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Abstract

While reasoning about security protocols, most of the difficulty of reasoning relates to the complicated semantics (with freshness
of nonces, multisessions, etc.). While logics for security protocols need to be abstract (without explicitly dealing with nonces,
encryption, etc.), ignoring details may result in rendering any verification of abstract properties worthless. We would like the
verification problem for the logic to be decidable as well, to allow for automated methods for detecting attacks. From this viewpoint,
we study a logic with session abstraction and quantifiers over session names. We show that interesting security properties like
secrecy and authentication can be described in the logic. We prove the existence of a normal form for runs of tagged protocols.
This leads to a quantifier elimination result for the logic which establishes the decidability of the verification problem for tagged
protocols, when we assume a fixed finite set of nonces.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Security protocols; Verification; Decidability

1. Summary

Mechanisms for ensuring security typically use encrypted communication. However, even the use of the most perfect
cryptographic tools does not always ensure the desired security goals. (See [5] for an illuminating account.) This situation
arises primarily because of logical flaws in the design of protocols. It is widely acknowledged that security protocols
are hard to analyse, bugs difficult to detect, and hence that it is desirable to look for automatic means by which attacks
on protocols can be discovered.

Formally, this is a verification problem of the following kind: given a security protocol Pr and a security property
�, we ask whether M(Pr) � �: that is, whether all runs of the model M(Pr) associated with the protocol Pr satisfy �.
There are two important issues here, that of how the model M(Pr) is defined, and the logic in which � is specified.

1.1. Models

The model M(Pr) typically defines an infinite state system, over which even simple reachability properties are
undecidable. When there is no bound on the number of nonces the honest agents can generate, even though the
(symbolic) terms generated during the runs are of bounded size, the intruder can force principals to code up complicated
information using the nonces. On the other hand, when there is no bound on the size of the terms generated during
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a run, the intruder can get the agents to build longer and longer messages to code up complicated information, even
when there is no generation of new data at all in any run of the protocol. These observations lie at the heart of the
undecidability arguments endemic to the verification of security protocols (see [13,33]). They also explain why most
automated analysis of security protocols pertains to modelling intruder’s knowledge (and therefore possible intruder
actions).

Since even simple reachability properties are undecidable, we need to restrict the class of protocols studied, or verify
security properties of a restricted model for protocols. When we impose such restrictions, we can hope to verify not
just reachability properties, but a host of other properties as well. We do not yet have a characterisation of the exact
combination of protocol subclass, protocol model, and class of properties, for which verification is decidable. But some
approaches have been tried in the literature, and we highlight them here.

One approach is to bound the number of sessions that can appear in any run of the protocol. Essentially this approach
is followed by [36,27], and many others. Although a bound on the number of sessions automatically implies a bound
on the number of nonces generated in each run, the problem is still nontrivial because the size of the terms involved
need not be bounded. In [13] it is proved that if external bounds are placed both on the number of nonces generable
in any run and on the size of the terms occurring in the runs, then one obtains decidability—in spite of not imposing
explicit bounds on the number of sessions considered in each run.

A quite different approach is taken in [25]. Here syntactic restrictions on the protocol specifications are placed to
derive bounds on the size of runs which constitute a violation of certain properties. But this work assumes atomic
substitutions (nonce variables only replaced by nonces at run time, etc.). Later, in [22] it is proved that with certain
kinds of tagging schemes, one can altogether prevent type flaw attacks (which involve non-atomic substitutions).
A much simpler tagging scheme is used in [7] (which contains the strongest results in this genre) to prove the termination
of a logic-programming based algorithm to verify secrecy and some simple kinds of authentication.

In earlier work (see [31,32,37,34]) we proved that a restricted version of the secrecy problem (which is still useful
in practice) is decidable for the class of tagged protocols even in the presence of unboundedly many nonces (assuming
atomic substitutions). Our results involved proving some closure properties on the set of runs of a protocol. We proved
that given a protocol, there exists a uniform bound K such that to every run of the protocol we can associate another
run of the same protocol which uses only K new nonces, and which admits of an attack iff the original run does. The
one drawback is that the decidability proofs do not (easily) generalise to properties other than the restricted secrecy we
used in those papers.

1.2. Logic

This brings us to the consideration of the other side of the verification problem, to the security property being verified.
Secrecy, confidentiality, integrity and authentication are typical properties studied, but there is a host of variations even
among these. Often these properties are described in the context of specific protocols using elements particular to the
structure of those protocols. Clearly, what is needed is an abstract logical language for specifying a range of security
properties.

Ideally, we would like the logic to be abstract, in the sense that it should not refer to model elements (like encryption,
which is really a mechanism for implementing security), and the model to be general enough so that the verification
certificate is worthwhile. 1

It is difficult to speak of any logic for security protocols without relating the work to BAN logic [8], which initiated
the study of belief logics for authentication. It also gave rise to a host of descendants (see [18,2], for instance). While
BAN logic has been greatly criticised ([29], for example), its high level of abstraction and ease of use is acknowledged,
and many protocol errors have been analysed using BAN logic. Verification tools based on BAN logic also exist [23].
One major limitation of BAN logic is its lack of a clear semantics, and even the subsequent attempts at giving it a
precise semantics suffer from the fact that the details of the run generation mechanism are not explicated (which has a
crucial bearing on decidability). It is this gap between what is specified and what is modelled that has led to what may
be termed as “loss of faith” in belief logics.

1 This requirement of abstraction may be seen as similar to that in temporal logic in the context of verifying reactive systems.
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1.3. This contribution

In this paper, we define a simple logic for security protocols with a decidable verification problem. One main aim has
been to do this in such a way that the analysis techniques referred to above for automated analysis of specific properties
like secrecy can be lifted to the range of properties definable in the logic. The most important issue in the design of the
logic is that of expressiveness. We have been guided by two criteria in this matter: that of decidable verification and
minimality. We have concentrated on (what we may call) a bare-bones logical framework, in which many interesting
security properties can be expressed. In particular, we can consider protocols like the Needham–Schroeder protocol
and specify properties like secrecy for the initiator in the logic.

Once again, since the models of formulae represent infinite state systems, we look for symbolic reasoning in the
logic. This suggests an abstraction mechanism for the logic which preserves the essential details relevant to analysing
intruder behaviour. For this, we propose the mechanism of session abstraction: basically, when we reason about the
protocol, we have typical (legitimate) sessions in mind, and we postulate abstract session names as well as abstract
names for the secrets used in that session. A system run is composed of (unboundedly) many such sessions, and we
equip the logic with quantification over session names to constrain runs appropriately. To describe information transfer
between sessions we use the equality relation.

A crucial implication of the session abstraction is that while temporal reasoning is limited to event occurrences within
a session, quantification is used to constrain overall system behaviour. This corresponds to the standard specification
of security protocols as a sequence of communications, thus denoting a typical session. Considerations by principals
of intruder behaviour relates different potential instantiations of these sessions, and this is reflected in the quantified
formulae of the logic proposed here.

Technically, our main idea is to prove a normal form for runs of so-called tagged protocols, when we can assume
a fixed finite set of nonces, even when message length and number of parallel sessions are unbounded (yielding an
infinite state system). The normal form allows us to place bounds on the witnesses attesting to the truth of session
formulae, and hence leads to a quantifier elimination result for system formulae, thus yielding decidability.

It must be emphasised that the logic proposed here needs greater study before it can be touted as a formal language
for the specification and design of protocols. In this paper, we only study the properties of the satisfaction relation
M(Pr) � �. What we need is a deduction system Pr � �, hopefully converging with the notion above. Discovery of such
reasoning principles is important for guiding the structured design of security protocols.

1.4. Related work

In ([31,34]), we showed the decidability of secrecy for a subclass of protocols in the presence of unbounded nonces,
but when substitutions are constrained to be atomic (that is, only nonces can be substituted for nonces). In [32],
we showed that secrecy is decidable for tagged protocols in the presence of nonatomic substitutions and unbounded
nonces.

On one hand, this paper can be seen as a generalisation of the results of [32,7] from secrecy to a range of security
properties defined in the logic. On the other hand, the results here are obtained only in the presence of a fixed finite set
of nonces, though there can be unboundedly many sessions, so these generalise the results of [36].

It is to be noted that while the analyses of [9,36,7] and other similar work are carried out within logical frameworks,
they cannot be considered logics for reasoning about security protocols. Every protocol is described as a theory and
hence the specification of security properties intermingles with the security protocol being implemented. In contrast,
we use logic as a specification language here and protocols are modelled as relational structures.

Comingtothelogic,whiletherehavebeenmanylogic-basedanalysesofsecurityprotocols ([1,4,30,6,20,21,17,14,10,3]
is a sample list), there have been few decidable logics which can be considered as specification logics.

In [35], we study logics of knowledge for security protocols, and show decidability results similar to the one in this
paper. The crucial departure here is that rather than use epistemic modalities, we use session abstraction and quantifiers
over sessions in this paper. While the specifications are more elegantly stated in the knowledge logic, the logic here
avoids many of the logical and philosophical complications arising from epistemic reasoning. A closely related work
to [35] is [20], which uses a logic of implicit and explicit knowledge to reason about adversaries. Halpern and Pucella
[20] go beyond Dolev–Yao adversaries and consider guessing by intruders as well.
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2. The model

We briefly present our model for protocols in this section. Most of the elements of the model are standard in the
literature on modelling security protocols. In particular, we use the Dolev–Yao adversary model [12]. In our model,
protocols are specified just as in other models like strand spaces [15] and multi-set rewriting [13].

2.1. Terms and actions

We start with a (potentially infinite) set of agents Ag, which includes the intruder I, and the others, who are called
honest agents. Fix a countable set of fresh secrets N. (This includes random, nonguessable nonces as well as temporary

session keys.) B
def= N ∪ Ag is the set of basic terms.

The set of information terms is defined to be

T ::= m | public(A) | private(A) | shared(A, B) | (t1, t2) | {t1}t2 ,
where m ranges overB, A and B range over Ag, and t1 and t2 range overT. Here public(A), private(A) and shared(A, B)

denote the public key of A, private key of A, and (long-term) shared key between A and B. Further, (t1, t2) denotes the
pair consisting of t1 and t2, and {t1}t2 denotes the term t1 encrypted using t2. These are the terms used in the message
exchanges (which will be presently introduced).

The notion of subterm is defined as follows. For any term t, ST(t), the set of its subterms, is the smallest set of
terms T such that t ∈ T and such that whenever (r, r ′) ∈ T or {r}r ′ ∈ T , {r, r ′} ⊆ T . It is worth noting that, for
instance, the encrypting key k is considered a subterm of {m}k . An alternative definition which does not consider k
to be a subterm of {m}k is also common in the literature. An encrypted term is a term of the form {r}r ′ . The set of
encrypted subterms of t is denoted by EST(t). We say that r ′ is the encryptor of the encrypted term {r}r ′ . We use the
letters t, t ′, t1, t2, r, r ′, u, u′, . . . to range over T. We further let m, n, etc. denote basic terms, and k, k′, k1, etc. denote
arbitrary keys.

Note that we allow terms like {t}{t ′}t ′′ , where constructed terms like {t ′}t ′′ are used as encryption keys. Since any term
can be used as an encryption key, we need to define the notion of inverse for every term. This is along expected lines:
inv(public(A)) = private(A), inv(private(A)) = public(A), and inv(t) = t for all other terms t. Thus, inv(inv(t)) = t

for all terms t.
We model communication between agents by actions. An action is either a send action of the form +(A, B, t) or

a receive action of the form −(A, B, t), where t is an arbitrary term, and A and B are agent names. For example,
the first message exchange in the Needham–Schroeder protocol [28] is the sending of the message {A, x}public(B) by
the initiator (denoted by A here) to the responder (denoted by B here). We model this message transfer by the action
+(A, B, {A, x}public(B)), where the first component of the tuple gives the sender’s name, the second component gives
the name of the recipient, and the third component is the message that is transferred. The receipt of the same message
by B is modelled by the action −(A, B, {A, x}public(B)). Here again, the first component denotes the sender and the
second denotes the receiver. For any send action a = +(A, B, t), sender(a) denotes the agent who sends the message,
namely A, and for any receive action a = −(A, B, t), receiver(a) denotes the agent who receives the message, namely
B. We emphasise that while the sender name in a send action and a receiver name in a receive action denote the actual
agents that send and receive the messages, respectively, in a send action we can only name the intended receiver and
in a receive action we can only name the purported sender. As we will see later, every send action is an instantaneous
receive by the intruder, and similarly, every receive action is an instantaneous send by the intruder.

We use the letters a, b, a1, b1, a2, b2, a
′, b′, . . . to range over arbitrary actions. We denote the set of all actions by

Act. For an action a of the form +(A, B, t) or −(A, B, t), we define term(a) to be t.

2.2. Protocol specifications

A role is a finite sequence of actions. We consistently denote roles by the Greek letter �, with superscripts and/or
subscripts. Typically, they represent the sequence of message exchanges of a particular agent participating in a protocol.
A parametrised role �[m1, . . . , mk] is a role in which the basic terms m1, . . . , mk are singled out as parameters. The
idea is that an agent participating in the protocol can execute many sessions of a role in the course of a single run, by
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instantiating the parameters in many different ways. All the basic terms occurring in a parametrised role that are not
counted among the parameters are the constants of the role. They do not change their meaning over different sessions
of the role. We denote the set of constants of a role � by const(�). The notations ST(�) and EST(�) have the obvious
meanings, given a role �. We also freely refer to encryptors occurring in �, with the obvious meaning.

Suppose � = a1 · · · ak is a parametrised role. We say that a nonce n originates at i(�k) in � if:
• n is a parameter of �,
• ai is a send action, and
• n ∈ ST(term(ai)) and for all j < i, n /∈ ST(term(aj )).

If a nonce n originates at i in a role it means that the agent sending the message ai uses n for the first time in the role.
This usually means that, in any session of that role, the agent playing the role has to generate a fresh, nonguessable
random number and send it as a challenge. Subsequent receipt of the same number in the same session plays a part in
convincing the agent that the original message reached the intended recipient.

A protocol is just a finite set of parametrised roles {�1, . . . , �n}. For example, the Needham–Schroeder protocol is
given by two parametrised roles: the initiator role and the responder role. The initiator role �1[A, B, x, y] is as follows:

+(A, B, {A, x}public(B)); −(B, A, {x, y}public(A)); +(A, B, {y}public(B)).

The responder role �2[A, B, x, y] is as follows:

−(A, B, {A, x}public(B)); +(B, A, {x, y}public(A)); −(A, B, {y}public(B)).

Note that x originates at 1 in the initiator role and y originates at 2 in the responder role.

Protocols are denoted by Pr, with superscripts and/or subscripts. If Pr = {�1, . . . , �n}, then ST(Pr)
def= ST(�1) ∪ · · ·

∪ ST(�n). EST(Pr) is defined similarly. Let Pr = {�1[m1
1, . . . , m

1
k1

], . . . , �n[mn
1, . . . , mn

kn
]} be a protocol. const(Pr)

def= (ST(Pr)∩B)\{m1
1, . . . , m

1
k1

, . . . , mn
1, . . . , mn

kn
} is the set of constants of Pr. These are terms whose interpretation

stays constant during any run of the protocol.
Typically protocols are presented as a sequence of communications of the form A→B : t , which denotes the sending

of the message t by A and its receipt by B. To formally model the fact that the intruder can block messages, and also
fake messages, one typically extracts the roles of each agents from such a sequence of communications, and considers
interleavings of various sessions of the roles. For simplicity, we directly present protocols as roles.

While the definition of a protocol is as simple as it gets, it is worth noting that under the standard semantics,
which we shall present shortly, the above definition is general and hides great expressive power. In fact, many of the
undecidability results in security protocol verification exploit the fact that the above presentation of protocols allows
arbitrary unification across terms, thus enabling the intruder to repeatedly transfer nontrivial information across sessions
and thus code up Turing machine configurations and the like. One way of preventing this from happening is to tag the
elements of the protocols with appropriate typing information.

A tagged protocol is a protocol Pr = {�1, . . . , �n} which satisfies the following conditions:
(1) for every t ∈ EST(Pr) there exists c ∈ const(Pr) and terms t ′ and t ′′ such that t = {(c, t ′)}t ′′ , and
(2) for any two terms t1 = {(c1, t

′
1)}t ′′1 and t2 = {(c2, t

′
2)}t ′′2 in EST(Pr), if c1 = c2 then t1 = t2.

For example, the tagged version of the Needham–Schroeder protocol is given by the following two roles. The initiator
role �1[A, B, x, y] is as follows:

+(A, B, {c1, A, x}public(B)); −(B, A, {c2, x, y}public(A)); +(A, B, {c3, y}public(B)).

The responder role �2[A, B, x, y] is as follows:

−(A, B, {c1, A, x}public(B)); +(B, A, {c2, x, y}public(A)); −(A, B, {c3, y}public(B)).

The main technical results of this paper pertain to tagged protocols. We postpone a discussion on the taggability of
protocols, and the range and extent of the applicability of the technical results, to the end of the paper.

Before we move on to the semantics of protocols, we present an important property of tagged protocols which
immediately follows from the definitions. To present it, we need the notion of substitutions. Substitutions are a central
element of any formal model for protocols. The agent names and nonces mentioned in roles of a protocol are simply
placeholders—the actual agents that take part in a protocol are usually processes running on behalf of users, and nonces
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are usually 128-bit random numbers. The same process could be engaged in many parallel sessions, playing one or
more roles of the protocol with other processes. There are unboundedly many such processes participating in sessions
of a protocol—even a protocol which mentions only two agent names. A formal analysis of a protocol should consider
combinations of the sessions mentioned above to check whether an undesirable state has been reached—a state where
the intruder has learnt a secret it is not supposed to have learnt, for instance. We use substitutions to keep track of the
bindings of the concrete names to the names mentioned in the protocol.

A substitution � is a map from B to T such that �(Ag) ⊆ Ag and �(I ) = I . A substitution � is said to be well-typed
if �(N) ⊆ N . For any T ⊆ B, � is said to be a T-substitution iff for all x ∈ B, �(x) ∈ T . A substitution � is suitable
for a parametrized role � if:
• �(m) = m for all m ∈ const(�), and
• �(n) ∈ N for all nonces n such that:

◦ n originates at some point in �, or
◦ n is a subterm of some t that occurs as an encryptor in Pr.

We say that � is suitable for a protocol Pr if �(m) = m for all m ∈ const(Pr). Substitutions are extended to terms
as follows: �(public(A)) = public(�(A)), �(private(A)) = private(�(A)), �(shared(A, B)) = shared(�(A), �(B));
�((t, t ′)) = (�(t), �(t ′)); and �({t}t ′) = {�(t)}�(t ′). Substitutions are extended to sets of terms, actions and sequences
of actions in a straightforward manner. We say that two terms t1 and t2 are unifiable via a substitution � if �(t1) = �(t2).

Some aspects of the above definitions need explanation. In our formal analysis, we wish to consider type-flaw
attacks, which involve the intruder instantiating names with complex terms. ([11] is an interesting paper which has
nice examples of design flaws in protocols whose exploitation crucially uses type-flaw attacks.) But some restrictions
need to be placed on such ill-typed substitutions for it to be a faithful modelling. For instance, the honest agents are
in control of the nonces they produce, and hence nonces that originate at some point in the roles do not get substituted
by complex terms. We also disallow ill-typed substitutions in “key positions”, for technical convenience. This has the
consequence that protocol analysis based on our model misses some kinds of type-flaw attacks. But it is vitally used in
the proofs of some of the key lemmas later. The same effect can be achieved by considering a slightly more stringent
tagging scheme, at the cost of complicating some of the technical proofs.

Proposition 1. Suppose Pr = {�1, . . . , �n} is a tagged protocol. Consider any two substitutions � and �′, and two
terms t and t ′ from EST(Pr). If �(t) = �′(t ′) then t = t ′.

Proof. Suppose �(t) = �′(t ′). Since we are considering encrypted subterms, it follows (by definition of tagged
protocols) that t = {(c, t1)}t2 and t ′ = {(c′, t ′1)}t ′2 for some c, c′, t1, t2, t ′1 and t ′2. It follows that �(c) = �′(c′). But since
c, c′ ∈ const(Pr) and � and �′ are suitable for Pr, �(c) = c and �′(c′) = c′. It follows that c = c′. Therefore from the
definition of tagged protocols, it follows that t = t ′. �

2.3. Message generation rules

We now detail the semantics of protocols. In subsequent sections, we give a transition system semantics for protocols,
central to which are rules by which the agents generate new messages from old. There is a crucial difference between
the manner in which the intruder generates new messages from old and the manner in which the honest agents do so.
We first formalise the notion of message derivation for the intruder.

A sequent is of the form T � t where T ⊆ T and t ∈ T. A derivation or a proof � of T � t is a tree whose nodes
are labelled by sequents and connected by one of the analz-rules or synth-rules in Fig. 1; whose root is labelled T � t ;
and whose leaves are labelled by instances of the Ax rule. We will use the notation T � t to denote both the sequent and

the fact that it is derivable. For a set of terms T, T
def= {t | T � t} is the closure of T.

When the honest agents participate in a protocol, the manner in which they deduce new messages is strictly in
accordance with the protocol specification. For instance, suppose an agent A expects a term of the form t = {(x, {y}p)}q
at a particular point of its participation in a protocol. Let us say the term it actually receives at that point is t ′ =
{(m, m′), {(n, n′)}p}q , which is got by substituting (m, m′) for x and (n, n′) for y. Let us say that when A receives t ′, it
has already learnt inv(p) and inv(q). If A followed the derivation system displayed in Fig. 1, it would be able to derive
(m, m′) and (n, n′) and hence, also m, m′, n and n′. But that is not the intended behaviour of the honest agents.An honest
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Fig. 1. Message generation rules.

Fig. 2. Deduction rules for honest agents (specific to Pr).

agent should not be able to derive m and m′ in this case. It should stop at (m, m′), which replaces x, a term which is
further unanalysable. To formalise this we need the notion of a typed term and typed sequent specific to a protocol.

A typed term of a protocol Pr is of the form t :(�, u) where t is any term, � is any substitution suitable for Pr, and
u ∈ ST(Pr) such that t = �(u). A typed sequent is of the form T � t :(�, u), for a set T ∪ {t :(�, u)} of typed terms of
Pr. Fig. 2 gives the message derivation rules to be followed by the honest agents.

Even though there is a distinction between the message derivation capabilities of the intruder and that of the honest
agents, we will mostly be interested in the intruder’s message derivation capabilities. Much of the technical work in the
later sections involves reasoning about the intruder’s derivations. There are a few places where the difference between
the two derivation systems becomes manifest. We handle intruder derivations and honest agent derivations separately
in such cases. But in general, we concern ourselves with intruder derivations. In fact, we even use the same notations
for intruder derivations and honest agent derivations, relying on the context to remove any ambiguities.

We have introduced the notion of typed sequents and derivations to faithfully model the behaviour of the honest
agents. While this is a typical approach in the literature, a case can be made that even these typed rules attribute more
power to the honest agents than desired. Consider a protocol specification which says that B should receive from A a
message of the form {x}public(C), which he should then pass on to C. These are called blind copies in the literature.
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Now B cannot decrypt any message encrypted by the public key of C, and thus cannot distinguish between {m}public(C)

and an arbitrary term t. So, a session in which B receives an arbitrary n from the intruder and passes it on to C should also
be deemed to be an acceptable behaviour according to this protocol. Our model rules out such a scenario by allowing
agents to send and receive only substitution instances of the messages occurring in the protocol.

One way to model such situations is to expand the set of typed terms used in honest agent deductions to in-
clude (anomalous) typed terms of the form t : {t ′}public(A) (where t is an arbitrary term), and including rules which
allow the honest agents to detect such type anamolies in some situations (where the agent has the corresponding
key and knows what the result of the decryption should be). We do not explore this interesting direction in this
paper.

2.4. Transition system of a protocol

We have informally referred to the notion of a session previously, to motivate some of the other definitions. We make
the notion precise here.

Let Pr = {�1, . . . , �n} be a protocol. The tuple � = (id, �, �) is a session of Pr if:
• id ∈ N is the session identifier of �,
• � = �i for some i ∈ {1, . . . , n}, and
• � is a substitution suitable for Pr and �.
We use the notation t@� to denote �(t), the meaning of t in the session �.

Let � = (id, �, �). � is said to be a well-typed session if � is well-typed, and � is said to be a T-session if � is a
T-substitution, for T ⊆ B.

An event of Pr = {�1, . . . , �n} is a pair e = (�, lp) where � = (id, �, �) is a session of Pr and 1� lp� |�|. For an
event e = (�, lp) with � = (id, �, �), we let act(e) and term(e) denote �(act(�(lp))) and term(act(e)), respectively.
For events e = (�, lp) and e′ = (�′, lp′) of Pr, we say that e ≺ e′ (meaning that e is in the local past of e′) if � = �′
and lp < lp′. An event e = (�, lp) is a well-typed event if � is a well-typed session, and it is a T-event if � is a
T-session.

We say that a nonce n is uniquely originating in a set of events E of a protocol Pr if there is at most one event
((id, �, �), lp) of E and at most one nonce m such that m originates at lp in � and �(m) = n. (Note that the fact m
originates in � implies that m is a parameter of �.)

An information state (or just state) is a tuple (sA)A∈Ag, where sA ⊆ T for each A ∈ Ag. The initial state of Pr,
denoted by initstate(Pr), is the tuple (sA)A∈Ag such that for all A ∈ Ag,

sA = const(Pr) ∪ Ag ∪ {private(A)} ∪ {public(B), shared(A, B) | B ∈ Ag}.

When the protocol is clear from the context, initstate(Pr) is denoted simply by initstate.
Given a protocol Pr = {�1, . . . , �n}, its transition system, Sys(Pr), is given by (S, init, −→), where:

• S
def= {(E, (sA)A∈Ag) | E is a ≺-closed set of events such that every nonce is uniquely originating in E, and sA ⊆ T

for each A ∈ Ag} is the set of control states.
• init = (∅, initstate(Pr)) is the initial control state.
• −→⊆ S × Act × S is defined as follows: (E, (sA)A∈Ag)

a−→(E′, (s′
A)A∈Ag) iff there is an event e of Pr such that:

◦ a = act(e),
◦ e /∈ E,
◦ E′ = E ∪ {e},
◦ for all e′ such that e′ ≺ e, e′ ∈ E,
◦ if a is a send action, then

s′
I = sI ∪ {term(a)}, and

s′
B = sB for all agents B other than I,

◦ if a is a receive action with receiver(a) = A, then
term(a) ∈ sI ,
s′
A = sA ∪ {term(a)}, and

s′
B = sB for all agents B other than A.
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Let Pr be a protocol, and let Sys(Pr) = (S, init, −→) be its transition system. A run of Pr is a path in Sys(Pr), i.e.,
a sequence � = (E0, s0) a1 (E1, s1) a2 · · · ak(Ek, sk), where for each i�k, (Ei, si) ∈ S; (E0, s0) = init; and for all

i : 0 < i�k, (Ei−1, si−1)
ai−→(Ei, si).

As an example, we present a run of the Needham–Schroeder protocol, which essentially models the famous Lowe’s
attack [24] on the Needham–Schroeder protocol. Recall that the initiator role �1[A, B, x, y] is given by

+(A, B, {A, x}public(B)); −(B, A, {x, y}public(A)); +(A, B, {y}public(B)),

and that the responder role �2[A, B, x, y] is given by

−(A, B, {A, x}public(B)); +(B, A, {x, y}public(A)); −(A, B, {y}public(B)).

Let us define two sessions �1 and �2 by �1
def= (1, �1, �1) and �2

def= (2, �2, �2), where �1(A) = A, �1(B) = I ,
�1(x) = m and �1(y) = n, and �2(A) = A, �2(B) = B, �2(x) = m and �2(y) = n. We see that the following is a run
of the Needham–Schroeder protocol, for some appropriate information states s0, . . . , s6: instead of displaying the set
of events in each control state, we just display the event which is added in that control state.

(∅, s0)

+(A, I, {A, m}public(I )) ((�1, 1), s1)

−(A, B, {A, m}public(B)) ((�2, 1), s2)

+(B, A, {m, n}public(A)) ((�2, 2), s3)

−(I, A, {m, n}public(A)) ((�1, 2), s4)

+(A, I, {n}public(I )) ((�1, 3), s5)

−(A, B, {n}public(B)) ((�2, 3), s6)

Note that as far as B is concerned, he is just having a normal session with A. But A is actually talking to I in parallel
(as part of another legitimate session), who uses information from one run in the other cleverly.At the end of ((�1, 3), s5),
the intruder gets to know n, which was intended to be secret between A and B. Thus B has no guarantee of its nonce
remaining secret in this run. In fact, even when B is taking part in a legitimate run in which he participates in just one
session supposedly with A, he cannot rule out the fact that the run he is taking part in is the above one in which A talks
to I, and hence cannot be assured of the secrecy of n.

The definition of the transition system of a protocol is fairly straightforward. The idea is that each agent maintains
a control state, which records the messages learnt by the agent by previous communications. Further, a record is kept
of all the sessions in which each agent is participating at present, and the progress made in each session. For technical
convenience, we formally model this information as a global pool of events that have happened till now, rather than
as a set of sessions for each agent. But there are some conditions on the set of events which is part of a control state.
Since it represents the set of sessions all the agents are involved in, and the amount of progress in each session, it
has to be ≺-closed. Further, we assume that there is a dependable nonce generator which generates a fresh nonce on
each invocation (across agents). Thus, the unique origination property holds for every nonce with respect to this set of
events.

There is only one initial state for a given protocol. No agent has started participating in any session initially, but has
some initial knowledge. This consists of all the constant terms of the protocol, the names of all the agents, all the public
keys, the agent’s own private key, and all keys the agent shares with others.

Whenever a message communication happens, it is as part of some session. Thus the control state is updated by the
addition of some appropriate event. Notice that all the previous actions in the same session should have already been
carried out, and the current action should not have already been performed in this session. Further, if the action is a send
action, then it is always intercepted by the intruder (who plays the role of the network—perhaps much more!), who
may later choose to pass it on to the intended receiver with or without modifications, and under any assumed name.
Thus only the intruder’s information state is updated on a send action.

A receive action by some agent is as a result of a send by the intruder, who is either sending the message on its own
or is relaying an earlier message sent by some other agent. Thus we require that the message actually be derivable
from all the messages that the intruder has learnt. Further the information state of the receiver of the message gets
updated. The condition on derivability of the message being communicated is crucial. We wish to consider all possible
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attack scenarios on the protocol, but if the model allowed the intruder to send arbitrary messages it would not be a
faithful modelling of intruder behaviour. Thus, while the communication capabilities of the intruder are very powerful,
its message generation capabilities is limited by the rules we presented in the previous subsection.

2.5. An alternative view of runs

It can be noticed that the only source of non-determinism in the transition system of a protocol is in guessing the
session of which the next action is part. Once we have determined the event with which the next action is associated,
the state update is deterministic. Thus we can with advantage view a run as given by a sequence of events. The relevant
definitions are given below.

The notions of an action enabled at a state, and update(s, a), the update of a state s on an action a, are defined as
follows:
• A send action a is always enabled at any state s.
• A receive action a is enabled at s iff term(a) ∈ sI .

• update(s, +(A, B, t))
def= s′ where s′

I = sI ∪ {t}, and for all agents C other than I, s′
C = sC .

• update(s, −(A, B, t))
def= s′ where s′

B = sB ∪ {t} and for all agents C other than B, s′
C = sC .

update(s, �) for a state s and a sequence of actions � is defined in the obvious manner.
Given a protocol Pr = {�1, . . . , �n} and a sequence � = e1 · · · ek of events of Pr, infstate(�) is defined to be

update(initstate(Pr), act(e1) · · · act(ek)).
Given a protocol Pr = {�1, . . . , �n}, a sequence e1 · · · ek of events of Pr is said to be an admissible sequence of

events of Pr iff the following conditions hold:
• for all i, j �k such that i �= j , ei �= ej ,
• for all i�k and for all e ≺ ei , there exists j < i such that ej = e,
• for all i�k, act(ei) is enabled at infstate(e1 · · · ei−1), and
• every nonce is uniquely originating in {e1, . . . , ek}.

Runs and admissible sequences of events are closely related. With every admissible sequence of events � = e1 · · · ek ,
we can associate the unique run run(�) = (E0, s0) a1 (E1, s1) a2 · · · ak (Ek, sk), where Ei = {e1, . . . , ei}, si =
infstate(e1 · · · ei), and ai = act(ei).

On the other hand, given a run � = (E0, s0) a1 (E1, s1) a2 · · · ak (Ek, sk), it is clear from the definition that
for every i : 1� i�k, there is a unique ei such that Ei = Ei−1 ∪ {ei}, and such that ai = act(ei). It is also clear
from the definition of infstate that for each i, si = infstate(e1 · · · ei). Thus, with every such run �, we can associate a
unique admissible sequence of events evseq(�) = e1 · · · ek , where each ei ∈ Ei \ Ei−1. The following proposition is
an immediate consequence of the definitions.

Proposition 2. For every run �, evseq(�) is an admissible sequence of events. For every admissible sequence � of
events, run(�) is a run. Further, for every run �, run(evseq(�)) = �, and similarly for every admissible sequence � of
events, evseq(run(�)) = �.

We find it convenient to work with admissible sequences of events rather than directly with runs. But in the rest of
the paper, we refer to them only as runs.

For any T ⊆ B, � is said to be a T-run if ei is a T-event for every i�k. It is said to be a well-typed run if ei is a
well-typed event for every i�k.

We say that � is a session of � if an event of the form (�, lp) occurs in �, for some lp. We let Sessions(�) denote the
set of all sessions of �.

2.6. Executable protocols

Consider a protocol which has the following role:

−(A, B, {x}public(C)); +(B, A, x).
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There is nothing in our definitions that disallows protocols with such roles, and we need to ask what the runs of this
protocol will look like. The above role can be performed to completion by B only if the instance of x in the first message
he receives is an m which is already known to B (due to some earlier message exchanges). This is because there is no
way B can decrypt the first message. Such a role can be performed to completion only by accident, as it were. In other
words, these protocols are not always executable.

We can easily define the notion of executability of protocols. A protocol Pr = {�1, . . . , �n} is executable if for each
of its roles � = a1 · · · a�, each send action ai of � is enabled at the state update(initstate(Pr), a1 · · · ai−1).

While executability is reasonable, we do not make this assumption in our model, mainly because our technical results
do not depend on it. However, most protocols arising in practice are executable in this sense.

3. A logic with session abstraction

3.1. Syntax

We assume a countable set SesNames of abstract session names. The set of formulae is given by a two-level syntax.
The session formulae are given by the following syntax (where A ∈ Ag, m ∈ N and a is an action):

�0 ::= A has m | �a | ¬� | � ∨ 	 | F� | P�.

The run formulae are given by the following syntax (where ses ∈ SesNames, m ∈ B, and � ∈ �0):

� ::= �@ses | m@ses = m′@ses′ | ¬
 | 
 ∨ � | (∃ses)
.

The duals of the modalities and quantifiers are defined in the standard manner: G�
def= ¬F¬�, H�

def= ¬P¬�, and

(∀ses)

def= ¬(∃ses)¬
.

The formula A has m means that the agent playing A’s role in the current session has the nonce (or session key, as
the case may be) standing for the abstract nonce name m in its database. The formula �a (where a is an action) means
that the current action in the current session is the action standing for a. F� means that there is a later event of the run
which also belongs to the same session as the current event, and in which � is true. G� means that at all later events
of the run which belong to the same session as the current event, � is true. P� and H� refer to the past and are the
analogues of F� and G�, respectively. The formula �@ses asserts that � holds at the beginning of the session named
by ses. The equality assertion m@ses = m′@ses′ states that the same basic term has been used to instantiate both m
in the session named by ses and m′ in the session named by ses′. The meaning of the quantified formulae (∃ses)
 and
(∀ses)
 is standard.

The set of all subformulae of a session formula � is denoted by sf (�), and the set of all subformulae of a run formula

 is denoted by sf (
). sf (�) is the least set of session formulae X such that � ∈ X, (¬	 ∈ X or F	 ∈ X or P	 ∈
X) ⇒ 	 ∈ X, and 	 ∨ 	′ ∈ X ⇒ {	, 	′} ⊆ X. Similarly sf (
) is the least set of run formulae X such that 
 ∈ X,
(¬� ∈ X or (∃ses)� ∈ X) ⇒ � ∈ X, and � ∨ �′ ∈ X ⇒ {�, �′} ⊆ X.

The set of terms referred to by 
, denoted by refterms(
), is defined as follows:

• refterms(�@ses)
def= {m@ses | A has m ∈ sf (�) for some A ∈ Ag}.

• refterms(m@ses = m′@ses′) def= {m@ses, m′@ses′}.
• refterms(¬
)

def= refterms(
).

• refterms(
 ∨ �)
def= refterms(
) ∪ refterms(�).

• refterms((∃ses)
)
def= refterms(
).

3.2. Semantics

We first present the semantics of session formulae. They are interpreted over sessions of a run. But actions of a
session do not occur consecutively in a run. Between two actions of a session, the other agents (or maybe the same
agent) engage in actions of other sessions, thus learning more terms. In particular, the knowledge of the intruder has
the potential to change between successive actions of a session. Moreover, this change is not completely determined
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by the current session under consideration. Thus, when we reason about a particular session, we need to consider the
context in which the session is played. This leads us to the following definition.

For a protocol Pr = {�1, . . . , �n} and one of its sessions � = (id, �, �), we define a �-scenario to be a sequence
� = s1 (�, 1) · · · sr (�, r) sr+1, where each si is an information state, r � |�|, and sr+1 = update(sr , act((�, r))).

Given a run � = e1 · · · ek of Pr (with ei = (�i , lpi ) and si = infstate(e1 · · · ei) for all i�k) and a session � of �,
we define ��� to be the sequence si1 ei1 · · · sir eir sir+1, where 1� i1 < · · · < ir �k and {i1, . . . , ir} = {j : 1�j �k |
�j = �}. Observe that ��� is a �-scenario.

Given a �-scenario � = s1 (�, 1) · · · sr (�, r)sr+1 (where � = (id, �, �) is a session of Pr), any i : 1� i�r + 1,
and a session formula �, we describe when it is the case that �, i � �.
• �, i � A has m iff m@� ∈ (si)A@�.
• �, i � �a iff i�r and �(i) = a.
• �, i � ¬� iff �, i /� �.
• �, i � � ∨ 	 iff �, i � � or �, i � 	.
• �, i � F� iff there exists j : i�j �r + 1 such that �, j � �.
• �, i � P� iff there exists j : 1�j � i such that �, j � �.

Run formulae are interpreted over runs of protocols equipped with a (session) assignment.An assignment is a function
assign which maps abstract session names to sessions of Pr. We say that assign is an assignment over � (where � is a
run of Pr) if assign(ses) is a session of � for every ses ∈ SesNames. For ease of notation, we sometimes say assignses
instead of assign(ses). For an assignment assign, abstract session names ses1, . . . , sesn ∈ SesNames, and sessions
�1, . . . ,�n of Pr, we define assign[ses1 := �1, . . . , sesn := �n], an update of the assignment assign, to be the
assignment assign′ such that

for all ses ∈ SesNames : assign′(ses) =
{

�i if ses = sesi (1� i�n),

assign(ses) if ses �= sesi for all i�n.

We say that an assignment is compatible with a run formula 
 if

for all m@ses ∈ refterms(
) : m ∈ N ⇒ assignses(m) ∈ N.

Given a run � = e1 · · · ek of Pr (with ei = (�i , lpi ) for all i�k), and an assignment assign over � which is compatible
with 
, we describe when it is the case that � �assign 
, for a run formula 
.
• � �assign �@ses iff ���, 1 � �, where � = assign(ses).
• � �assign m@ses = m′@ses′ iff m@assignses = m′@assignses′ .
• � �assign ¬
 iff � /�assign 
.
• � �assign 
 ∨ � iff � �assign 
 or � �assign �.
• � �assign (∃ses)
 iff there exists a session � of � such that � �assign[ses:=�] 
.
• We say that 
 is satisfiable over � if � �assign 
 for some assignment assign over � which is compatible with 
.
• We say that 
 is valid over � if � �assign 
 for all assignments assign over � which are compatible with 
.
• We say that 
 is Pr-satisfiable if it is satisfiable over some run � of Pr, and that it is Pr-valid if it is valid over all

runs � of Pr.
• We write Pr � 
 to denote the fact that 
 is Pr-valid.
• We say that Pr �wt 
 iff 
 is valid over all well-typed runs � of Pr.
• We say that Pr �T 
 for a fixed set T ⊆ B if 
 is valid over all T-runs � of Pr.
• We also denote by Pr �T

wt 
 the fact that 
 is valid over all well-typed T-runs � of Pr.
Observe that the meaning of the quantified formula (∃ses)
 is given in terms of the sessions occurring within only one
run. This might appear a little weak, since runs are of finite length and only finitely many sessions can occur in a run.
But in fact, it is quite powerful. For instance, (∃ses)(� ∧ A has m)@ses asserts the occurrence of a session satisfying
� in a context where A has learnt the secret m. This is a nontrivial assertion about the causal past of the session, and its
truth varies depending on the run and the context in which the session appears.

Further, even though it appears that (∃ses)
 is equivalent to a disjunction of simpler formulae when considered in
the context of a single run, we cannot simply eliminate the quantifier when we consider the problem of whether all runs
of a protocol satisfies the formula. For that, we have to prove that the general problem reduces to a restricted version
where we only consider runs whose sessions come from a fixed finite set of sessions. We handle this in later sections.
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3.3. Properties of the Needham–Schroeder protocol

We now see how to state several desirable properties of the Needham–Schroeder protocol in our logic. Since �(I ) = I

for all substitutions �, I@� = I for all sessions � of a protocol Pr. This allows us to say I instead of I@ses in all the
formulae which follow. Recall that the initiator role �1[A, B, x, y] is given by

+(A, B, {A, x}public(B)); −(B, A, {x, y}public(A)); +(A, B, {y}public(B)),

and that the responder role �2[A, B, x, y] is given by

−(A, B, {A, x}public(B)); +(B, A, {x, y}public(A)); −(A, B, {y}public(B)).

We denote the actions of the initiator role by i1, i2, i3, and the actions of the responder role by r1, r2, r3.
We introduce the following abbreviations to improve the readability of the example formulae. For session formulae

� and 	, and abstract session names ses and ses′:
• (¬�)@ses

def= ¬(�@ses).

• (� ∨ 	)@ses
def= �@ses ∨ 	@ses.

• (A �= I )@ses
def= ¬(A@ses = I ).

• For a sequence of terms t1, . . . , tn, (t1, . . . , tn) = @(ses, ses′) def= ∧
i �n

(ti@ses = ti@ses′).

An important property that we desire of this protocol is secrecy. There are two desirable secrecy requirements in this
case. Secrecy for the initiator says that all fresh nonces that are instantiated for x and not intended for the intruder are
not leaked to the intruder. It is expressed by the following formula:

secrecyinit
def= (∀ses)((B �= I ) ⊃ G(�i1 ⊃ G¬(I has x)))@ses.

Secrecy for the responder says that all fresh nonces that are instantiated for y and are not intended for the intruder
are not leaked to the intruder. A simple way to express it is the following:

secrecyresp
def= (∀ses)((A �= I ) ⊃ G(�r2 ⊃ G¬(I has y)))@ses.

Authentication for the initiator says that every nonce received by the initiator purportedly from an honest agent is
actually sent by the corresponding honest agent in the past, intended for initiator.

(∀ses)[(B �= I ∧ F�i2)@ses ⊃ (∃ses′)[(A, B, x, y) = @(ses, ses′) ∧ (F�r2)@ses′]].
Authentication for the responder says something similar for the responder.

(∀ses)[(B �= I ∧ F�r3)@ses ⊃ (∃ses′)[(A, B, x, y) = @(ses, ses′) ∧ (F�i3)@ses′]].

4. Facts about message derivations

The main result of this paper is that the problem of checking whether a run formula is true in all runs of a given
tagged protocol is decidable. Crucial to the decidability result is an analysis of the message generation capabilities of
the intruder, and an analysis of some weaker proof systems for generating messages in the case of tagged protocols.
In this section, we present some basic results on the proof systems for message generation.

The first important property that we observe is that the problem of deciding whether t ∈ T for a given set of terms
T ∪ {t} is decidable in polynomial time (see [36], for instance).

The derivation system presented in Fig. 1 allows “non-normal” derivations like the following:

Ax{t} � t
Ax{t} � t
pair.{t} � (t, t)

split{t} � t

The possibility of such derivations makes it much harder to analyse proofs structurally. Hence we would like to transform
any proof into a proof that does not involve such a “non-normality”.
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Fig. 3. Alternative proof system.

For some of the technical results of the later sections, analysing proofs ending with a synth-rule is far simpler than
analysing those ending with an analz-rule. Specifically, we will find it much easier to analyse applications of the
decrypt rule if the principal premise (the premise of the form T � {r}r ′ ) is got by the application of an analz-rule and the
non-principal premise (the premise of the form T � inv(r ′)) is got by the application of a synth-rule. This also implies
that when we use the term (t, t ′) to decrypt {r}(t,t ′), and when (t, t ′) itself is derived by an analz-rule, we would like
to first split it into t and t ′ and then pair them up to get (t, t ′) by a synth-rule, and only then use it to decrypt {r}(t,t ′).
Fortunately, we can always transform any arbitrary derivation to such “normal” derivations.

Rather than work with the same derivation system, we find it more convenient to introduce a new derivation system,
which will allow only normal proofs of the kind mentioned above. Further, it is equivalent to the old system. The new
system involves two kinds of sequents: T �a t and T �s t . The rules are given in Fig. 3.

It is quite easy to see that whenever there is a proof of T �s t there is also a proof of T � t . The converse also holds,
as stated by the following proposition, whose proof is presented in the Appendix.

Proposition 3. If there is a proof � of T � t then there is a proof �′ of T �s t .

This normalisation result is not new. In fact, it is a basic result in the context of natural deduction for propositional
logic [16]. In the context of security protocols, essentially the same proof (presented in different formalisms) can be
found in [9,36,26,19]. The proofs in [26,19] assume atomic keys, but the results are easily generalisable.

The following two properties follow from an easy induction on proofs.

Proposition 4. If T �a t is derivable then t ∈ ST(T ).

Proposition 5. Suppose � is a proof of T �s t . For every term r occurring in �, r ∈ ST(T ∪ {t}).

Proposition 6. For any set of terms T and any term t, if t ∈ ST(T ) then either t ∈ ST(T ) or t ∈ T .

The proof can be found in the Appendix.

5. Decidability

In this section, we prove the main theorem of the paper.

Theorem 7. The problem of checking whether Pr �T 
 for a given tagged protocol Pr, a given finite set T ⊆ B, and
a run formula 
 is decidable.
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For the rest of the section, we fix a tagged protocol Pr = {�1, . . . , �n}, a finite set T ⊆ B, and a run formula 
0.
We first observe that the set of T-runs of Pr is infinite. So we need a way of reducing the given problem to that of
checking the truth of 
0 over a finite set of runs. Usually in modal logics, this is done by some kind of filtration
argument, in which we define an equivalence relation of finite index on runs such that the logic cannot distinguish
between two equivalent runs.

We do something similar here. Let us first observe that since we are considering T-runs for a fixed finite T, the major
source of unboundedness is non-atomic substitutions. If not for them, the space of terms used in T-runs will be finite,
and we get a decision procedure. Therefore, one of the ways of obtaining decidability is to prove that every run is
equivalent to a well-typed run (in the sense that either both satisfy 
0 or neither of them satisfies 
0). In essence, every
formula 
 defines an equivalence relation on T-runs of finite index, namely the equivalence relation which equates two
runs exactly when they satisfy the same subformulae of 
. Moreover, every equivalence class of this relation contains
a canonical representative, which is a well-typed T-run. Thus the original problem can be reduced to the problem of
checking whether all well-typed T-runs of Pr satisfy 
0.

The reduction to well-typed runs brings us close to decidability, but it does not go all the way. Even though any
well-typed T-run of Pr is of bounded length (the bound depending only on the sizes of Pr, T, and 
0), the set of session
identifiers used in well-typed T-events is not finite, and thereby the set of well-typed T-runs is infinite.

Fortunately, this is easily handled. Let us say that L is a bound on the length of well-typed T-runs. We observe that
a run of length L cannot have more than L sessions, and further that we can rename each distinct session identifier
occurring in a run with a distinct session identifier between 1 and L, while still obtaining a run which satisfies the
same formulae as the original run. (This is because the only role played by the session identifiers is to distinguish two
sessions, and a fixed finite pool of session identifiers suffices to play the same role.) The set of well-typed T-runs which
use only these session identifiers is finite. Thus we can reduce the original problem to one of checking the truth of 
0
for a finite set of runs. Moreover, this set of runs can be computed given Pr and T.

Thus we only have to look at the problem of checking the truth of a run formula over a given finite run.
The nontrivial case to handle is that of the quantifiers. This can be presented as quantifier elimination, as detailed
below. Let {�1, . . . ,�K} be the set of all sessions that use the session identifiers between 1 and L. We fix the set of
new session names {ses1, . . . , sesK}, which are not used in 
0. We now translate the given formula by replacing each
existential quantifier by a disjunction over the above session names. We then prove that for every well-typed run �
which has only the above sessions, 
0 is true in � under an assignment assign iff its translation is true in � under a
related assignment assign′. We make these ideas precise below.

For a given run formula 
, the set of session names occurring in 
, denoted by sn(
), is defined as follows,
by induction:

• sn(�@ses)
def= {ses}.

• sn(m@ses = m′@ses′) def= {ses, ses′}.
• sn(¬
)

def= sn(
).

• sn(
 ∨ �)
def= sn(
) ∪ sn(�).

• sn((∃ses)
)
def= sn(
) ∪ {ses}.

For abstract session names ses, ses1 and ses2, we define ses[ses1 := ses2] as follows:

ses[ses1 := ses2] def=
{

ses2 if ses = ses1,

ses otherwise.

Given a run formula 
, and two abstract session names ses1 and ses2, we define 
[ses1 := ses2], the replacement of
ses1 by ses2 in 
, as follows, by induction:

• (�@ses)[ses1 := ses2] def= �@(ses[ses1 := ses2]).
• (m@ses = m′@ses′)[ses1 := ses2] def= m@ses3 = m′@ses4, where ses3 = ses[ses1 := ses2] and ses4 =

ses′[ses1 := ses2].
• (¬�)[ses1 := ses2] def= ¬(�[ses1 := ses2]).
• (� ∨ �′)[ses1 := ses2] def= �[ses1 := ses2] ∨ �′[ses1 := ses2].
• ((∃ses)�)[ses1 := ses2] def=

{
(∃ses)� if ses = ses1,

(∃ses)(�[ses1 := ses2]) otherwise.
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Let S = {ses1, . . . , sesn} be a finite set of abstract session names, and let 
 be a run formula such that sn(
) ∩ S = ∅.
We define (�)#

S for all � ∈ sf (
) as follows, by induction:

• (�@ses)#
S

def= �@ses.

• (m@ses = m′@ses′)#
S

def= m@ses = m′@ses′.
• (¬�)#

S

def= ¬(�#
S).

• (� ∨ �′)#
S

def= (�)#
S ∨ (�′)#

S .

• ((∃ses)�)#
S

def= (�#
S)[ses := ses1] ∨ · · · ∨ (�#

S)[ses := sesn].

Lemma 8. Suppose Pr is a protocol, and {�1, . . . ,�n} is a finite set of sessions. Fix a set of abstract session names

S = {ses1, . . . , sesn}. Let assign′ def= assign[ses1 := �1, . . . , sesn := �n].
For all runs � such that Sessions(�) = {�1, . . . ,�n}, all run formulae 
 such that sn(
) ∩ S = ∅, and all session

assignments assign over � which are compatible with 
,

� �assign 
 iff � �assign′ 
#
S.

The proof of the above lemma is presented in the Appendix.
To continue with the proof of the main theorem, fix a particular well-typed run � of Pr. Let Sessions(�) =

{�i1 , . . . ,�in}, where 1� ij �K , for all j : 1�j �n. Let S = {sesi1 , . . . , sesin}. We let 
�
def= 
#

S and assign�
def=

assign[sesi1 := �i1 , . . . , sesin := �in ]. Note that 
� and assign� can be effectively computed for any well-typed
T-run �. Since sn(
) ∩ S = ∅, it follows from Lemma 8 that � �assign 
 iff � �assign�


�.
This completes the proof of decidability, pending details of the reduction to well-typed runs.

5.1. Reduction to well-typed runs

We now outline the reduction of the original problem to that of checking whether every well-typed T-run of Pr
satisfies 
0. We do this by associating to every T-run � of Pr a so-called normal run �norm (which is a well-typed T-run
of Pr) such that 
0 is true of � iff it is true of �norm.

The most obvious manner in which we can associate a well-typed run to a given run is to replace each event of the
given run by a corresponding well-typed event, which is got by using a corresponding well-typed substitution instead
of the ill-typed substitution used in the original event. The “corresponding” well-typed substitution is got as follows:
whenever the original substitution maps a nonce to a non-nonce, map it instead to a fixed nonce (n0, say). More formally,
fix a nonce n0 not used in the specification of Pr, and assume without loss of generality that n0 belongs to initstate(Pr).
For any substitution �, we define �wt as follows:

for all x ∈ B : �wt(x)
def=

{
�(x) if �(x) ∈ B,

n0 otherwise.

For any session � = (id, �, �), we define �wt to be (id, �, �wt). For any event e = (�, lp), ewt is defined to be
(�wt, lp), and for any sequence of events � = e1 · · · ek , �wt is defined to be (e1)wt · · · (ek)wt.

We could choose �wt as our “normal run” �norm, except for a technical hurdle. It need not be a run, because it
can happen that for two different events e and e′ occurring in �, ewt = e′

wt. Thus there would be repetition of events
in �wt. But this is easily handled. We can define �norm to be the subsequence of � got by retaining only the earliest
occurrence of each event, and we can show that �wt and �norm satisfy the same formulae. These details are given in the
Appendix.

Meanwhile, we will show that �wt is a pseudo-run of Pr (a sequence of events that satisfy all the conditions of runs
except unique occurrence of events), and that it satisfies the same formulae as �.

Theorem 9. Suppose � = e1 · · · ek is a run of Pr. Then �wt is a pseudo-run of Pr.

The proof of this is in fact the most non-trivial of all. The main thing is to check that all the events of �wt are enabled
at the points where they occur. The nontrivial part here is to check that whenever the intruder generates and sends a
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message t in the original run, the corresponding well-typed message can be generated by the intruder in the well-typed
run. The point to remember is that the messages the intruder has learnt at a point in �wt are the well-typed counterparts
of the messages learnt at the same point in the original run. We prove this fact by an inductive construction of message
derivations. Buried deep in this proof is the assumption of tagging. Basically it is used to prove that whenever a non-
nonce is used instead of a nonce at some point, then in fact it has been generated by the intruder at that point, and it is
not the case that this is an accidental unification with an instance of an unrelated message sent by some honest agent.
Some of the steps of the inductive construction of message derivations crucially depends on this property. The details
of the proof are found in the Appendix.

The next lemma requires a preliminary definition:
Fix a protocol Pr = {�1, . . . , �n} and a run � = e1 · · · ek of Pr, with ei = (�i , lpi ) for every i�k. Con-

sider �wt = (e1)wt · · · (ek)wt. Let us denote infstate(e1 · · · ei) by si , and infstate((e1)wt · · · (ei)wt) by s′
i . It is clear

that whenever � is a session of �, �wt is a session of �wt. Let assignwt be the session assignment defined as
follows:

for all ses ∈ SesNames : assignwt(ses) = �wt, where assign(ses) = �.

Lemma 10.
(1) For all session formulae �, all sessions � = (id, �, �) of � such that m@� ∈ N for all formulae of the form

A has m ∈ sf (�), and all j : 1� i� |�|: ���, j � � iff �wt��wt, j � �.
(2) For all run formulae 
, and all session assignments assign over � which are compatible with 
, � �assign 
 iff

�wt �assignwt

.

Proof.
(1) We prove the lemma by an induction on the structure of �. For ease of notation, we let �′ denote �wt, � denote ���

and �′ denote �wt��wt. We assume that � = si1ei1 · · · sir eir sir+1 and �′ = s′
i1
e′
i1

· · · s′
ir
e′
ir
s′
ir+1. Note that events of

� with session identifier id get mapped to events of �wt with the same session identifier. So �′ is of the form stated
above. We present the only nontrivial case. The rest of the cases follow directly either from the definitions or from
the induction hypothesis.
• Suppose � is of the form A has m. Then �, j � A has m iff m@� ∈ (sij )A@�. If we prove that this is equivalent

to saying that m@�′ ∈ (s′
ij
)A@�′ , we are through. This is so because the last statement is the same as saying that

�′, j � A has m. We postpone the proof of the fact that for all i, j �k, for all agents A, and for all m ∈ N

such that �i (m) ∈ N , �i (m) ∈ (sj )A iff �′
i (m) ∈ (s′

j )A.
(2) We prove this by induction on run formulae. We only present some representative cases.

• Suppose 
 is of the form �@ses. Let assign(ses) = �. Clearly assignwt(ses) = �wt. Then � �assign 
 iff
���, 1 � � iff �wt��wt, 1 � � iff �wt �assignwt


.
• Suppose 
 is of the form m@ses = m′@ses′. Let assign(ses) = � and assign(ses′) = �′. Then � �assign 
 iff

m@� = m′@�′ iff (using the fact that assign is compatible with 
) m@�wt = m′@�′
wt iff �wt �assignwt


.
• Suppose 
 is of the form (∃ses)�. We first observe that (assign[ses := �])wt = assignwt[ses := �wt].

Then � �assign 
 iff there exists a session � of � such that � �assign[ses:=�] � iff (by induction hypothesis)
�wt �assignwt[ses:=�wt] � iff �wt �assignwt


. �

We are left with proving the statement on which the base case of the above proof hinges. We split it into two
statements, one for the honest agents and one for the intruder.

Lemma 11. For all i, j �k, for all honest agents A, and for all m ∈ N such that �i (m) ∈ N , �i (m) ∈ (sj )A iff

�′
i (m) ∈ (s′

j )A.

The proof of this is straightforward, and we omit it. The message derivation system for the honest agents is simple to
analyse. We are assuming that the honest agents receive typed terms which indicate the substitution, so they do not need
to perform any nontrivial unification. Thus it can be easily seen that the behaviour of such honest agents is impervious
to the actual substitution being used.
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Lemma 12. For all i, j �k and for all m ∈ N such that �i (m) ∈ N , �i (m) ∈ Tj iff �′
i (m) ∈ T ′

j .

The proof of this is a bit more involved than the above, and is given in the Appendix.

6. Discussion

We have presented a logic for describing properties of security protocols and shown that the verification problem for
tagged protocols is decidable when only finitely many nonces are assumed. The expressiveness of the logic is limited
but many interesting security properties can be expressed in this logic.

Many natural questions arise in the context of such a decidability result. Firstly, how limiting is the assumption
about finite nonces and the restriction to tagged protocols? The former points to a limitation of the analysis pre-
sented here rather than any inherent problem, and we believe that the result in fact holds without the assumption
of finite nonces, though the proof is elusive as yet. The latter is more crucial since the techniques work for a sub-
class of security protocols. This raises the question of deciding whether a given protocol is “taggable” or not, while
preserving a security property 
 stated in the logic. In fact, it can be shown that for any executable protocol one
can find an “equivalent” tagged protocol such that any honest run of the original protocol (one not involving in-
truder actions) is also a run of the tagged protocol, and further for any run of the tagged protocol which violates
secrecy, there is a run of the original protocol which also violates secrecy. It is to be explored whether this gen-
eralises to other properties specifiable in the logic. Another related question is whether the logic contains formu-
lae that separate tagged protocols from untagged ones. Clearly, it would be much nicer to use syntactic devices
in the logic using which attention could be restricted to a subclass of protocols. These are interesting issues not
answered here.

Some other questions that arise relate to the models themselves. Though we have presented a transition system
model and used runs (paths) in the system, the analysis works with a notion akin to causal dependencies. For instance,
two send actions by distinct agents can occur in any order and even the intruder cannot distinguish one ordering from
another. Thus, formulae are “trace consistent”, in the sense that they cannot distinguish between runs which differ only
in reordering causally independent event occurrences. While we have not set up the formalism for proving such results,
this can be done. What would be more interesting is an investigation of attacks that can be found in a “truly concurrent”
model but missed by an interleaving model.

The most important limitation of this exercise is the lack of a deduction system. Clearly abstract descriptions of
security properties in themselves do not constitute a logic, and we need to present inference mechanisms which clarify
how agents (in particular, the intruder) learn secrets. An axiomatisation of a deductive notion of the form Pr � 
 which
is complete with respect to the semantic notion M(Pr) � 
 is very much needed.

We end with another observation on the general nature of protocol verification based on formal (Dolev–Yao)
models. It is that the verification certificates are inherently probabilistic, because there is always the possibility of
someone guessing keys. This aspect is hidden inside the model, when we assume unguessability of nonces
and keys.
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Appendix A. Some facts about message derivations

In this section, we present some of the proofs for the statements in Section 4.

Proposition 13. If there is a proof of T �a t there is also a proof of T �s t .

Proof. Suppose � is a proof of T �a t . Let {t1, . . . , tN } be the set of all subterms of t such that for all i : 1� i�N , ti is
not a pair and ti occurs unencrypted in t. Then it is clear that each of the ti’s is derivable from t using only a sequence
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of applications of the split′ rule. Hence the following is a valid proof of T �s t :

(�)

...

T �a t
sequence of splits

T �a t1promote
T �s t1 · · ·

(�)

...

T �a t
sequence of splits

T �a tN promote
T �s tN

sequence of pairings �
T �s t

Proposition 14. If there is a proof � of T � t then there is a proof �′ of T �s t .

Proof. Suppose � is a proof of T � t . We prove by induction that for all subproofs 
 2 of � with root T � r , there is a
proof of T �s r . Further if 
 ends with an analz-rule and is a minimal proof 3 of T � r , then T �a r .

Consider any subproof 
 of � with root labelled T � r . Suppose it ends with a synth-rule, and suppose T � r1 and
T � r2 are the premises of the last rule. Then T �s r1 and T �s r2 by induction hypothesis, whence T �s r also follows.

Now suppose it ends with an analz-rule. We will assume the (strengthened) induction hypothesis for all proper
subproofs of 
, and prove it for 
. We need to consider the following cases. In each case, we will show that T �a r .
By Proposition 13, it follows that T �s r .
• Suppose 
 is of the following form:

Ax.
T � r

Then it is clear that r ∈ T and therefore the following is a proof of T �a r .
Ax′

T �a r

• Suppose 
 is of the following form:
(
1)

...

T � (r, r ′)
split1.

T � r
If T � r occurs in 
1, then of course T �s r is derivable, by induction hypothesis. Further, if there is a minimal proof of
T � r that occurs as a subproof of 
1 and ends with an analz-rule, then T �a r as well, again by induction hypothesis.

If T � r does not occur in 
1 then consider a minimal proof 
2 of T � (r, r ′) occurring as a subproof of 
1.
Suppose 
2 ends with a synth-rule. This means that the premises of the last rule in 
2 are T � r and T � r ′. But this
is a contradiction, since we are considering the case when T � r does not occur in 
1. Therefore 
2 ends with an
analz-rule, and hence by induction hypothesis there is a proof 
′

2 of T �a (r, r ′). Now the following is a proof of
T �a r .

(
′
2)

...

T �a (r, r ′)
split′1

T �a r

• Suppose 
 is of the following form:

(
1)

...

T � {r}r ′

(
2)

...

T � inv(r ′)
decrypt

T � r

2 This is a variant of �, and not of �. We can read it as varpi.
3 A minimal proof of T � r is a proof of T � r , none of whose proper subproofs is a proof of T � r .
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If T � r occurs in 
1, then of course T �s r is derivable, by induction hypothesis. Further, if there is a minimal proof of
T � r that occurs as a subproof of 
1 and ends with an analz-rule, then T �a r as well, again by induction hypothesis.

If T � r does not occur in 
1 then consider a minimal proof 
3 of T � {r}r ′ occurring as a subproof of 
1.
Suppose 
3 ends with a synth-rule. This means that the premises of the last rule in 
3 are T � r and T � r ′. But this
is a contradiction, since we are considering the case when T � r does not occur in 
1. Therefore 
3 ends with an
analz-rule, and hence by induction hypothesis there is a proof 
′

3 of T �a {r}r ′ .
Let us now consider 
2. If it ends with a synth-rule, then we have already proved that T �s inv(r ′). If it ends with

an analz-rule, then T �a inv(r ′) by induction hypothesis. By Proposition 13 there is a proof 
′
2 of T �s inv(r ′). Now

the following is a proof of T �a r:

(
′
3)

...

T �a {r}r ′

(
′
2)

...

T �s inv(r ′)
decrypt′ �

T �a r

Proposition 15. For any set of terms T and any term t, if t ∈ ST(T ) then either t ∈ ST(T ) or t ∈ T .

Proof. For any term of the form (r, r ′) or {r}r ′ , we say that r and r ′ are its immediate subterms. We now observe that
t ∈ ST(T ) iff there exists a sequence of terms t1, . . . , tn such that t1 ∈ T , tn = t and for all i : 1� i < n, ti+1 is an
immediate subterm of ti .

We now prove by induction that ti ∈ ST(T ) ∪ T for all i�n. The base case is trivial, since t1 ∈ T . The induction
case hinges on the following observation:

If (t, t ′) ∈ ST(T ) ∪ T or {t}t ′ ∈ ST(T ) ∪ T , then {t, t ′} ⊆ ST(T ) ∪ T .

To prove this, we first note that if (t, t ′) ∈ ST(T ) or {t}t ′ ∈ ST(T ) then {t, t ′} ⊆ ST(T ). If (t, t ′) ∈ T then clearly
{t, t ′} ⊆ T . If {t}t ′ ∈ T , then consider a minimal proof � of T � {t}t ′ . Either � ends with an analz-rule, in which case
T �a {t}t ′ is derivable, whence it follows from Proposition 4 that {t}t ′ ∈ ST(T ) (and hence {t, t ′} ⊆ ST(T )); or it ends
with a synth-rule, in which case t and t ′ occur as premises of the last rule of �, whence {t, t ′} ⊆ T . �

Appendix B. Proof of quantifier elimination

In this section, we prove the lemma on quantifier elimination. To prove it, we need the following useful relationship
between replacements in formulae, and updates of assignments, whose proof is a straightforward induction using the
definitions.

Proposition 16. For all runs � of a protocol Pr, all run formulae 
, all assignments assign over � compatible with 
,
and any two abstract session names ses1 and ses2, we have the following:

� �assign 
[ses1 := ses2] iff � �assign[ses1:=assign(ses2)] 
.

In words, what the above proposition says is that � satisfies a replacement of the formula 
 under an assignment iff
it satisfies 
 under the corresponding updated assignment.

Lemma 17. Suppose Pr is a protocol, and {�1, . . . ,�n} is a finite set of sessions. Fix a set of abstract session names

S = {ses1, . . . , sesn}. Let assign′ def= assign[ses1 := �1, . . . , sesn := �n].
For all runs � such that Sessions(�) = {�1, . . . ,�n}, all run formulae 
 such that sn(
) ∩ S = ∅, and all session

assignments assign over � which are compatible with 
,

� �assign 
 iff � �assign′ 
#
S.

Proof. We prove the claim by induction for all subformulae � of 
. We present the more interesting cases of the
induction.
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• Suppose � is of the form �@ses. Since ses ∈ sn(
), ses /∈ S, and so assignses = assign′
ses and �#

S = �. Thus,
� �assign � iff � �assign′ �#

S .
• Suppose � is of the form m@ses = m′@ses′. Since ses, ses′ ∈ sn(
), ses /∈ S and ses′ /∈ S. Hence assignses =

assign′
ses, assignses′ = assign′

ses′ , and �#
SesNames = �. Thus � �assign � iff � �assign′ �#

S .
• Suppose � is of the form (∃ses)�′. Let assigni denote (assign[ses := �i])[ses1 := �1, . . . , sesn := �n].

Suppose � �assign �. Then there exists a session �i of � such that � �assign[ses:=�i ] �
′. But then by induc-

tion hypothesis � �assigni (�′)#
S . Since ses ∈ sn(
), ses /∈ S, and hence assigni = assign′[ses := �i]. Thus,

� �assign′[ses:=�i ] (�
′)#

S . This implies, by Proposition 16, that � �assign′ (�′)#
S[ses := sesi]. This immediately implies

that � �assign′ �#
S .

Suppose, on the other hand, that � �assign′ �#
S . This means that for some i : 1� i�n, � �assign′ (�′)#

S[ses := sesi].
But then, by Proposition 16, this implies that � �assign′[ses:=�i ] (�

′)#
S . As we have already observed, assigni =

assign′[ses := �i], and hence � �assigni (�′)#
S . By induction hypothesis, we now have � �assign[ses:=�i ] �

′, and this
implies that � �assign �. �

Appendix C. Reduction to well-typed runs

We restate Theorem 9 below, and prove it in the rest of the section.

Theorem 18. Suppose � = e1 · · · ek is a run of Pr. Then �wt is a pseudo-run of Pr.

Let � = e1 · · · ek be a run of Pr, with ei = (�i , lpi ) and �i = (idi , �i , �i ) for each i�k. For notational ease, we
let �′

i denote (�i )wt, �′
i denote (�i )wt, e′

i denote (ei)wt, and �′ denote �wt. It is easy to see that the unique origination
property holds in �′. So the only nontrivial thing is to show that for all i�k such that act(e′

i ) is a receive action, act(e′
i )

is enabled at infstate(e′
1 · · · e′

i−1).
For ease of notation, we use the following: For i : 0� i�k, we let gi denote term(�i (lpi )), ti denote �i (gi), and

t ′i denote �′
i (gi). T0 denotes (initstate)I , Gi denotes T0 ∪ {g1, . . . , gi}, Ti denote T0 ∪ {t1, . . . , ti}, and T ′

i denote
T0 ∪ {t ′1, . . . , t ′i }.

We first define the notion of origination of a term, in the context of a run. We say that a term originates at i�k in �
iff t ∈ ST(Ti) \ ST(Ti−1).

Lemma 19. Suppose ei is a send event and there exists x ∈ ST(gi) ∩ B such that �i (x) is not in B. Then i > 1 and
there exists j � i such that x ∈ ST(gj ) ∩ B and �i (x) = �j (x).

Proof. Since �(x) /∈ B, we conclude from the definition of runs that x does not originate at lpi in �i . But this means
that there is lp < lpi such that x ∈ ST(�i (lp)). Thus there is an event j < i such that (�j , lpj ) = (�i , lp). Clearly
�i = �j , and hence �i (x) = �j (x). Of course x ∈ ST(gj ) ∩ B. �

Lemma 20. Suppose a term t originates at i and ei is a receive. Then t ∈ Ti−1, and further, if t = {u}u′ then
{u, u′} ⊆ Ti−1.

Proof. Since ei is a receive event it is clear that ti ∈ Ti−1. But t ∈ ST(ti), so t ∈ ST(Ti−1). But then t ∈ ST(Ti−1)∪Ti−1,
from Proposition 6. But t originates at i and so t /∈ ST(Ti−1), and therefore t ∈ Ti−1. Further no proof of Ti−1 � t can
end with an analz-rule, since t is not a subterm of Ti−1. This means that if t = {u}u′ , it has to be constructed using a
synth-rule at the end, which implies that both u and u′ belong to Ti−1 as well. �

Lemma 21. If �i (x) is not in B for some i�k and x ∈ ST(gi) ∩ B, then �i (x) ∈ Ti−1.

Proof. We prove this by induction on i.
The base case is when i is 1. Suppose there exists x ∈ ST(g1) ∩ B such that �1(x) is not in B. It follows from

Lemma 19 that e1 is not a send. Thus it is a receive and �1(x) originates at 1 (since T0 consists entirely of names).
Hence by Lemma 20 it follows that �1(x) ∈ T0.
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Let us now consider the case when i is greater than 1. There are two cases to be considered:
ti is a send message: In this case it easily follows from Lemma 19 that there is a j < i such that x ∈ ST(gj ) ∩B and

�i (x) = �j (x). By induction hypothesis �j (x) ∈ Tj−1. From this it follows that �i (x) ∈ Ti−1.
ti is a receive message: Let us first note that ti ∈ Ti−1. If x occurs unencrypted in gi then �i (x) ∈ Ti−1. (Here we

make crucial use of the fact that ill-typed substitutions are disallowed in “key positions”. If we allowed them, then
one can concoct examples which falsify the above statement.) If not, then let {u}u′ be a minimal encrypted subterm
of gi which contains x as a subterm. If �i ({u}u′) originates at i then it is immediate from Lemma 20 that �i (u), and
hence �i (x) (since x occurs unencrypted in u), is in Ti−1.
If �i ({u}u′) does not originate at i, let it originate at j < i. There are again two cases to consider:

tj is a receive message: By Lemma 20 it immediately follows that �i ({u}u′), as well as �i (u), are in Tj−1. But x
occurs unencrypted in u and hence �i (x) belongs to Tj−1 as well. From this it is immediate that �i (x) belongs to
Ti−1.

tj is a send message: Now it cannot be the case that �i ({u}u′) ∈ ST(�j (y)) for some y ∈ ST(gj )∩B, since then the
nonatomic term �j (y) would be originating at the send event ej , contradicting Lemma 19. Therefore there exists
{w}w′ ∈ ST(gj ) such that �i ({u}u′) = �j ({w}w′). It then follows that {u}u′ = {w}w′ , by Proposition 1, which is
an immediate consequence of the tagging scheme we use. But then �i (x) is the same as �j (x), which belongs to
Tj−1 by induction hypothesis. From this it follows that �i (x) ∈ Ti−1. �

We are on our way to proving that for all i�k: if e′
i is a receive event then t ′i ∈ T ′

i−1. The key property to be proved

is that if �i (t) ∈ Tj for some t ∈ ST(Pr), then �′
i (t) ∈ T ′

j . This is quite tricky because of the nontrivial information
transfer between sessions of the protocol. For instance, suppose there are two terms u1 = ({x}y, p) and u2 = z in
ST(Pr), and two substitutions �1 and �2 suitable for Pr such that �1(u1) = �2(u2). Clearly we need to replace �2 with
a well-typed substitution �′

2. But notice that while {�2(u2)} � �1(u1), it might not be the case that {�′
2(u2)} � �′

1(u1).
Thus we need to make a finer analysis of the intruder derivations. In particular, we need to consider the “type” of each
term, and replace it by n0 only when it is nonatomic and it is typed as an atomic term. The rest of the section introduces
a system of typed derivations, and uses it to prove the desired result.

C.1. Typed proofs for the intruder

We introduced typed terms and sequents in the context of deduction rules for the honest agents. While that is part of
the model, what we are about to present is a device to prove decidability. We introduce the notion of typed proofs for
the intruder, and prove that for tagged protocols any message that can be derived by the intruder at all can be derived
using a typed proof (even though typed proofs are more restrictive in general). The use of typed proofs simplifies the
proof that �′

i (t) ∈ T ′
j whenever �i (t) ∈ Tj . A typed term is of the form t :(�, u) where t is any term, � is a substitution,

and u is a term such that t = �(u). A typed term t :(�, u) is said to be top-level matching if t is a nonce iff u is. A typed
sequent is either of the form T �a t : (�, u) or of the form T �s t : (�, u), where T ∪ {t : (�, u)} is a set of typed terms.
We introduce a deduction system for deriving typed sequents, in Figs. C.1 and C.2.

Fig. C.1. Typed analz-rules.
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Fig. C.2. Typed synth-rules.

For ease of presentation we introduce the following notation. We let �id denote the identity substitution, and we
define Pi as follows:

Pi
def= {t :(�id, t) | t ∈ T0} ∪ {tj :(�j , gj ) | 1�j � i}.

The next step is to show that for tagged protocols, the deduction system of Figs. C.1 and C.2 is as powerful as the
original deduction system of untyped proofs.

Lemma 22. Consider any Ti and any term t ∈ Ti \ Ti−1.
If Ti �a t , then there is u ∈ ST(Gi) and i′ � i such that t :(�i′ , u) is top-level matching and Pi �a t :(�i′ , u).
Further, whenever Ti �s t , it is also the case that Pi �s t :(�, w) for all � and w such that t = �(w).

Proof. Fix a Ti and a term t ∈ Ti \ Ti−1.
Consider a proof � of Ti �s t such that all subproofs 
 of � satisfy the following property: If the root of 
 is labelled

Ti �a r then 
 contains leaves with labels only from Tj (where j is least such that Tj �a r is derivable), and if the
root of 
 is labelled Ti �s r then 
 contains leaves with labels only from Tj (where j is least such that Tj �s r is
derivable).

We prove the claim for all subproofs 
 of �, thus proving it for � as well.
• Suppose 
 is the following proof:

Ax′
Ti �a t

Then it is clear that t ∈ Ti and t /∈ Tj for all j < i. If i = 0 we can choose u to be t itself, otherwise we can choose
u to be gi . It is clear that t :(�i , u) is top-level matching. The following is a proof of Pi �a t :(�i , u).

Ax′
Pi �a t :(�i , u)

• Suppose 
 is the following proof:

(
1)

...

Ti �a (t, t ′)
split′1

Ti �a t

It is clear that (t, t ′) is not in Tj for any j < i. Thus by induction hypothesis there is a term (u, u′) ∈ ST(Gi) and
i′ � i such that there is a proof 
′

1 of Pi �a (t, t ′) : (�i′ , (u, u′)). Now if u is a nonce and t is not, then by Lemma 21
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it follows that t = �i′(u) ∈ Ti−1, which contradicts our assumption about t. Thus t : (�i , u) is top-level matching.
The following is a proof of Pi �a t :(�i′ , u).

(
′
1)

...

Pi �a (t, t ′) :(�i′ , (u, u′))
split′1

Pi �a t :(�i′ , u)

• Suppose 
 is the following proof:

(
1)

...

Ti �a {t}t ′

(
2)

...

Ti �s inv(t ′)
decrypt′

Ti �a t

Suppose j is least such that {t}t ′ ∈ Tj . If j < i then, since t /∈ Tj , no proof of Tj � {t}t ′ ends with a synth-rule (since
then t would occur in a premise of the last rule), and hence ends with an analz-rule. Thus in fact j is least such that
Tj �a {t}t ′ is derivable. By our assumption on subproofs of �, this means that 
1 is in effect a proof of Tj �a {t}t ′ .
If j = i, then also 
1 is a proof of Tj �a {t}t ′ .

Thus by induction hypothesis there is {u}u′ ∈ ST(Gj ), j ′ �j and a proof of Pj �a {t}t ′ :(�j ′ , {u}u′). Since Pj ⊆ Pi ,
it follows that there is a proof 
′

1 of Pi �a {t}t ′ : (�j ′ , {u}u′). Since �j ′(u′) = t ′, �j ′(inv(u′)) = inv(t ′). Thus, again
by induction hypothesis, there is a proof 
′

2 of Pi �s inv(t ′) :(�j ′ , inv(u′)). Suppose now that u is a nonce and t is not.
Then by Lemma 21 it follows that t = �j ′(u) ∈ Tj ′−1, which contradicts our assumption about t. Thus t :(�j ′ , u) is
top-level matching. The following is a proof of Pi �a t :(�j ′ , u):

(
′
1)

...

Pi �a {t}t ′ :(�j ′ , {u}u′)

(
′
2)

...

Pi �s inv(t ′) :(�j ′ , inv(u′))
decrypt′

Pi �a t :(�j ′ , u)

• Suppose 
 is of the following form:

(
1)

...

Ti �a t
promote

Ti �s t

By induction hypothesis there is a proof 
′
1 of Pi �a t : (�j , u) for some u ∈ ST(Gi) and j � i such that t : (�j , u)

is top-level matching. Since t occurs as a premise of the promote rule, it is not a pair. Hence it can be freely used
as a premise of the unify rule. Hence we have the following proof of Pi �s t : (�, w) for any w and � such that
t = �(w):

(
′
1)

...

Pi �a t :(�j , u)
unify

Pi �s t :(�, w)

• Suppose t = (t1, t2) and 
 is the following proof:

(
1)

...

Ti �s t1

(
2)

...

Ti �s t2 pair′
Ti �s (t1, t2)
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Consider any u and � such that �(u) = (t1, t2). If u is a nonce then we note that t1 and t2 are instances of themselves,
and therefore by induction hypothesis there are proofs 
′

1 and 
′
2 of Pi �s t1 : (�id, t1) and Pi �s t2 : (�id, t2),

respectively, where �id is the identity substitution. So we have the following proof of Pi �s t :(�, u):
(
′

1)

...

Pi �s t1 :(�id, t1)

(
′
2)

...

Pi �s t2 :(�id, t2) pair′
Pi �s (t1, t2) :(�id, (t1, t2)) simplify

Pi �s (t1, t2) :(�, u)

If, on the other hand, u is of the form (u1, u2) then clearly �(u1) = t1 and �(u2) = t2. Thus by induction hypothesis
there are proofs 
′

1 and 
′
2 of Pi �s t1 : (�, u1) and Pi �s t2 : (�, u2), respectively. So we have the following proof of

Pi �s t :(�, u).
(
′

1)

...

Pi �s t1 :(�, u1)

(
′
2)

...

Pi �s t2 :(�, u2) pair′
Pi �s (t1, t2) :(�, (u1, u2))

• Suppose t = {t1}t2 and 
 is the following proof:
(
1)

...

Ti �s t1

(
2)

...

Ti �s t2 encrypt′
Ti �s {t1}t2

Then we proceed exactly as in the above case. �

Lemma 23. For every term t ∈ ST(Tk), every u ∈ ST(Gk), and every i, j �k, if Pi �a t : (�j , u) or Pi �s t : (�j , u),

then �′
j (u) ∈ T ′

i .

Proof. We do an induction on the structure of proofs. Suppose � is a proof of either Pi �a t :(�j , u) or Pi �s t :(�j , u).
We will assume that for every sequent Pi �a r :(�, w) occurring in �, r :(�, w) is top-level matching. (This can always
be achieved without loss of generality.) Then there are the following cases to consider:
• Suppose � is the following proof:

Ax′
Pi �a t :(�j , u)

Either t ∈ T0, in which case �′
j (t) = t ∈ T0 ⊆ T ′

i ; or j � i and u = tj , in which case we observe that �′
j (u) ∈ T ′

i .
• Suppose � is the following proof:

(�1)

...

Pi �a (t, t ′) :(�j , (u, u′))
split′1

Pi �a t :(�j , u)

By induction hypothesis �′
j ((u, u′)) ∈ T ′

i . But �′
j ((u, u′)) = (�′

j (u), �′
j (u

′)), and hence it easily follows that

�′
j (u) ∈ T ′

i .
• Suppose � is the following proof:

(�1)

...

Pi �a {t}t ′ :(�j , {u}u′)

(�2)

...

Pi �s inv(t ′) :(�j , inv(u′))
decrypt′

Pi �a t :(�j , u)
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By induction hypothesis {�′
j (u)}�′

j (u′) = �′
j ({u}u′) ∈ T ′

i . If u′ = inv(u′), then inv(u′) ∈ ST(Gk). Thus by induction

hypothesis, �′
j (inv(u′)) ∈ T ′

i . But inv(�′
j (u

′)) is the same as �′
j (inv(u′)) and hence inv(�′

j (u
′)) ∈ T ′

i .
On the other hand, if u′ �= inv(u′), u′ is of the form public(A) or private(A) for some A ∈ Ag. With-

out loss of generality, let u′ = public(A). Then inv(t ′) = private(B) for some B. It has to be the case that
�2 ends with an application of the unify rule. Thus there is a subproof �3 of �2 which proves Pi �a inv(t ′) :
(�j ′ , u′′). But it follows from our assumption about subproofs of � that inv(t ′) : (�j ′ , u′′) is top-level matching.
This means that u′′ = private(C) for some C, and hence �′

j ′(u′′) = �j ′(u′′) = private(B). By induction hypothesis

private(B) ∈ T ′
i . Note that �′

j (u
′) = �j (u

′) = public(B). Thus {�′
j (u)}public(B) ∈ T ′

i . It immediately follows

that �′
j (u) ∈ T ′

i .
• Suppose � is the following proof:

(�1)

...

Pi �a t :(�j ′ , u′) t is not a pair
unify

Pi �s t :(�j , u)

It clearly follows that �j ′(u′) = �j (u). But now it is clear that neither u nor u′ is a pair. Further, t : (�j ′ , u′) is
top-level matching. So there are three cases to consider.

t is a basic term: Now u and u′ are also basic terms. Hence �′
j (u) = �j (u) and �′

j ′(u′) = �j ′(u′). From the fact

that �j (u) = �j ′(u′), it follows that �′
j (u) = �′

j ′(u′). But then by induction hypothesis �′
j ′(u′) ∈ T ′

i , and hence
we are through.

Both u and u′ are encrypted terms: Since �j (u) = �j ′(u′), from Proposition 1 which is an immediate consequence
of the tagging scheme we use, that u = u′. But then clearly �′

j (u) = �′
j ′(u′) as well. By induction hypothesis

�′
j ′(u′) ∈ T ′

i , and hence we are through.
u is a basic term and u′ is an encrypted term: In this case, quite clearly �′

j (u) is the same as n0, which belongs to
T0 and hence, to T ′

i .
• Suppose � is the following proof:

(�1)

...

Pi �s t :(�j ′ , u′)
simplify

Pi �s t :(�j , u)

In this case u is a nonce and t is not, and so quite clearly �′
j (u) is the same as n0, which belongs to T0 and hence,

to T ′
i .

• Suppose t = (t1, t2), u = (u1, u2), and � is the following proof:

(�1)

...

Pi �s t1 :(�j , u1)

(�1)

...

Pi �s t2 :(�j , u2)
pair′

Pi �s (t1, t2) :(�j , (u1, u2))

By induction hypothesis both �′
j (u1) and �′

j (u2) belong to T ′
i and the conclusion immediately follows from

this.
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• Suppose t = {t1}t2 , u = {u1}u2 , and � is the following proof:

(�1)

...

Pi �s t1 :(�j , u1)

(�1)

...

Pi �s t2 :(�j , u2)
encrypt′

Pi �s {t1}t2 :(�j , {u1}u2)

By induction hypothesis both �′
j (u1) and �′

j (u2) belong to T ′
i and the conclusion immediately follows from

this. �

We now have all the ingredients to prove Theorem 9.

Lemma 24. For all i�k such that e′
i is a receive event, t ′i ∈ T ′

i−1.

Proof. Consider any receive event e′
i . Since ei is also a receive event, it is clear that ti ∈ Ti−1. Notice that ti = �(gi).

Thus, by Lemma 22, it follows that there is a proof of Pi−1 �s ti : (�i , gi). It now follows by Lemma 23 that t ′i =
�′

i (gi) ∈ T ′
i−1. �

The next lemma is important in proving the “equivalence” of � and �′.

Lemma 25. For all i, j �k and for all m ∈ N such that �i (m) ∈ N , �i (m) ∈ Tj iff �′
i (m) ∈ T ′

j .

Proof. We have already shown (by Lemmas 22 and 23) that whenever �i (m) ∈ Tj then �′
i (m) ∈ T ′

j .
Let �′ be a proof of T ′

j � �′
i (m). Since �′

i (m) is a nonce, �′ can end only with an analz-rule, and hence �′
i (m) ∈ ST(T ′

j ).
Now every term r occurring in �′ is a subterm of T ′

j ∪{�′
i (m)}, and thus is a subterm of T ′

j . Since the �′
i’s are well-typed

substitutions, we conclude that all terms occurring in �′ are of the form �′
k(u) for some u ∈ Gj and some k�j . We

can easily show for each subproof 
′ of �′ with root T ′
j � �′

k(u) that �k′(u) ∈ Tj (for a k′ such that whenever �k(t) is a
nonce, �k(t) = �k′(t)). We look at the nontrivial cases:
• Suppose 
′ is the following proof:

Ax
T ′

j � �′
k(u)

It is clear that �′
k(u) ∈ T ′

j . Now there are two cases to consider. The first is when �′
k(u) �= n0. In this case it is clear

that �k(u) ∈ Tj as well, and thus �k(u) ∈ Tj . On the other hand if �k(u) �= n0 and �′
k(u) = n0, then we observe

that u itself is a nonce and �k(u) is not one. Thus by Lemma 21, �k(u) belongs to Tk−1, which is a subset of Tj , and
we are through.

• Suppose 
′ is the following proof:

(
′
1)

...

T ′
j � �′

k({u}u′)

(
′
2)

...

T ′
j � �′

k′(u′)
decrypt

T ′
j � �′

k(u)

We first observe that u′ occurs as an encryptor in Pr, and thus there are no ill-typed substitutions involving subterms
of u′. Thus by induction hypothesis there are k1, k2 such that �k1(u

′) = �k2(u
′) = �′

k(u
′), and that �k1(u

′) ∈ Tj . Also
by induction hypothesis we see that �k1({u}u′) ∈ Tj . Thus, it follows that �k1(u) ∈ Tj , and of course, by induction
hypothesis it follows that for all t such that �k(t) is a nonce, �k(t) = �k1(t). �
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Appendix D. From pseudo-runs to runs

In this section, we show how to associate a well-typed run �norm to a well-typed pseudo-run �wt.
Consider a tagged protocol Pr = {�1, . . . , �n}, and a run � of Pr. Let � = e1 · · · ek with ei = (�i , lpi ) for each

i�k. For any set of session formulae � and any i�k, we define Th�(i) to be the set {� ∈ � | ���i , lpi � �}.
We define �norm as the subsequence ei1 · · · eir of � such that i1 = 1 and for all j > 1, the following property holds:

for all i′ : 1� i′ � ij , either si′ �= sij or ei′ �= eij or Th�(i′) �= Th�(ij ).

It is clear that �norm is indeed a run of Pr. Observe that � is a session of � if and only if it is a session of �norm.
For every i : 1� i�k, we define inorm as follows:

inorm
def= min{i′ �k | si′ = si and ei′ = ei and Th�(i) = Th�(i′)}.

Lemma 26.
(1) For all sessions � of �, all i�k, and all � ∈ �,

���, lpi � � iff �norm��, lpinorm
� �.

(2) For all run formulae 
 such that sf (
)∩�0 = �, and all session assignments assign over � which are compatible
with 
,

� �assign 
 iff �norm �assign 
.

Proof.
(1) This simply follows from the definitions. Note that���, lpi � � iff� ∈ Th�(i) iff� ∈ Th�(inorm) iff�norm��, lpinorm

� �.
(2) The proof of this is identical to that of item 2 of Lemma 10. �
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