

S;A, α ∧ β ⊢ γ

S;A, α, β ⊢ γ

For the other direction, let π be a proof of S;A, α, β ⊢ γ. We obtain a proof of S;A, α ∧ β ⊢ γ
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below. We omit the S;A part of the LHS to conserve space.

ax
α ∧ β ⊢ α ∧ β

∧e
α ∧ β ⊢ β

ax
α ∧ β ⊢ α ∧ β

∧e
α ∧ β ⊢ α

π
⋅
⋅
⋅

α, β ⊢ γ

α ∧ β, β ⊢ γ

α ∧ β ⊢ γ

We have freely used the cut rule, which is admissible in our system.

S;A ⊢ φ S;B,φ ⊢ ψ

S;A ∪ B ⊢ ψ

If π0 and π1 are derivations of the left and right premises as above, then we can replace each
axiom rule occurring in π1 and deriving φ, with the proof π0, thus yielding a proof of S;A∪B ⊢
ψ.

2. For the left to right direction, let π be a proof of S;A, ∃x.α ⊢ γ. Note that we have a proof π1 of
∃x.α from (S, x;A, α), where the ∃i rule is justified because the abstractability side condition
ℙx(α) ⊆ 𝔸(S ∪ {x}, α) is assumed. We can then use the cut rule (which is admissible in ⊢a) on
this proof along with the proof π to get (S, x;A, α) ⊢a γ.

ax
S, x;A, α ⊢ α

∃i
S, x;A, α ⊢ ∃x.α

π
⋅
⋅
⋅

S;A, ∃x.α ⊢ γ
cut

S, x;A, α ⊢ γ

For the other direction, let π be a proof of S, x;A, α ⊢ γ. We obtain a proof of S;A, ∃x.α ⊢ γ as
follows.

ax
S;A, ∃x.α ⊢ ∃x.α

π
⋅
⋅
⋅

S, x;A, α ⊢ γ
∃e

S;A, ∃x.α ⊢ γ

⊣

This leads us to a notion of kernel.

▶ Definition 14. The atoms of an assertion α, denoted at(α), is the set of all maximal atomic subformulas of α.
Thekernel of (S;A), denoted ker(S;A), is given by (T;E)whereT = S∪bv(A) andE = {β ∊ at(α) ∣ α ∊ A}.

Any x ∊ bv(A)which is added to T can be thought of as an “eigenvariable” which witnesses an
existential assertion in A. If we derive some γ from (T ∪ {x}; β), since we only consider γ such that
vars(γ) ∩ bv(A) = ∅, we can also derive it from (T; ∃x.β). Lemma 13 can thus always be applied,
and it can be shown that kernels preserve derivability, i.e. (S;A) ⊢a γ iff ker(S;A) ⊢a γ for any γ.
Here is another basic property of kernels, which is crucially used in many proofs later.

▶ Lemma 15. Suppose (T;E) = ker(S;A) for some (S;A). If (T;E) ⊢a α and a ∊ pubs(α), then T ⊢dy a.
If (T;E) ⊢eq t ⋈ u then T ⊢dy t and T ⊢dy u.
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Proof. Recall that we only consider (S;A) such that fv(S;A) ∩ Vq = ∅, and S ⊢dy pubs(β) for all
β ∊ A. Since (T;E) = ker(S;A), we have T = S ∪ bv(A) and E = {γ ∊ at(β) ∣ β ∊ A}. Thus
T ⊢dy pubs(γ) for every γ ∊ E, and vars(E) ∩ Vq ⊆ T.
Let π be a proof of (T;E) ⊢a α. Note that π has no occurrence of ∃e or ∧e. We assume that all

premises of eq are normal⊢dy proofs ending in a destructor (by repeatedly turning all constructor+
eq patterns into eq+ cons). We show by induction that T ⊢dy pubs(α). Let r denote the last rule of
π.

r = ax: α ∊ E. So T ⊢dy pubs(α).
r = eq: α is t ⋈ t with T ⊢dy t via a proof ending in destructor. Since any term in T is either
in Vq or contains no variables from Vq, and since t ∊ st(T), we see that pubs(α) is {t} or ∅, and
T ⊢dy pubs(α) in both cases.
r ∊ {sym, trans, prom, int, subst, ∧i}: Any t ∊ pubs(α) is in pubs(β) for one of the premises β, and
the result follows.
r = cons: α is of the form t ⋈ u, where t = f(t1, … , tk) and u = f(u1, … , uk), and the immediate
subproofs of π derive t1 ⋈ u1, … , tk ⋈ uk. Now, any term in pubs(α) is a public term of one of
the premises (and we can apply IH), unless it is t or u. Say it is t. Then, t is a maximal subterm
of α which avoid Vq, and thus it must be that t1, … , tk are also public terms of the premises.
Thus T ⊢dy {t1, … , tk} by IH, and hence T ⊢dy t. Similarly for u.
r = proj: α is t ⋈ u, and any public term of α is a public term of the premise (and we can apply
IH), unless it is t or u. But by abstractability, T ⊢dy {t, u}, and we are done.
r = wk: α is t ↞ [n0, … , nk], where t and all the ni’s are variables or names. The premise is t ⋈ ni
for some i, and we also require that S ⊢dy ni for all i. Combining this with the IH, we see that
S ⊢dy pubs(α).
r = say: α is of the form pk(k) says β, and β is proved by the immediate subproof. We also have
that S ⊢ k and hence S ⊢ pk(k). Any other public term occurring in α occurs in β, so by IH we
have that S ⊢dy pubs(α).
r = ∃i: α is of the form ∃x.β, with premise γ = β[r]P, where P = ℙx(β). We also have, by the
other requirements for the rule, T ⊢dy r and P ⊆ 𝔸(T ∪ {x}, β). By Lemma 8, P ⊆ 𝔸(T, γ).
Consider any a = α|q ∊ pubs(α). If a ∊ pubs(γ), then we can apply IH. Otherwise, q has to be a
sibling of some position in p ∊ P. In other words, a is public in α because its sibling is x, but
in γ, the x is replaced by r (and vars(r) ∩ Vq = ∅), so a is no longer a maximal subterm avoiding
Vq. Since the set of abstractable positions is sibling-closed, q ∊ 𝔸(T, α), and since subterms at
abstractable positions are derivable, T ⊢dy a.

Now consider an ⊢eq proof of (T;E) ⊢ t ⋈ u. It has been shown above that T ⊢dy pubs(t ⋈ u).
Consider t. Either t ∊ pubs(t ⋈ u), in which case we are done. Otherwise, every maximal subterm
of t which avoids Vq is derivable from T, and every x ∊ vars(t) ∩ Vq is in T. From these, we can
“build up” t using constructor rules only, thereby proving that T ⊢dy t. Similarly we can show that
T ⊢dy u. ⊣

Asmentioned earlier, by proof normalization, we decompose a proof π of (S;A) ⊢ α into several
proofs of atomic subformulas of α (equalities, predicates, list membership, and says assertions),
and a proof π0 which uses these atoms as axioms, and applies ∧i and ∃i, all with the kernel as LHS.
For each of these atomic subformulas, we would like to operate in a proof system which does

not involve conjunction or existential quantification. This is easy to do for equalities, predicates,
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and lists, because the only way to derive such assertions is by deriving other equalities, predicates,
and lists.
However, consider subformulas of the form pk(k) says β. We can derive those in two ways –

either by using ax (if the formula is already in the LHS) or by using the say rule on β and k. In the
latter case, βmight contain logical operators! Thus, we need to break down β as well.
We thus formalize the hereditary atoms of a formula as:

hat(γ) =

⎧
⎪

⎨
⎪
⎩

hat(α) ∪ hat(β) if γ = α ∧ β

hat(α) if γ = ∃x.α

�pk(k) says α� ∪ hat(α) if γ = pk(k) says α

{γ} otherwise

We now reduce any proof of S;A ⊢a α to one with a very particular structure, as depicted
in Figure 3. This new proof has as its LHS the kernel (T;E) of (S;A), and derives α. This proof
first involves multiple proofs, each of which is an ⊢eq proof 5 of some hereditary atom of α, with
witnesses appropriately assigned to bound variables by a substitution μ. These proofs are then
followed by applications of the ax, ∧i, ∃i and say rules (represented by⊢i in the Figure 3) to get α.

⊢eq

⊢i

Each a sequent of the form
T;E ⊢ μ(β) for β ∊ hat(α)

T;E ⊢ α

Figure 3 Structure of the new proof guaranteed byTheorem 16

Consider the set X of all hereditary atoms of αwhich feature in the above reduction. Suppose
β ∊ X is of the form pk(k) says (∃x.δ), but ∃x.δ ∊̸ X. Then β can only be derived from the LHS by
the ax rule, since there is no other rule in the ⊢eq system that derives a says assertion. Thus we do
not obtain ∃x.δ using the ∃i rule, and so we do not need to provide a witness for such an x. This is
precisely formulated in the next theorem.

▶Theorem 16. For a formula α s.t. bv(α) ∩ vars(S;A) = ∅, and (T;E) = ker(S;A), (S;A) ⊢a α iff there
isX ⊆ hat(α) and μ with dom(μ) = bv(α) ∖ bv(X) s.t.:

[a] ∀x ∊ dom(μ) ∶ T ⊢dy μ(x).
[b] For all β ∊ X, (T;E) ⊢eq μ(β).
[c] (T; μ(X)) ⊢a α via a proof using rules from {ax, ∧i, ∃i, say}.
[d] ∀x ∊ dom(μ), t ∊ st(α): ℙx(t) ⊆ 𝔸(T ∪ dom(μ), t).

In the statement of the theorem, [a] ensures that all witnesses are derivable, [b] ensures that all
the atoms in X have a proof (with witnesses instantiated appropriately), and [c] ensures that the

5 Recall that ⊢eq is the subsystem that does not use any rules from {∧i, ∧e, ∃i, ∃e, say}.
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final intros-only proof exists. Finally, [d] ensures that the proper abstractability conditions for
applications of ∃i are satisfied. For any set of assertions, we denote the set {x ∊ bv(β) ∣ β ∊ X} by
bv(X).

Proof of Theorem 16.

(⇒) Suppose (S;A) ⊢a α. Then, since kernels preserve derivability, (T;E) ⊢a α. Let π be a
normal proof of (T;E) ⊢ α. Since E only has atomic assertions, it is easy to see that there is no
occurrence of the ∧e and ∃e rules. Recall that we only consider α such that no x is quantified
by quantifiers occurring in two distinct positions in α, and that no variable occurs both free
and bound in α. For each x ∊ bv(α) introduced in π via an ∃i application, let tx be the witness
used by the ∃i rule introducing the quantifier ∃x in α. Define μ(x) ≔ tx for each such x. The
side conditions for the ∃i occurrences guarantee that T ⊢dy μ(x) for each x ∊ dom(μ), thus
satisfying [a].
LetX ⊆ hat(α) be all the hereditary atoms of α appearing on the RHS in various subproofs of π.
By normalization, one can always place the logical rules after deriving atomic formulas. Hence,
we can decompose π into proofs πβ of (T;E) ⊢ μ(β) for each β ∊ X, and a proof �π deriving
(T; μ(X)) ⊢ α using only the ax, ∧i, ∃i and say rules. This proves [b] and [c].
Wenowprove [d]. It is clear that each subproof of �πhas conclusion μ(β) for some β ∊ sf(α), with
�π itself deriving μ(α) = α. We will now show that for every subproof π0 of �πwith conclusion
μ(β) and last rule r, we have (letting Zβ = bv(β) ∖ bv(X)):

∀x ∊ Zβ, ∀t ∊ st(μ(β)) ∶ ℙx(t) ⊆ 𝔸(T ∪ Zβ, t). (1)

r = ax: μ(β) ∊ μ(X), so Zβ = ∅, and so (1) holds vacuously.
r = ∧i: β of the form β0 ∧ β1, and bv(β0) and bv(β1) are disjoint, and no variable has both
free and bound occurrences. So no variable in bv(βi) occurs in β1−i. So if x ∊ bv(βi), and
any t ∊ st(μ(β1−i)), then ℙx(t) = ∅. So (1) for π0 follows by IH (applied on the immediate
subproofs).

r = say: β is of the form pk(k) says β′ and every bound variable of β is also bound in β′, so we
get (1) from IH.

r = ∃i: β = ∃z.γ, and μ(β) = ∃z.μ′(γ), where μ′ = μ ↾ (Zγ). The immediate subproof of π0 has
conclusion μ(γ).
Now for any r ∊ st(μ(β)), letting P = ℙz(r), t = r[μ(z)]P ∊ st(μ(γ)). For any x ∊ V, we have
ℙx(r) = ℙx(t) ∩ ℙ(r) and𝔸(T ∪ Zβ, r) = 𝔸(T ∪ Zγ, t) ∩ ℙ(r) (by Lemma 8).
By IH, for all x ∊ Zγ and t ∊ st(μ(γ)), ℙx(t) ⊆ 𝔸(T ∪ Zγ, t) ⊆ 𝔸(T ∪ Zβ, t). So for all
x ∊ Zβ ∖ {z} and r ∊ st(μ(β)), ℙx(r) ⊆ 𝔸(T ∪ Zβ, r).
For z, the abstractability side condition for ∃i implies that for all r ∊ st(μ(β)), ℙz(r) ⊆
𝔸(T ∪ Zβ, r). Thus, equation (1) follows for π0.

Applying (1) to �π, we get [d].
(⇐) This is the easier direction. We just compose all the ⊢eq proofs and the intros-only proof
to obtain an ⊢a proof π of (T;E) ⊢ α. It can be shown that the ∃i is always enabled in π. To
illustrate this, suppose α is ∃xyzβ and we wish to apply the ∃i rule on (∃yzβ)[r]P to get α, where
P = ℙx(∃yzβ). The abstractability condition for this rule would be P ⊆ 𝔸(T ∪ {x}, ∃yzβ). But
expanding the definition of 𝔸 for quantified assertions, this translates to P ⊆ 𝔸(T∪ {x, y, z}, β),
which is guaranteed by [d].
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Thus, (T;E) ⊢a α iff (S;A) ⊢a α, and so we are done. ⊣

For the rest of the paper, we use the following notation. (Ti;Ei) ≔ ker(ki(I)) and (Ui; Fi) ≔
ker(ki(ui)) for 1 ⩽ i ⩽ n. Note that Ti ⊆ Ti+1 and Ei ⊆ Ei+1 for every i.
Since dom(σ) = fv(ξ), we have σ(x) = x for all x ∊ Vq. It follows that σ(ker(S;A)) =

ker(σ(S;A)), for any (S;A).
ApplyingTheorem 16 to the σ(ki−1(I)) ⊢a σ(βi) derivations in Definition 11, for every i ⩽ nwe

get Xi ⊆ hat(βi) and a substitution μi with domain bv(βi) ∖ bv(Xi) s.t.:

for every x ∊ dom(μi), σ(Ti−1) ⊢dy μi(x), and
σ(Ti−1;Ei−1) ⊢eq σμi(γ) for γ ∊ Xi.

For every i ⩽ n, Definition 11 also states ki(ui) ⊢a αi, and thus, σ(ki(ui)) ⊢a σ(αi). SoTheorem 16
guarantees Yi ⊆ hat(αi) and a substitution θi with domain bv(αi) ∖ bv(Yi) s.t.:

for every x ∊ dom(θi), σ(Ui) ⊢dy θi(x), and
σ(Ui; Fi) ⊢eq σθi(γ), where γ ∊ Yi.

For any γ ∊ Xi ∪ Yi, three possibilities arise.

γ is of the form t ⋈ u.
γ is of the form pk(k) says δ. Such a formula can only be derived using ax, as no other rule in
the ⊢eq system generates it. Hence such assertions can be ignored for the rest of this section,
which is about preserving non-trivial ⊢eq proofs even after changing some substitutions.
γ is of the form P(u0, … , um) or t ↞ l. Such formulas only mention variables or names, so λ(x)
can be assumed to be a name for λ ∊ {σ, θi, μi ∣ i ⩽ n} and any variable x occurring in γ. Hence
we can ignore such formulas too for the rest of the section, since these formulas do not undergo
any change.

Hence we simplify the presentation for the rest of this section by only considering equality
assertions γ.
We now have, for every i ⩽ n, substitutions μi and θi, each with domain bv(βi) and bv(αi).

However, these substitutions do not necessarily map variables to ground terms. It is possible that
θj(αj) has as a subterm a variable from the domain of some “earlier” μi, i.e. one where i < j.
If (T;E) ⊢ x ⋈ y, then x and y ought to actually stand for the same ground term. To capture

this, we need a “compound” substitution that maps each variable in the domain of each μ and
each θ to a ground term. We now present a motivating example which is followed by the formal
definition of this ground substitution.

▶ Example 17. Suppose y ∊ bv(β1), and x ∊ bv(α2). Consider a situation where θ2(x) = {y}k and
μ1(y) = (m0,m1), where m0,m1 ∊ N. Also suppose (T2;E2) ⊢ x ⋈ z for some z ∊ dom(σ). We need
a λwhichmaps x and z to the same ground term, i.e. λneeds to be s.t. λ(x) = λ(z). We can take λ to be
σμ1θ2. We see that λ(x) = σ(μ1(θ2(x))) = σ(μ1({y}k)) = σ({(m0,m1)}k) = {(m0,m1)}k. Observe
that dom(λ) = dom(σ) ∪ dom(μ1) ∪ dom(θ2), and since z ∊̸ dom(μ1) ∪ dom(θ2), λ(z) = σ(z).

▶ Definition 18. The compound substitution which maps any variable in dom(σ) ∪ {dom(μi) ∪ dom(θi) ∣
1 ⩽ i ⩽ n} to a ground term is given by ω≔ σμ1θ1… μnθn.

Note that for λ ∊ {σ, θi, μi ∣ i ⩽ n},ω(λ(x)) = ω(x).
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▶ Lemma 19. Suppose λ is such that λ(r) = λ(s) for each r ⋈ s ∊ E, and T;E ⊢eq t ⋈ u. Then λ(t) = λ(u).

Proof. SupposeT;E ⊢ t ⋈ u via a proof πwith last rule r. The proof is by induction on the structure
of π. The following cases arise.

r = ax: In this case, t ⋈ u ∊ E, so by assumption, λ(t) = λ(u).
r = eq: In this case t = u, so λ(t) = λ(u) as well.
r = trans: Suppose t0 ⋈ t1, … , tn−1 ⋈ tn are the premises of r, with t = t0 and u = tn. By IH,
λ(ti−1) = λ(ti) for all i ⩽ n. It follows that λ(t) = λ(u).
r = cons: Let t = f(t1, … , tn) and u = f(u1, … , un) and let t1 ⋈ u1, … , tn ⋈ un be the premises of
r. By IH, λ(ti) = λ(ui) for all i ⩽ n. Thus we have the following:

λ(t) = λ(f(t1, … , tn)) = f(λ(t1), … , λ(tn)) = f(λ(u1), … , λ(un)) = λ(f(t1, … , tn)) = λ(u).

r = proj: Let f(t1, … , tn) ⋈ f(u1, … , un) be the premise of the last rule with t = ti and u = ui
respectively. By IH, λ(f(t1, … , tn)) = λ(f(u1, … , un)). So, λ(t) = λ(u). ⊣

▶ Lemma 20. For any i ∊ {1, … , n},

1. if t ⋈ u ∊ Ei ∪ Fi, then ω(t) = ω(u).
2. if σ(Ti−1;Ei−1) ⊢eq σμi(t ⋈ u), then ω(t) = ω(u).
3. if σ(Ui; Fi) ⊢eq σθi(t ⋈ u), then ω(t) = ω(u).

Proof. In addition to Ei, Fi for 0 < i ⩽ n, we also use E0 = ∅, for which claim 1 is vacuously true.
We prove the claims simultaneously by induction on i > 0. Assume that they hold for all j < i via
IH1, IH2, and IH3.

1. Suppose t ⋈ u ∊ Ei. Then, ∃j < i ∶ t ⋈ u ∊ sf(αj), and σ(Uj; Fj) ⊢eq σθj(t ⋈ u). By IH3, ω(t) =
ω(u). If t ⋈ u ∊ Fi, then∃j ⩽ i ∶ t ⋈ u ∊ sf(βj), and σ(Tj−1;Ej−1) ⊢eq σμj(t ⋈ u). If j < i, by IH2,
ω(t) = ω(u). If j = i, by IH1, ω(r) = ω(s) for every r ⋈ s ∊ Ei−1. Any a ⋈ b ∊ σ(Ei−1) is of the
form σ(r ⋈ s) for some r ⋈ s ∊ Ei−1. Thus, ω(a) = ω(σ(r)) = ω(r) = ω(s) = ω(σ(s)) = ω(b).
By Lemma 19, ω(σμj(t)) = ω(σμj(u)), i.e. ω(t) = ω(u).

2. Suppose σ(Ti−1;Ei−1) ⊢eq σμi(t ⋈ u). As above, for each a ⋈ b ∊ σ(Ei−1), ω(a) = ω(b). By
appealing to Lemma 19, we get ω(σμi(t)) = ω(σμi(u)), i.e. ω(t) = ω(u).

3. The proof is similar to the above. ⊣

We developed this preliminary setup for both honest agent derivations as well as intruder
derivations in order to demonstrate the interplay between θ and μ, as evidenced in the definition
of ω. However, the insecurity problem itself is concerned only with intruder derivability, and
therefore, in the next few sections we will focus only on βi, (Ti;Ei), and μi. We will discuss honest
agent derivations later.

4.1 Typed proofs for ⊢dy and ⊢eq

In order to obtain “small” versions of the various substitutions σ, θi, and μi while preserving their
interaction, we consider a universe of “anchor terms”. These are abstract terms that appear in the
protocol specification, and for which we have a bound on size. We call these anchors “types”. We
would eventually like to be able to convert any proof into one that only involves typed terms, i.e.
terms that correspond to one of these types under ω.
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▶ Definition 21 (Types and typed terms). We use the sets C (consisting of the terms occurring in ξ before
applying any substitution) and D (the same set, but without variables) to type the terms appearing in any proof.

C ≔�

i⩽n

{(st(Ti ∪ Ui) ∪ st(Ei ∪ Fi))} D ≔ C ∖ V

A term t is typed if t ∊ σ(D) ∪ ω(C) ∪ Vq.

Note that wemust consider σ(D) separately from ω(C). Consider a term of the form (m, x) ∊ D,
where x ∊̸ dom(σ). σ((m, x)) = (m, x), but this cannot be in ω(C), since ω(C) only contains ground
terms. Thus, σ(D) ⊈ ω(C). Here is a useful observation about typed terms.

▶Observation 22. Every term in σ(C) is typed.

Proof. For any a ∊ σ(C), one of the following three cases holds.

a ∊ σ(D): Then a is typed, by definition.
a = σ(x) = x for some x ∊̸ dom(σ): Then a ∊ Vq and hence typed.
a = σ(x) for x ∊ dom(σ): Then it is also the case that a = ω(x) ∊ ω(C), so a is typed. ⊣

We now define a notion of “zappable terms”, which are terms that do not correspond to any
type in C. The idea is these terms can be freely “zapped”.6

▶ Definition 23 (Zappable terms). A term t is zappable if there is an x ∊ dom(ω) such that ω(t) = ω(x),
but there is no u ∊ D such that ω(x) = ω(u). We refer to such an x as a minimal variable.

Here are a couple of easy observations that relate to zappable terms.

▶Observation 24.

If a term t is zappable, then t ∊̸ D.
If a term t ∊ ω(C) is not zappable, then t ∊ ω(D).
For t, u s.t. ω(t) = ω(u), t is zappable iff u is zappable.

▶ Lemma 25. Suppose t = f(t1, … , tn) and u = f(u1, … , un) are typed, and ω(t) = ω(u). One of the
following is true:

t and u are not zappable, and t1, … , tn, u1, … , un are typed, or
t and u are zappable, and t = u.

Proof. Since t and u are non-atomic, t, u ∊̸ Vq. But they are typed, so t, u ∊ σ(D)∪ω(C). We consider
two cases:

Neither t nor u is zappable: Consider t. If t ∊ σ(D), each ti ∊ σ(C), and hence typed (by
Observation 22). If t ∊ ω(C), then since t is not zappable, t = ω(a) for some a ∊ D. Then a
has to be of the form f(a1, … , an), with each ai ∊ C and ti = ω(ai) ∊ ω(C). Thus each ti is typed.
Reasoning about u in a similar manner, we see that each ui is typed as well.

6 In order to motivate the key ideas behind typing, we will often use the word “zap” to mean replacing terms by an
atomic name. However, we will formally define this zapping operation in the next subsection.
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One of t and u is zappable: Say t is zappable. Then, since ω(t) = ω(u), u is zappable as well.
Therefore t, u ∊̸ σ(D), which implies that t, u ∊ ω(C). Therefore both t and u are ground terms,
so t = ω(t) = ω(u) = u. ⊣

We now devise notions of “typed proofs” for the ⊢dy as well as the ⊢eq system, which will help
us obtain bounds on the sizes of terms appearing in the ranges of various substitutions. Then, we
show that every proof in these systems can be converted into a typed proof.
Consider a proof πwitnessing σ(Ti) ⊢dy t for some t. Any term in Ti, since Ti is part of a kernel,

is either a bound variable outside the domain of σ (i.e. in Vq) or a public term of some assertion.
Note that any variables in public terms of assertions must not be quantified, hence they fall into
the domain of σ. Thus, any such t derived from σ(Ti) is either in Vq, or a ground term of the form
σ(v) for some v.
Now, it is possible that πmentions some term u ∊̸ σ(D), even if t ∊ σ(D). If a destructor rule

is applied to u in order to obtain a proof of t, we cannot “zap” u into an atomic name while still
preserving derivability. This leads us to the following definition of a typed proof in the ⊢dy system,
which preserves derivability even after zapping variables as necessary.

▶ Definition 26. [Typed⊢dy proof ] A⊢dy proof π is typed if for each subproof π′, either π′ ends in a constructor
rule, or conc(π′) ∊ σ(D) ∪ Vq, where conc(π′) denotes the conclusion derived using π′.

Armed with this definition of a typed ⊢dy proof, we can show that any proof σ(Ti) ⊢dy t can be
transformed into a typed normal equivalent witnessing the same. This transformation crucially
uses the following fact about how non-typed terms are generated: any non-typed term u occurring
in a ⊢dy proof from σ(Ti) obeys the following:

appears first as part of a received assertion σ(β), and
is generated by the intruder by putting information together, i.e. via a normal proof ending in
a constructor.

The intuition behind this is easy to see – honest agents follow the protocol, and will only
communicate terms that follow the protocol specification, modulo any insertions by the intruder.
Terms that correspond to ones in the protocol specification are always typed, so any non-typed
term must have been initially sent out by the intruder, i.e. in a β received by an honest agent.
In particular, such a term must have been constructed by the intruder by putting information
together, since up till that point, the intruder’s knowledge state would have only consisted of typed
terms, and destructor rules would preserve “typability”. Thus, for any non-typed term t such that
t ∊ st(σ(Ti)), we can always “chase back” to an index j < i at which it was not in the subterms
of σ(Tj), but still derivable, i.e. σ(Tj) ⊢dy t via a normal proof ending in a constructor rule. This
reasoning closely follows the ideas in [38], and is formalized below.
We define ITi ≔ pubs(βi) andHTi ≔ pubs(αi).7

▶ Lemma 27. Suppose t ∊̸ σ(D) ∪ Vq. If t ∊ st(σ(Ti)) for some i ⩽ n, there is a k < i such that
t ∊ st(σ(ITk)).

7 These stand for intruder terms and honest agent terms respectively.
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Proof. Suppose t ∊ st(σ(u)) ∖ (σ(D) ∪ Vq) for some u ∊ Ti. Then, t ∊ st(σ(y)) for some y ∊ vars(u).
Since u ∊ Ti, there is a j < i such that u ∊ HTj ∪ Vq. If u ∊ Vq, then u = y = σ(y) and t = y, but we
know that t ∊̸ Vq. Thus u ∊̸ Vq and u ∊ HTj, i.e. y ∊ vars(HTj). Now ξ is an interleaving of sessions
of Pr, and y ∊ vars(u)where u occurs in an honest agent send in a session. Thus there is an earlier
intruder send in the same session in which y occurs. This send occurs before αj in ξ. Thus there is a
k ⩽ j such that y ∊ vars(pubs(βk)) = vars(ITk). Thus, t ∊ st(σ(ITk)). ⊣

▶ Lemma 28. Suppose i ⩽ n, t ∊̸ σ(D) ∪ Vq and σ(Ti) ⊢dy t via a normal proof π ending in a destructor rule.
Then there is an l < i such that σ(Tl) ⊢dy t.

Proof. Since π ends in a destructor rule, t ∊ st(σ(Ti)). By Lemma 27, there is an i′ < i such that
t ∊ st(σ(ITi′)). Let j be the earliest such index, and let a ∊ ITj such that t ∊ st(σ(a)). Since
σ(Tj−1;Ej−1) ⊢a σμj(βj), and a ∊ ITj = pubs(βj), it follows by Lemma 15 that σ(Tj−1) ⊢dy σμj(a).
But vars(a)∩dom(μj) = ∅, so σ(Tj−1) ⊢dy σ(a), via a normal proof ρ. Consider aminimal subproof
χ of ρ such that t ∊ st(conc(χ)). (There is at least one such subproof, namely ρ.) If χ ends in a
destructor, then conc(χ) ∊ st(σ(Tj−1)), and hence t ∊ st(σ(Tj−1)). But by Lemma 27, there must
be a k < j− 1 such that t ∊ st(σ(ITk)), contradicting the fact that j is the earliest such index. So χ
ends in a constructor rule. If t ≠ conc(χ), then t ∊ st(conc(χ′)), for some proper subproof of χ. But
this cannot be, since χ is a minimal proof with this property. Thus, t = conc(χ) and χ is a proof of
σ(Tj−1) ⊢ t (and we choose our l to be j− 1). ⊣

▶Theorem 29. For all t and all i ∊ {0, … , n}, if σ(Ti) ⊢dy t, then there is a typed normal proof π∗ of the same.

Proof. Assume the theorem holds for all j < i. We show how to transform any proof π of σ(Ti) ⊢ t
ending in rule r into a typed normal proof π∗ of the same by induction on the structure of π.

r is ax: t ∊ σ(Ti) ⊆ σ(C). If t ∊ σ(D) ∪ Vq, we take π∗ to be π itself. Otherwise, there is a j < i such
that σ(Tj) ⊢dy t. We can get a typed normal proof π∗ of σ(Tj) ⊢ t and obtain the required result
by weakening the LHS.

r is a constructor: We can find typed normal equivalents for all immediate subproofs, and apply
the same constructor rule to get the desired π∗.

r is a destructor: Let π1, … , πn be immediate subproofs of π, with conc(π1) = s being the major
premise (and t being an immediate subterm of s, as a consequence). We can find typed normal
equivalents π∗1, … , π∗n. If π∗1 ends in a constructor, then we choose π∗ to be the immediate
subproof of π∗1 s.t. conc(π∗) = t.
If π∗1 does not end in a constructor, s ∊ σ(D) ∪ Vq. Since a destructor rule r was applied on
s, s ∊̸ Vq. So s ∊ σ(D), and hence t ∊ σ(C). If t ∊ σ(D) ∪ Vq, we obtain a typed normal π∗ by
applying r on the π∗i s. Otherwise, as with ax, we get a typed and normal proof π∗ of σ(Tj) ⊢ t
for some j < i and apply weakening. ⊣

Having shown that we can always obtain a typed ⊢dy proof, we now consider ⊢eq. We present
below an example which will motivate our choices for the definition of a typed⊢eq proof.
Suppose σ(x) = (t1, t2) for some minimal x, and σ(u) = (u1, u2) for some term u. Suppose we

also have a proof of t1 ⋈ u1 obtained by applying proj1 to a proof of σ(x) ⋈ σ(u), and we want a
“corresponding” proof, even after zapping. However, x would be zapped to a name, and we cannot
apply proj to an atomic value. We would prefer a proof which allows us to preserve its structure
even after zapping. To this end, we define a typed ⊢eq proof as follows.
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▶ Definition 30. [Typed⊢eq proof ] A proof π ofX;A ⊢ r ⋈ s is typed if for every subproof π′ with conclusion
X;A ⊢ t ⋈ u,

π′ contains an occurrence of the cons rule, or
t = u, or
t and u are typed terms.

Intuitively, this definition disallows “asymmetric” zapping of the above kind, and allows us to
prove the equivalent of Theorem 29 for ⊢eq proofs.

▶Theorem 31. For i ⩽ n and a, b ∊ T, if σ(Ti;Ei) ⊢eq a ⋈ b, there is a typed normal proof of σ(Ti;Ei) ⊢
a ⋈ b.

Proof. ByTheorem 10, we know that every ⊢eq proof can be converted to an equivalent normal
proof. We can show that every normal ⊢eq proof is typed. The only non-trivial case is when the
last rule is proj. Consider a normal proof π of σ(Ti;Ei) ⊢ a ⋈ b, whose last rule is proj, and whose
immediate (typed normal, by IH) subproof is π′ deriving f(a1, … , a… , an) ⋈ f(b1, … , b, … , bn). Since
π is a normal proof ending in proj, the cons rule does not occur in π or π′. Two cases arise:

f(a1, … , a, … , an) = f(b1, … , b… , bn), in which case a = b and π is typed.
f(a1, … , a, … , an) and f(b1, … , b, … , bn) are both typed terms. By Lemma 25, we see that either
f(a1, … , a, … , an) = f(b1, … , b, … , bn) (whence a = b), or a and b are typed, and thusπ is typed. ⊣

4.2 Small substitutions σ∗,ω∗, and μ∗i
Assume that there is anm ∊ T0 ∩ N s.t.m ∊̸ st({αi, βi}) ∪ st(rng(θi) ∪ rng(μi)) for all i. This can
be thought of as a fixed “spare name” that does not appear in the run. We will use this name to
formally define a zap operation, as below.

▶ Definition 32. For any term t, we inductively define the zap of t, denoted t , as follows:

x ≔ x

n ≔ �
m if n is zappable

n otherwise

f(t1, … , tn) ≔ �
m if f(t1, … , tn) is zappable

f(t1 , … , tn) otherwise

For a set of termsX, X ≔ {t ∣ t ∊ X}. For a set of equalities E, E ≔ {t ⋈ u ∣ t ⋈ u ∊ E}.

▶ Definition 33. For λ ∊ {σ,ω, μi ∣ i ⩽ n}, the small substitution λ∗ is the substitution with dom(λ∗) =
dom(λ) and λ∗(x) ≔ λ(x) for all x ∊ dom(λ).

Here are a few examples that illustrate the above definition, for different choices of λ and C.

▶ Example 34.

1. Suppose C = st({m, y, (y1, {y2}k)}), where y1, y2 are minimal, and μ2(y) = (y1, {y2}k). Then
μ∗2(y) = (y1, {y2}k) and ω∗(y) = (m, {m}k).
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2. Suppose C = st({m, y, y2, (y1, x)}) and μ2 is the same as above, with x minimal and σ(x) =
μ2({y2}k). Then μ∗2(y) = (y1,m) and ω∗(y) = (m,m).

Following Definition 33, we can see that σ∗μ∗i (x) = σμi(x) for any i ⩽ n and x ∊ V, but this
equality need not lift to bigger terms in general. Consider a minimal x ∊ dom(σ)with σ(x) = t. So
t is ground, and hence vars(t) = ∅. So σ∗μ∗i (t) = t. However, σμi(t) = t = m, since t is zappable.
Thus, it is not true that σ∗μ∗i (t) = σμi(t) for all possible terms t. However, we can show that this
holds for all t ∊ C.
This requires an analysis of σμi. It is clear that dom(σ) ∩ dom(μi) = ∅. Further, for any

x ∊ dom(μi), we have σ(Ti−1) ⊢dy μi(x). Hence vars(μi(x)) ⊆ vars(σ(Ti−1)) ⊆ Vq, and so we have
that vars(rng(μi(x)))∩dom(σ) = ∅. Similarly vars(rng(σ(x)))∩dom(μi) = ∅ (since σ(x) is ground
for any x ∊ dom(σ)). Thus σμi = σ ∪ μi. In other words, for any x ∊ dom(σ), σμi(x) = σ(x) and for
any x ∊ dom(μi), σμi(x) = μi(x). This property continues to hold for σ∗ and μ∗i .

▶ Lemma 35. For i ⩽ n and t ∊ C, σ∗μ∗i (t) = σμi(t).

Proof. Consider λ = μi for some i. The following cases arise.

t = x ∊ dom(σλ): By Definition 33 and the remarks preceding this lemma, if x ∊ dom(σ), then
σ∗λ∗(x) = σ∗(x) = σ(x) = σλ(x), and a similar reasoning applies when x ∊ dom(λ).
t = x ∊̸ dom(σλ): σ∗λ∗(x) = x = x = σλ(x).
t ∊ N: Since t ∊ C, t ∊ D and hence is not zappable. Thus σλ(t) = t = σ∗λ∗(t). Since t = t,
σ∗λ∗(t) = σλ(t).
t = f(t1, … , tn): t ∊ D, so t1, … , tn ∊ C, and for j ⩽ n we get σ∗λ∗(tj) = σλ(tj) by IH. We claim
that u = σλ(t) is not zappable, since for any x such that ω(u) = ω(x), x is not minimal (since
ω(x) = ω(t) as well, and t ∊ D). Therefore, we have

σλ(t) = f(σλ(t1), … , σλ(tn)) = f(σλ(t1), … , σλ(tn)) = f(σ∗λ∗(t1), … , σ∗λ∗(tn)) = σ∗λ∗(t). ⊣

We now show, via Lemmas 36 and 37, that small substitutions preserve derivabilities of both
terms and equalities.

▶ Lemma 36. For i ⩽ n and any term t, if σ(Ti) ⊢dy t then σ∗(Ti) ⊢dy t .

Proof. LetX and Y stand for σ(Ti) and σ∗(Ti). SinceX ⊆ C, by Lemma 35, X = Y. Let π be a typed
normal ⊢dy proof of X ⊢ t (ensured byTheorem 29). We prove that Y ⊢dy t . Consider the last rule
r of π. The following cases arise.

r = ax: t ∊ X, and therefore t ∊ Y. Thus Y ⊢dy t by ax.
r is a constructor: Let t = f(t1, … , tn) and let π1, … , πn, with conc(πi) = ti, be the immediate
subproofs of π. By IH, there is a proofϖi of Y ⊢ ti for each i ⩽ n. If t is zappable, then t = m ∊ Y
(m ∊ Ti for all i, som ∊ X andm ∊ Y), and we have Y ⊢dy t using ax. If t is not zappable, then
t = f(t1, … , tn) = f(t1 , … , tn), and we can apply r on the ϖis to get Y ⊢dy t .
r is a destructor: Let the immediate subproofs of π be π1, … , πn, deriving t1, … , tn respectively,
with t1 being the major premise, and t an immediate subterm of t1. Since π is typed normal, π1
is also typed and ends in a destructor, so by Definition 26, t1 ∊ σ(D) ∪ Vq. Since we applied a
destructor on t1, it is not in Vq. Thus, there is some u1 ∊ D, with the same outermost operator
as t1, such that t1 = σ(u1). Hence, ω(t1) = ω(u1).



R. Ramanujam, V. Sundararajan, and S. P. Suresh 27

If t1 were zappable, there would be a minimal x such that ω(x) = ω(t1) = ω(u1) ∊ ω(D),
which contradicts the minimality of x. Thus, t1 is not zappable, and t1 has the same outermost
structure as t1. By IH, there is a proof ϖi of Y ⊢ ti for each i ⩽ n. Since t1 is not atomic, we can
apply the destructor r on the ϖis to get Y ⊢dy t . ⊣

▶ Lemma 37. For i ⩽ n and terms t, u, if σ(Ti;Ei) ⊢eq t ⋈ u then σ∗(Ti;Ei) ⊢eq t ⋈ u.

Proof. Let (X;A) and (Y;B)denote σ(Ti;Ei) and σ∗(Ti;Ei) respectively. As earlier, usingLemma 35,
X = Y and A = B. Let π be a typed normal ⊢eq proof of X;A ⊢ t ⋈ u (guaranteed byTheorem 31).
We prove that Y;B ⊢eq t ⋈ u. Most of the cases are straightforward, so here we only consider the
cases when π ends in proj or cons.

π ends inproj: Letπ′ be the immediate subproof of π, provingX;A ⊢ a ⋈ bwith a = f(a1, … , an),
b = f(b1, … , bn), and t = ai and u = bi. By IH, there is a proof ϖ′ of Y;B ⊢ a ⋈ b. For proj,
we need X ⊢dy {a1, … , an, b1, … , bn}. By Lemma 36, Y ⊢dy {a1 , … , an , b1 , … , bn}. By Lemma 20,
ω(a) = ω(b). By normality, cons cannot occur in π. π is also typed, so either a = b or a and b
are typed. If a = b, then t = u, and we have a proof of Y;B ⊢ t ⋈ u ending in eq. If a and b are
typed, we apply Lemma 25 and the following two cases arise.

a and b not zappable: Then a and b have the same outermost structure as a and b, and t = ai
and u = bi . So we can apply proj on ϖ′ to get Y;B ⊢eq t ⋈ u.
a = b: Then t = u as well, and hence t = u. Since Y ⊢dy {t , u}, Y;B ⊢eq t ⋈ u with last rule
eq.

π ends in cons: Let t = f(t1, … , tn) and u = f(u1, … , un). Let π have immediate subproofs
π1, … , πn, each πi proving X;A ⊢ ti ⋈ ui. By IH, there are proofs ϖ1, … ,ϖn, each ϖi proving
Y;B ⊢ ti ⋈ ui . By Lemma 25, two cases arise.

t and u not zappable: Then t = f(t1 , … , tn) and u = f(u1 , … , un). So Y;B ⊢eq t ⋈ u using
cons on the ϖis.
t and u zappable: Then, t = u = m ∊ Y, so we have a proof of Y;B ⊢ t ⋈ u ending in eq. ⊣

Putting Lemmas 35, 36 and 37 together, we get:

▶Theorem 38. Let t, u ∊ C and i ⩽ n.

If σ(Ti−1) ⊢dy σμi(t) then σ∗(Ti−1) ⊢dy σ∗μ∗i (t).
If σ(Ti−1;Ei−1) ⊢eq σμi(t ⋈ u) then σ∗(Ti−1;Ei−1) ⊢eq σ∗μ∗i (t ⋈ u).

Having shown that the λ∗s simulate the λs, we next show that they allow us a bound on the
size of terms therein.

▶Theorem 39. For λ ∊ {σ,ω, μi ∣ i ⩽ n}, and x ∊ dom(λ), |st(λ∗(x))| ⩽ |D|.

Proof. For each λ and any x, ω∗(λ∗(x)) = ω∗(x) = ω(x) (by Definition 33) and thus, |st(λ∗(x))| ⩽
|st(ω∗(x))|. So it suffices toprove aboundon |st(ω∗(x))|. We showthat for t ∊ C, st(ω∗(t)) ⊆ ω∗(D).
Note that if t = x is non-minimal, there is an r ∊ D s.t. ω∗(t) = ω∗(r). Thus it suffices to prove the
statement for t which is either a minimal variable or in D.
The proof is by induction on |ω∗(t)|.
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|ω∗(t)| = 1 ∶ ω∗(t) ∊ N. So t ∊ N or t is a minimal variable. If t ∊ N, ω∗(t) = t ∊ N. Otherwise,
ω∗(t) = m. In both these cases, st(ω∗(t)) ⊆ ω∗(D).
|ω∗(t)| > 1 ∶ Let a ∊ st(ω∗(t)). If a = ω∗(u) for some u ∊ st(t) ∖ vars(t), then a ∊ ω∗(D). If
a = ω∗(x) for some minimal x ∊ vars(t), then a = m = ω∗(m) ∊ ω∗(D). If a ∊ st(ω∗(x)) for
non-minimal x ∊ vars(t), then x ≠ t, and there is an r ∊ D s.t. ω∗(x) = ω∗(r), and a ∊ st(ω∗(r)).
Since |ω∗(r)| < |ω∗(t)|, by IH, st(ω∗(r)) ⊆ ω∗(D). Thus a ∊ ω∗(D).

Hence, |st(ω∗(t))| ⩽ |ω∗(D)| ⩽ |D|, for t ∊ C. ⊣

4.3 NP algorithm for Insecurity: Sketch

After guessing a coherent set of sessions and an interleaving of these sessions of length n, we guess a
small substitution σ∗, for each intruder send βi a setXi ⊆ hat(βi) and a small substitution μ∗i whose
domain is bv(βi) ∖ bv(Xi). We also guess a sequence of knowledge functions such that the relevant
atomic assertions and terms (communicated in the σ∗(βi)s) are derivable from σ∗(ker(ki−1(I))).
These derivability checks in the ⊢eq system can be carried out in time polynomial in the size of the
protocol description (using the procedure described in Algorithm 1).
For honest agent derivations, we only deal with derivations of the form ki(ui) ⊢a αi (without

the σ). This is, in fact, a version of the passive intruder problem for assertions. ApplyingTheorem 16,
we reduce this to checks of the form (Ui; Fi) ⊢eq θi(r ⋈ s). It is much simpler to ensure that we can
obtain θis of bounded size, because of the absence of σ. We can think of this as a version of the
passive intruder problem for the system with assertions. The following theorem, the proof of which
can be found in the Appendix, will help us obtain small θis.

▶Theorem 40. If there is a μ satisfyingTheorem 16, there is a “small” ν satisfying the same conditions, such
that |st(ν(x))| ⩽ |st(S) ∪ st(A ∪ {α})| for all x ∊ dom(ν).

In order to check whether ki(ui) ⊢a αi, we need to guess X ⊆ hat(αi) and a small substitution
θi such that the conditions of Theorem 16 are satisfied. (The smallness of θi is guaranteed by
Theorem40.) Each of those conditions can be checked in polynomial time because they only involve
⊢dy proofs (checkable in PTIME),⊢eq proofs (also checkable in PTIME), and proofs involving only
{ax, ∧i, ∃i, say} (also checkable in PTIME).Thus, honest agent derivability checks are in NP.

5 Discussion and Future Work

5.1 Intruder theories for terms

For terms, we assumed that every operator had constructor and destructor rules, as specified in
Figure 1. Such systems are called constructor-destructor theories. While the initial results for the active
intruder problem were proved for simple theories in [38], that work has been extended to much
richer theories [2, 9, 13–16, 20]. As mentioned in Section 1.4, the extension with assertions that we
consider is not subsumed by any known intruder theories.
Can one generalize the results of this paper to richer intruder theories? We believe that one

can, but one needs to modify a few fundamental notions used so far. We list these considerations
below.
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In the main text, we used st(t) to mean the syntactic subterms of t. For a general intruder theory,
we will need to assume a function Swhich maps finite sets of terms to finite sets, and satisfies
st(X) ⊆ S(X) for any set X.
To handle the general case, we modify the form of constructors and destructors as follows. In a
constructor rule, each immediate subterm of the conclusion is a subterm of one of the premises.
In a destructor rule, the conclusion is a subterm of one of the premises.
We can assume that the intruder theory we consider is local w.r.t. S. That is, wheneverX derives
t, we have a proof π of X ⊢ t such that terms(π) ⊆ S(X ∪ {t}), and further, if π ends in a
destructor rule, terms(π) ⊆ S(X).
We modify Definition 21 to use S instead of st. Definitions 23, 26, 30, 32, and 33, on which the
proofs in Section 4 hinge, will stay unchanged, since they only refer to C and D.
We need to prove Theorem 29 for the extended theory before moving onto the ⊢eq system.
Determining the conditions on the intruder theory which would guarantee this theorem is left
for future work.
Now, for proofs in the ⊢eq system, there is the following subtlety, which we illustrate by con-
sidering the ⊢eq theory built on top of the theory for xor as presented in [15]. In this intruder
theory, there are implicit rewrites in the rules for xor. For instance, from a⊕ b and b⊕ c, we
can obtain a⊕ c. We would need to carry over these rewrites into the equality rules as well,
and in the presence of such rewrites, show that normalization and subterm property hold for
the new ⊢eq system.
In particular, for normalization, we need to eliminate subproofs where an instance of cons
appears as the premise for proj. For the basic ⊢eq system, one can do this by picking the
appropriate subproof of cons. However, in this new system with xor, consider a proof of the
following form.

T;E ⊢ x ⋈ a⊕ b T;E ⊢ y ⋈ b⊕ c
cons

T;E ⊢ x⊕ y ⋈ a⊕ c
proj1T;E ⊢ x ⋈ a

Such aproof cannot easily be normalized, since none of these subproofs has the same conclusion.
But such aproj rule shouldnotbe allowed tobeginwith, since implicit rewrites arenot injective.8

Thus, proving normalization and the subterm property for anymodified ⊢eq system built on
top of a general intruder theory seems feasible, provided one appropriately tailors the rules –
especially proj – to avoid any unsound behaviour. This is left for future work.

Thus, we can see that the main change in lifting this result to richer intruder theories lies
in showing that Theorem 29 holds. One might also need to restrict the new rules one might
introduce to the ⊢eq system, and hence mildly modify the proofs of the normalization theorem
andTheorem 31.

8 In the constructor-destructor theories as in Figure 1, we can see that such implicit rewrites do not occur, and all fs
considered are injective.
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5.2 Constraint solving approach

An algorithmic approach to the active intruder problem is constraint solving [16, 34]. Rather than
merely proving a bound on the substitution size, these papers present the problem as a series of
deducibility constraints (involving variables), the solution to which is a substitution under which
all the deducibilities actually hold. They also provide rules for constructing such a substitution.
In Section 4, for a run, we defined the sequence of sets (Ti;Ei), and sets of atomic formulas Xi,

for i ⩽ n. This can be viewed as a generalized constraint system,wherewewant to find substitutions
under which (Ti;Ei) can derive the equality assertions in Xi, and Ti can derive the public terms of
Xi. It is a worthwhile exercise to adapt the existing constraint solving approaches to solve such
generalized constraint systems. We leave this for future work.

5.3 Full disjunction

An interesting feature of the language in [35] is the use of disjunction. While our syntax here uses
list membership to express a limited form of disjunction that seems to suffice for many protocols,
it would be worthwhile to explore the utility of full disjunction and its effect on the active intruder
problem.
In fact, with disjunction, we know that even the derivability problem becomes more involved.

To check if (S;A) ⊢a γ, one can no longer work with a single kernel of (S;A). One can define a
notion of “down-closure”. For each disjunctive formula α ∨ β, one obtains two down-closures –
one containing α, and the other β. In general, many disjunctions could occur in A, and there are
exponentially many down-closures for any (S;A). Using a left disjunction property similar to
those in Lemma 13 (α ∨ β derives γ iff γ is derivable from α and from β), we check if the kernels
of all down-closures of (S;A) derive γ. Thus, the derivability problem is in Π2. Some of these
down-closures might even contain contradictory assertions, and hence our techniques for the
insecurity problem do not seem to directly apply. Exploring these issues is an interesting direction
of research and is left for future work.

5.4 Adding if-then-else branching to protocols

As mentioned earlier, we can add an A ∶ assert α action that allows the role to proceed only if α can
be derived using the information that A has at the time. Similarly, we can add an action of the
form A ∶ deny α, which lets the role proceed only if α cannot be derived using A’s current knowledge.
To simulate an if-then-else branch (by specifying a condition α to be checked and an agent Awho
will check it), we create two roles, one containing A ∶ assert α followed by the actions in the then
branch, and the other containing A ∶ deny α followed by the actions in the else branch. We can
easily extend our results to protocols involving such assert and deny actions where the condition
being checked is whether or not a predicate holds about some atomic terms (for example, el(V) in
Section 2.3).
The fact that a predicate P holds about some terms t⃗ can be modelled as the presence of t⃗ in a

global list. We can also extend themodel to allow agents (with appropriate access privileges) to add
and delete entries from global lists, as considered in tools like Proverif [11] and in some versions of
applied-pi [5, 28]. The technical proofs in our work continue to hold for these extensions.



R. Ramanujam, V. Sundararajan, and S. P. Suresh 31

5.5 Adding assertions to other models and tools

It is also useful to add communicable assertions to the widely-used applied pi calculus [1]. It
would be especially interesting to see how this impacts the notion of static equivalence, and then
study expressibility and decidability. As mentioned earlier, one can express certain “equivalence”
properties in amore naturalmannerwith assertions as compared to the terms-onlymodel. Another
promising extension is to study which equivalence properties can be expressed as reachability
properties in thismanner, like in [25]. Thesewould also help us to extend existing tools [11,13,21,33]
with assertions.
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A A substitution rule for equalities

We consider the following subst rule, with the side conditions P ⊆ ℙx(t ⋈ u) ∩ 𝔸(S ∪ {x}, t ⋈ u)
and S ⊢dy {r, s}.

(S;A) ⊢ (t ⋈ u)[r]P (S;A) ⊢ r ⋈ s
subst

(S;A) ⊢ (t ⋈ u)[s]P

▶ Lemma 41. The subst rule is admissible in⊢eq.

Proof. Wefirst show that subst can be simulated by a series of applications of subst1, defined below.

S;A ⊢ (t ⋈ u)[r]p S;A ⊢ r ⋈ s
subst1

S;A ⊢ (t ⋈ u)[s]p

The rule is enabled only if p ∊ ℙx(t ⋈ u) ∩ 𝔸(S ∪ {x}, t ⋈ u) and S ⊢dy {r, s}. subst1 replaces the r
occurring at p by s.
Let α denote t ⋈ u and consider an instance of subst with (T;E) ⊢ α[r]P and (T;E) ⊢ r ⋈ s

as premises and (T;E) ⊢ α[s]P as conclusion, with P = {p1, … , pl} ⊆ ℙx(α) ∩ 𝔸(T ∪ {x}, α), and
T ⊢dy {r, s}. The pis are x-positions, so none of them is a prefix of another. Therefore, even after
replacing the xs occurring in the set of positions P ∖ {pi}with some terms, pi remains an x-position.
For 0 ⩽ i ⩽ l, we define the following. Pi ≔ {p1, … , pi} and Ri ≔ P ∖ Pi = {pi+1, … , pl}. We also

define αi ≔ (α[r]Ri)[s]Pi . Note that α0 = α[r]P and αl = α[s]P. We can see that pi is an x-position of
βi = (α[r]Ri)[s]Pi−1 . By Lemma 8 for assertions, pi ∊ 𝔸(T∪{x}, βi), since we have P ⊆ 𝔸(T∪{x}, α),
We also see that αi−1 = βi[r]pi and αi = βi[s]pi . Thus we can get from αi−1 to αi using the subst1 rule,
and from α0 to αl using a series of subst1 rules.
Nowwe show that subst1 can be simulated in the⊢eq system. Let π is a proof of (T;E) ⊢eq r ⋈ s,

and let T ⊢dy {r, s}. For all p, and for all t, u s.t. p ∊ ℙx(t ⋈ u) ∩ 𝔸(T ∪ {x}, t ⋈ u), we show that
whenever (T;E) ⊢eq (t ⋈ u)[r]p, then (T;E) ⊢eq (t ⋈ u)[s]p. The proof proceeds by induction on
the length of p.

p = 0: We have a proof of r ⋈ u. By sym, we get a proof of u ⋈ r. Combining this with π using
trans, we get a proof of u ⋈ s, from which we can get a proof of s ⋈ u by applying sym again.
p = 1: We have a proof of t ⋈ r. Combining this with π using trans, we get a proof of t ⋈ s, as
desired.
p = 0q for some q ≠ ε: Note that (t ⋈ u)[r]p is the same as t[r]q ⋈ u. Suppose t = f(t0, … , tn)
and q = iq′ for i ⩽ n. Then and t[r]q = f(t0, … , ti[r]q′ , … , tn). Since q ∊ 𝔸(T ∪ {x}, t), we have
that T ⊢dy {t0, … , tn}, and by eq, (T;E) ⊢eq tj ⋈ tj for j ⩽ n. From T ⊢dy r, and q′ ∊ 𝔸(T∪{x}, ti),
we have that T ⊢dy ti[r]q′ . Thus, we have a proof of (T;E) ⊢eq ti[r]q′ ⋈ ti[r]q′ using eq. Applying
IH to the position 0q′, we have that (T;E) ⊢eq ti[s]q′ ⋈ ti[r]q′ . By applying cons to this and
(T;E) ⊢eq tj ⋈ tj for the other j ⩽ n, we conclude that (T;E) ⊢eq t[s]q ⋈ t[r]q. Applying trans to
this and t[r]q ⋈ u, we get a proof of t[s]q ⋈ u, i.e. (t ⋈ u)[s]p.
p = 1q for some q ≠ ε: This is similar to the above. ⊣
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B Proof of Theorem 40

We want to check if (S;A) ⊢a α, where bv(α) ∩ vars(S;A) = ∅. Let (T;E) = ker(S;A). By
Theorem 16, this reduces to checking if there is a substitution μ with dom(μ) = bv(α) s.t. and
X ⊆ hat(α) s.t. ∀x ∊ bv(α) ∶ T ⊢dy μ(x) and for all β ∊ X, (T;E) ⊢a μ(β). For formulas in X that
are not of the form t ⋈ u, all terms occurring in them are variables or names, so μ is atomic on
variables occurring in them. It therefore suffices to only consider assertions of the form t ⋈ u.
So the problem is as follows. There is a set of terms C closed under subterms, and (T;E)with

st(T) ∪ st(E) ⊆ C. We have a substitution μwith dom(μ) ∩ vars(T;E) = ∅, which satisfies some
derivabilities of the form T ⊢dy μ(t) and T;E ⊢eq μ(t ⋈ u), where t, u ∊ C. We seek a small ν that
preserves the above derivabilities. To reduce clutter, we use Z to refer to dom(μ). Let D = C ∖ Z.
Since T ⊢dy μ(x), all variables occurring in μ(x)must also be in vars(T). But vars(T;E) ∩ Z = ∅, so
vars(μ(x)) ∩ Z = ∅.
Define r ≈ s iff T;E ⊢eq μ(r ⋈ s). It is easy to see that≈ is a partial equivalence relation (on the

subset of terms r such that T ⊢dy μ(r)).
We say that x ∊ Z is minimal if there is no t ∊ Dwith x ≈ t. Let Vm denote the set of all minimal

variables. Our strategy for finding a small ν is to “zap” minimal variables, and propagate the change
to (interpretations of) non-minimal variables. To this end, it is convenient to translate every
term to an “equivalent” one with only minimal variables. The notion of equivalence is based on
unifiability under μ. The set of all such terms that are equivalent to terms in C is defined as follows.

▶ Definition 42. �C ≔ {t ∣ vars(t) ∩ Z ⊆ Vm, and either t ∊ Vm or ∃u ∊ D ∶ t ≈ u}.

▶ Lemma 43. For every t ∊ C with T ⊢dy μ(t), there is t∗ ∊ �C such that: T ⊢dy μ(t∗); t ≈ t∗; and for all
x ∊ Vm,ℙx(t∗) ⊆ 𝔸(T ∪ Z, t∗).

Proof. For x, y ∊ Z, x ≺ y iff ∃r ∊ D[x ∊ st(r) and r ≈ y].
We now show that ≺ is acyclic. Towards this, we claim that if x ≺ y and y ≺ z, then there is

some term a (not necessarily in C) s.t. μ(x) is a proper subterm of μ(a) and a ≈ z. Extending this
reasoning, we see that if x ≺+ x, we have some term a such that μ(x) is a proper subterm of μ(a) and
(T;E) ⊢eq μ(a) ⋈ μ(x). ButE is consistent, whichmeans that there is some λ s.t. λ(μ(a)) = λ(μ(x)).
But this is incompatible with μ(x) being a proper subterm of μ(a). Thus≺ is acyclic.
We now prove the claim. Suppose x ≺ y and y ≺ z. Then there exists r, s ∊ D such that x ∊ st(r),

(T;E) ⊢eq μ(r) ⋈ μ(y), y ∊ st(s), and (T;E) ⊢eq μ(s) ⋈ μ(z). Let a = s[r]ℙy(s). We see that μ(x) is a
proper subterm of μ(a). From the abstractability conditions satisfied by μ and the derivability of
μ(x) for all x ∊ Z, we can justify the applications of subst necessary to obtain (T;E) ⊢eq μ(a) ⋈ μ(z)
and thus a ≈ z.
Since ≺ is acyclic, we can define a notion of rank of variables: rank(x) = max{rank(y) ∣ y ≺+

x} + 1. For a term u ∊ D, we define rank(u) = max{rank(x) ∣ x ∊ vars(u) ∩ Z}. It is easy to verify
that if u ∊ D and x ≈ u, then rank(x) > rank(u). It is also easy to see that every x ∊ Vm ∩ Z has rank
0.
Coming back to the statement of the lemma, we prove it by induction on δ(t) = (rank(t), |t|).

First fix an ordering on �C. For δ(t) = (0, 0), we have that t is a variable x and rank(x) = 0. We have
two cases to consider.

x ∊ Vm: Choose x∗ = x.
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x ∊̸ Vm: This means that there is some u ∊ D s.t. x ≈ u. But since rank(x) = 0, vars(u) ∩ Z = ∅

for each such u. Choose x∗ to be the earliest such u (according to an a priori fixed ordering on
�C). Clearly (T;E) ⊢ μ(x) ⋈ μ(x∗), and by Lemma 15, T ⊢dy μ(x∗). Finally vars(x∗) ∩ Z = ∅, so
it is vacuously true that ℙy(x∗) ⊆ 𝔸(T ∪ Z, x∗) for all y ∊ Vm.

So suppose δ(t) > (0, 0) and that the theorem is true for all u such that δ(u) < δ(t). There are two
cases to consider:

t is a variable, say x: Then rank(x) > 0, and there is u ∊ D s.t. x ≈ u, whence rank(u) < rank(x).
Pick the earliest such u ∊ �C. By IH there is u∗, and we define x∗ = u∗. Since x ≈ u and u ≈ u∗,
we have x ≈ x∗, by transitivity.
t is not a variable: For each y ∊ vars(t) ∩ Z, there is y∗. We obtain t∗ by replacing each y by y∗.
Clearly vars(t∗) ∩ Z ⊆ Vm. Also since all variables appear in abstractable positions of t, we can
justify the relevant applications of subst to justify t ≈ t∗. Finally, if z appears in an abstractable
position in r and y appears in an abstractable position in s, then z appears in an abstractable
position in s[r]ℙy(s). Thus the abstractability part of the statement is also fulfilled. ⊣

We now define the substitution ν as follows. Assume that there is some m ∊ T ∩ N such
that m ∊̸ st(E ∪ {α}) ∪ st(rng(μ)).9 Let νm be the substitution that maps each x ∊ Vm to m. For
all x ∊ Z ∶ ν(x) = νm(x∗). Notice that for all x ∊ dom(ν), either ν(x) = m or there is u ∊ D
s.t. ν(x) = ν(u). Thus we can show that ν is |C|-bounded following the proof of Theorem 39. To
complete the proof ofTheorem 40, we just need to show that ν preserves derivability. This is proved
inTheorem 45, the main result of this section. But first we state a useful observation.

▶Observation 44.

1. For x ∊ Z, if μ(x) ∊ C then x ∊̸ Vm.
2. If t ∊ �C and μ(t) ∊ C, then vars(t) ∩ Z = ∅ and μ(t) = t.

Proof.

1. Let μ(x) = t ∊ C. Since vars(t) ∩ Z = ∅, we have that t ∊̸ Z and μ(t) = t. Thus t ∊ D, and
μ(x) ⋈ μ(t) is derivable using the eq rule, i.e., x ≈ t. Therefore x ∊̸ Vm.

2. For every x ∊ vars(t) ∩ Z, μ(x) ∊ C. Thus we have x ∊̸ Vm, by the previous part. But since
t ∊ �C, we have that vars(t) ∩ Z ⊆ Vm. The only conclusion is that vars(t) ∩ Z = ∅, and thus
μ(t) = t. ⊣

▶Theorem 45.

1. For any t ∊ C, if T ⊢dy μ(t) then T ⊢dy ν(t).
2. For any t, u ∊ C, if T;E ⊢eq μ(t) ⋈ μ(u) then T;E ⊢eq ν(t) ⋈ ν(u).

Proof. By Lemma 43, it suffices to prove the following. Let r, s ∊ �C s.t. ∀x ∊ Vm, ℙx((r, s)) ⊆ 𝔸(T ∪
Z, (r, s)). If T ⊢dy μ(r) then T ⊢dy νm(r); and if T;E ⊢eq μ(r) ⋈ μ(s) then T;E ⊢ νm(r) ⋈ νm(s).

1. Suppose T ⊢dy μ(r) for r as above. Since all positions of variables from Z occurring in r are
abstractable w.r.t. T ∪ Z, and since T ∪ {m} ⊢dy m, we can easily prove by induction on the size
of terms that T ∪m ⊢dy νm(r).

9 Thusm is a “spare name” that does not occur in any of the derivations under consideration.
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2. Suppose T;E ⊢eq μ(r) ⋈ μ(s) for r, s as above. Let π be a normal proof of T;E ⊢ μ(r) ⋈ μ(s)
with last rule r. We prove the desired statement by induction on the structure of π. There are
the following cases to consider.

r ∊ {ax, eq, proj}: Three cases arise: μ(r) ⋈ μ(s) ∊ E, and thus μ(r), μ(s) ∊ C. Or μ(r) = μ(s)
and T ⊢dy μ(r) via a proof ending in ax or a destructor rule, and thus μ(r), μ(s) ∊ st(T) ⊆ C.
Or by subterm property for normal ⊢eq-proofs μ(r), μ(s) ∊ st(T;E) ⊆ C. Thus μ(r), μ(s) ∊ C
in all three cases. By Observation 44, vars(r, s) ∩ Z = ∅. Thus νm(r) = r = μ(r) and
νm(s) = s = μ(s). Therefore π itself is a proof of νm(r) ⋈ νm(s).
r = trans: Suppose the immediate subproofs are π1, … , πn, with each πi deriving vi−1 ⋈ vi.
Let μ(r) = v0 and μ(s) = vn. Since no πi ends in trans and no two adjacent πi’s end in cons,
each vi (for 0 < i < n) appears in at least one proof ending in ax, eq or proj. Thus, by the
subterm property, vi ∊ st(T;E) ⊆ C for 0 < i < n. Since vars(T;E) ∩ Z = ∅, it follows that
vi ∊ �C and μ(vi) = vi. Thus we can view each πi as deriving μ(ri−1) ⋈ μ(ri), where ri−1, ri ∊ �C
(taking r0 and rn to be r and s). By IH, there are proofs ϖ1, … ,ϖn, with each ϖi deriving
νm(ri−1) ⋈ νm(ri). By composing them using trans, we get a proof of T;E ⊢ νm(r) ⋈ νm(s),
as desired.
r = cons: Suppose r = f(r1, … , rn) and s = f(s1, … , sn). Each ri, si ∊ �C, and the immediate
subproofs are π1, … , πn, with each πi deriving μ(ri) ⋈ μ(si). By IH we have proofs ϖ1, … ,ϖn,
with each ϖi proving νm(r1) ⋈ νm(s1). We can compose themwith the cons rule to get the
desired proof of νm(r) ⋈ νm(s).
Suppose, on the other hand, that r is a variable. Since r ∊ �C, r ∊ Vm. Now s ∊ �C, so either
s ∊ Vm or there is a ∊ D with s ≈ a. But in the second case, r ≈ a (by symmetry and
transitivity), which cannot happen for a minimal variable r. Therefore s ∊ Vm. And we have
νm(r) = νm(s) = m ∊ T, so there is a proof of T,E ⊢eq νm(r) ⋈ νm(s) ending in eq.
We have a similar argument in case s is a variable, thereby proving the theorem. ⊣

C Normalization and subterm property for ⊢eq

Suppose E∪{α} consists only of atomic formulas and π is a proof of (T;E) ⊢eq α. We use “r1 precedes
r2 in π” to mean that the conclusion of some application of r1 is a premise of an application of r2 in
π.
Recall that π is normal if the following hold.

1. All ⊢dy subproofs are normal.
2. sym is only preceded by ax or prom.
3. eq is only preceded by a destructor rule.
4. No premise of a trans is of the form a ⋈ a, or the conclusion of a trans.
5. Adjacent premises of a trans are not conclusions of cons.
6. int is not preceded by int or wk.
7. No subproof ending in proj contains cons.

Recall that (T;E) is consistent if there is a substitution λ such that λ(a) = λ(b) whenever
(T;E) ⊢eq a ⋈ b and λ(t) ∊ {t1, … , tn}whenever (T;E) ⊢eq t ↞ [t1, … , tn].
We next prove normalization for ⊢eq proofs (with a consistent LHS). We present proof trans-

formation rules in Table 3. To save space, we use proof terms – r(π1, … , πn) denotes a proof πwith last
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R1 eq(f(π1, … , πk)) ⇝ consf(eq(π1), … , eq(πk))
R2 sym(eq(π)) ⇝ eq(π)
R3 sym(sym(π)) ⇝ π
R4 sym(r(π1, … , πk)) ⇝ r(sym(π1), … , sym(πk))
R5 trans(π1, … , πi−1,ϖ, πi, … , πr−1) ⇝ trans(π1, … , πi−1, πi, … , πr−1)

R6 trans(π1, … , trans(π1i , … , πki ), … , πr−1) ⇝ trans(π1, … , π1i , … , πki , … , πr−1)

R7 trans(π1, … , cons(π1i−1, … , πki−1), cons(π1i , … , πki ), … , πr−1) ⇝ trans(π1, … , cons(trans(π1i−1, π1i ), … , trans(πki−1, πki )), … , πr−1)
R8 projm(cons(π1, … , πk)) ⇝ πm

R9 projm(trans(π1, … , πi−1, consf(π1i , … , πki ), πi+1, … , πr−1)) ⇝ trans(projm(trans(π1, … , πi−1)), πmi , projm(trans(πi+1, … , πr−1)))

R10 int(π1, … , πk−1, int(πk , … , πm), πm+1, … , πn) ⇝ int(π1, … , πk−1, πk , … , πm, πm+1, … , πn)
R11 int(π1, … ,wk(πi), … , πn) ⇝ wk(πi)

Table 3 Proof transformation rules. In R4, r ∊ {trans, proj, cons}. In R5, conc(ϖ) is assumed to be of the
form a ⋈ a.

rule r and immediate subproofs π1, … , πn. It is assumed that the derivations are from a consistent
(T;E). R1 is applicable when f is a constructor rule, and ensures that ⊢dy subproofs do not end in a
constructor rule. R2 and R3 eliminate some occurrences of sym, while R4 pushes sym up towards
the axioms. R5 and R6 ensure that no premise of trans is the conclusion of eq or trans. R7 ensures
that adjacent premises of trans are not the result of cons. R8 simplifies proofs where proj follows
cons. We will discuss R9 later. R10 ensures that the conclusion of int is not a premise of int. In
R11, πi proves an equality v ⋈ n, and it is weakened to a list membership of the form v ↞ l′, but
by consistency, even after intersection, the conclusion must be of the form v↞ lwhere λ(v) is an
element of l for some λ. Thus we can directly apply weakening to πi to get the same conclusion.
R9 requires some explanation. Let πi be the proof consf(π1i , … , πki ), and let conc(πj) be tj ⋈ tj+1,

for 1 ⩽ j < r. We see that conc(trans(π1, … , πr−1)) is t1 ⋈ tr. Since proj is applied on this, there
is some constructor g such that te = g(t1e , … , tke ) for e ∊ {1, r}. Since πi ends in consf, we see that
te = f(t1e , … , tle) for e ∊ {i, i+ 1}. But t1 ⋈ ti is provable from (T;E), which is consistent. Therefore
it has to be the case that f = g (and k = l). Thus we see that for all e ∊ {1, i, i+ 1, r}, te = f(t1e , … , tke ).
So we can rewrite the LHS of R9 to the RHS to get a valid proof. Note that we can apply proj on
t1 ⋈ ti in the transformed proof since all components of t1 and ti are abstractable – for t1 this is true
because the proj rule was applied to t1 ⋈ tr in the proof on the LHS; and for ti this follows from the
fact that π1i , … , πki derive respectively t1i ⋈ t1i+1, … , tki ⋈ t

k
i+1, and so by Lemma 15, T ⊢dy {t1i , … , tki }.

For a similar reason, we can apply proj on ti+1 ⋈ tr.

▶Theorem 46. If (T;E) ⊢eq α then there is a normal proof of (T;E) ⊢ α in the⊢eq system.

Proof. Let π be any proof of (T;E) ⊢ α such that all DY subproofs of π are normal. Suppose we
repeatedly apply the transformations of Table 3 starting with π and reach a proof ϖ on which we
can no longer apply any of the rules. Then ϖ satisfies clauses 1 to 6 in the definition of normal
proofs (since none of the rewrite rules, in particular R1–R7 and R10–R11, apply to ϖ).
Clause 7 is also satisfied by ϖ, for the following reason. Suppose a subproof ϖ1 ends in proj

and ϖ2 is a maximal subproof of ϖ1 ending in cons. ϖ2 is a proper subproof of ϖ1, so there has to
be a subproof of ϖ1 of the form ρ = r(⋯ϖ2⋯). Since cons appears as the rule above r, a priori, r
can only be one of {sym, trans, proj, cons}. But since ϖ2 is a maximal subproof of ϖ1 ending in cons,
r ≠ cons. Since R4 and R8 cannot be applied on ϖ, r ∊̸ {sym, proj}. But if r = trans, then ρ is a
proper subproof of ϖ1. In particular, it is the immediate subproof of some ρ′ = r′(⋯ ρ⋯). Now r′
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cannot be subst, since then conc(ρ′) is a list membership assertion, which cannot occur in a proof
ending in proj. r′ ≠ cons, as that would violate the maximality of ϖ2. r′ ∊̸ {sym, trans, proj}, since
then one of the rewrite rules R4, R6, R9 would apply to ϖ. We have ruled out all possible cases
for r′, and thus we are forced to conclude that ϖ2 cannot be a subproof of ϖ1. Thus, cons does not
occur in any subproof of ϖ ending in proj, and ϖ satisfies all the clauses in the definition of normal
proofs.
We next show that we can always reach a stage where no transformation is enabled. To begin

with, apply the rules R2–R4 until the premise of each occurrence of sym is the conclusion of an ax
or a prom. None of the other rules converts a proof ending in ax or prom to one which does not, so
the above property is preserved even if we apply the other rules in any order.
Associate three sizes to an ⊢eq-proof π:

δ1(π) is the sum of the sizes of the ⊢dy subproofs of π,
δ2(π) is the number of cons rules that occur in π, and
δ3(π) is the size of the proof π (number of nodes in the proof tree).

We also define δ(π) ≔ (δ1(π), δ2(π), δ3(π)).
We now show that if π′ is obtained from π by one application of any of the transformation

rules other than R2–R4, δ(π′) < δ(π).

If R1 is applied, δ1(π′) < δ1(π) and so δ(π′) < δ(π).
If R7 or R9 is applied, we have δ1(π′) ⩽ δ1(π) and δ2(π′) < δ2(π). Therefore, δ(π′) < δ(π).
If R5, R6, R8, R10 orR11 is applied, we have that δi(π′) ⩽ δi(π) for i ∊ {1, 2} and δ3(π′) < δ3(π).
So δ(π′) < δ(π).

Thus, once we apply R2–R4 till they can no longer be applied,10 we cannot have an infinite sequence
of transformations starting from any π. Hence, every proof π can be transformed into a normal
proof ϖwith the same conclusion. ⊣

We state and prove the subterm property next.

▶Theorem 47. For any normal proof π of T;E ⊢eq α,
terms(π) ⊆ st(T) ∪ st(E ∪ {α}), and
lists(π) ⊆ lists(E ∪ {α}) ∪ {[n] ∣ n ∊ st(T) ∪ st(E ∪ {α})}.
If π does not contain cons, then terms(π) ⊆ st(T) ∪ st(E) . Also, if π does not end in wk and does not end

in int, then lists(π) ⊆ lists(E) ∪ {[n] ∣ n ∊ st(T) ∪ st(E)}.

We implicitly use the following easily provable facts.

(F1) If a normal proof π ends in trans and an immediate subproof ϖ does not end in cons, then cons
does not occur in ϖ.

(F2) If a normal proof π derives a list membership assertion, cons does not occur in π.

Proof. Let r be the last rule of π. We have the following cases. We mention lists(π) only in cases
where the rules involve lists.

10 This process terminates because the sum of the sizes of subproofs rooted with sym decreases on each application
of R2–R4.
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r = ax: α ∊ E, so terms(π) ⊆ st(E) and lists(π) ⊆ lists(E).
r = eq: α is t ⋈ t and T ⊢dy t. Since π is a normal proof whose ⊢dy subproofs are also normal,
T ⊢dy t via a proof ending in a destructor rule, and by subterm property for ⊢dy, it follows that
t ∊ st(T). Thus terms(π) = {t} ⊆ st(T).
r = sym: terms(π) = terms(π′), where π′ is the immediate subproof, and the statement follows
by IH.
r = cons: α is f(t1, … , tk) ⋈ f(u1, … , uk), and for i ∊ {1, … , k}, there is a subproof πi with conclu-
sion ti ⋈ ui. By IH, terms(πi) ⊆ st(T ∪ {ti, ui}) ∪ st(E) ⊆ st(T) ∪ st(E ∪ {α}) for i ∊ {1, … , k}.
Thus terms(π) ⊆ st(T) ∪ st(E ∪ {α}).
r = trans: Suppose the subproofs of π are π1 through πk−1 with conclusions t1 ⋈ t2 through
tk−1 ⋈ tk respectively, and α = t1 ⋈ tk. Since π is a normal proof, no two adjacent premises of r
are obtained by cons, and no premise of r is obtained by trans. The following cases arise.

r ∊ {t1, tk}. In this case, r ∊ st(α).
r ∊ terms(πi), where πi does not end in cons. By (F1), cons does not occur in πi. By IH,
r ∊ st(T) ∪ st(E).
r ∊ terms(πi), where πi ends in cons, and 1 < i < k − 1. Both πi−1 and πi+1 end in a rule
other than cons, by normality of π. So, by (F1), cons does not occur in πi−1 and πi+1, and
ti, ti+1 ∊ terms(πi−1) ∪ terms(πi+1) ⊆ st(T) ∪ st(E) (by IH on πi−1 and πi+1). So, by applying
IH on πi, we get r ∊ st(T) ∪ st(E ∪ {ti ⋈ ti+1}) ⊆ st(T) ∪ st(E).
r ∊ terms(π1), where π1 ends in cons. By normality of π, we see that π2 ends in a rule other
than cons. So cons does not occur in π2. By IH on π2, t2 ∊ terms(π2) ⊆ st(T) ∪ st(E). By IH
on π1, r ∊ st(T ∪ {t1, t2}) ∪ st(E) ⊆ st(T) ∪ st(E ∪ {α}).
r ∊ terms(πk−1), where πk−1 ends in cons. The proof is similar to the above.

r = proj: Let α = t ⋈ u, got from a proof π′ with conclusion a ⋈ b. Since π is normal, cons does
not occur in π (or in π′). By IH, a, b ∊ terms(π′) ⊆ st(T) ∪ st(E). Since t, u ∊ st({a, b}), we have
terms(π) ⊆ st(T) ∪ st(E).
r = prom: α is t ⋈ u, and the immediate subproof π′ proves t ↞ [u]. π′ does not contain cons,
and so by IH, terms(π) = terms(π′) ⊆ st(T) ∪ st(E). Note that lists(π) ⊆ lists(π′) ∪ {[u]}, so the
statement about lists is also true.
r = wk: Let π′ be the immediate subproof. The result follows from IH and the fact that
lists(π) = lists(π′) ∪ lists(α).
r = int: All terms in the conclusion appear in some proper subproof, so the statement on
terms follows by IH. None of the subproofs ends in int or wk (and does not contain cons).
Thus lists(π′) ⊆ lists(E) ∪ {[n] ∣ n ∊ st(T) ∪ st(E)], for every subproof π′. It follows that
lists(π) ⊆ lists(E ∪ {α}) ∪ {[n] ∣ n ∊ st(T) ∪ st(E ∪ {α})}.
r = subst: Let the major premise be t ↞ l and the minor premise be t ⋈ u. Both t, u are from
V ∪ N, and thus are in st(T) ∪ st(E). The result follows from IH.
r = say: Let the major premise be β and the minor premise be ska. Since T ⊢dy ska, ska ∊ st(T).
And terms(π) ⊆ st(T) ∪ st(E) ∪ st(β) ∪ {pka} ⊆ st(T) ∪ st(E ∪ {α}). ⊣
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