next up previous contents
Next: Primitive recursion Up: Recursive functions Previous: Initial functions   Contents

Composition

Given $f : \mathbb{N}^k \rightarrow \mathbb{N}$ and $g_1,g_2,\ldots,g_k : \mathbb{N}^h \to
\mathbb{N}$, the composition of $f$ and $g_1,g_2,\ldots,g_k$, denoted $f \circ (g_1,g_2,\ldots,g_k)$, is the function


\begin{displaymath}
\begin{array}{l}
f \circ (g_1,g_2,\ldots,g_k) (n_1,n_2,\ld...
...,n_2,\ldots,n_h),\ldots,
g_k(n_1,n_2,\ldots,n_h))
\end{array}\end{displaymath}

For example, the function $f(n) = n{+2}$ can be defined as the composition $f = S \circ S$ of the successor function with itself.



Madhavan Mukund 2004-04-29