TMAT Tutorial 2

- 1. Let $\Sigma = \{a, b\}$, and let L be the set of timed words of the form $(w_1 w_2 \dots w_n, \tau_1 \tau_2 \dots \tau_n)$ such that:
 - $\tau_0 = 0$,
 - b occurs at every integer time stamp between τ_0 and τ_n , and nowhere else
 - a occurs only at non-integer time stamps.

Construct a timed automaton for the complement of L.

- 2. Let $\Sigma = \{a, b_1, b_2\}$. Let L be the set of all timed words $(w_1 w_2 \dots w_n, \tau_1 \tau_2 \dots \tau_n)$ over Σ such that:
 - no two letters have the same time-stamp,
 - there is a b_1 or a b_2 at every integer time stamp $\leq \tau_n$,
 - there is no b_1 or b_2 at any non-integer time stamp,
 - a occurs only at non-integer time stamps,
 - for every integer $1 \le k \le \tau_n$,
 - if the letter at time stamp k-1 is b_1 , then for every a occurring at a timestamp t in the interval (k-1,k) except the last one there is an a at t+1,
 - if the letter at time stamp k-1 is b_2 , then for every a occurring at a timestamp t in the interval (k, k+1) except the last one, there is an a at t-1.

Construct a timed automaton for the complement of L.